1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
|
//===-- RISCVInstrInfoZb.td - RISC-V Bitmanip instructions -*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard Bitmanip
// extensions, versions:
// Zba - 1.0
// Zbb - 1.0
// Zbc - 1.0
// Zbs - 1.0
//
// This file also describes RISC-V instructions from the Zbk* extensions in
// Cryptography Extensions Volume I: Scalar & Entropy Source Instructions,
// versions:
// Zbkb - 1.0
// Zbkc - 1.0
// Zbkx - 1.0
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
def SDTIntShiftAddOp : SDTypeProfile<1, 3, [ // shl_add
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisInt<2>,
SDTCisInt<3>
]>;
def riscv_shl_add : SDNode<"RISCVISD::SHL_ADD", SDTIntShiftAddOp>;
def riscv_clzw : SDNode<"RISCVISD::CLZW", SDT_RISCVIntUnaryOpW>;
def riscv_ctzw : SDNode<"RISCVISD::CTZW", SDT_RISCVIntUnaryOpW>;
def riscv_rolw : SDNode<"RISCVISD::ROLW", SDT_RISCVIntBinOpW>;
def riscv_rorw : SDNode<"RISCVISD::RORW", SDT_RISCVIntBinOpW>;
def riscv_brev8 : SDNode<"RISCVISD::BREV8", SDTIntUnaryOp>;
def riscv_orc_b : SDNode<"RISCVISD::ORC_B", SDTIntUnaryOp>;
def riscv_zip : SDNode<"RISCVISD::ZIP", SDTIntUnaryOp>;
def riscv_unzip : SDNode<"RISCVISD::UNZIP", SDTIntUnaryOp>;
def riscv_absw : SDNode<"RISCVISD::ABSW", SDTIntUnaryOp>;
def riscv_clmul : SDNode<"RISCVISD::CLMUL", SDTIntBinOp>;
def riscv_clmulh : SDNode<"RISCVISD::CLMULH", SDTIntBinOp>;
def riscv_clmulr : SDNode<"RISCVISD::CLMULR", SDTIntBinOp>;
def UImmLog2XLenHalfAsmOperand : AsmOperandClass {
let Name = "UImmLog2XLenHalf";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidUImmLog2XLenHalf";
}
def shfl_uimm : RISCVOp, ImmLeaf<XLenVT, [{
if (Subtarget->is64Bit())
return isUInt<5>(Imm);
return isUInt<4>(Imm);
}]> {
let ParserMatchClass = UImmLog2XLenHalfAsmOperand;
let DecoderMethod = "decodeUImmOperand<5>";
let OperandType = "OPERAND_UIMM_SHFL";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
if (STI.getTargetTriple().isArch64Bit())
return isUInt<5>(Imm);
return isUInt<4>(Imm);
}];
}
def BCLRXForm : SDNodeXForm<imm, [{
// Find the lowest 0.
return CurDAG->getTargetConstant(llvm::countr_one(N->getZExtValue()),
SDLoc(N), N->getValueType(0));
}]>;
def SingleBitSetMaskToIndex : SDNodeXForm<imm, [{
// Find the lowest 1.
return CurDAG->getTargetConstant(llvm::countr_zero(N->getZExtValue()),
SDLoc(N), N->getValueType(0));
}]>;
// Checks if this mask has a single 0 bit and cannot be used with ANDI.
def BCLRMask : ImmLeaf<XLenVT, [{
if (Subtarget->is64Bit())
return !isInt<12>(Imm) && isPowerOf2_64(~Imm);
return !isInt<12>(Imm) && isPowerOf2_32(~Imm);
}], BCLRXForm>;
// Checks if this mask has a single 1 bit and cannot be used with ORI/XORI.
def SingleBitSetMask : ImmLeaf<XLenVT, [{
if (Subtarget->is64Bit())
return !isInt<12>(Imm) && isPowerOf2_64(Imm);
return !isInt<12>(Imm) && isPowerOf2_32(Imm);
}], SingleBitSetMaskToIndex>;
// Check if (or r, i) can be optimized to (BSETI (BSETI r, i0), i1),
// in which i = (1 << i0) | (1 << i1).
def BSETINVTwoBitsMask : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
// The immediate should not be a simm12.
if (isInt<12>(N->getSExtValue()))
return false;
// The immediate must have exactly two bits set.
return llvm::popcount(N->getZExtValue()) == 2;
}]>;
def BSETINVTwoBitsMaskHigh : SDNodeXForm<imm, [{
uint64_t I = N->getZExtValue();
return CurDAG->getTargetConstant(llvm::Log2_64(I), SDLoc(N),
N->getValueType(0));
}]>;
// Check if (or r, imm) can be optimized to (BSETI (ORI r, i0), i1),
// in which imm = i0 | (1 << i1).
def BSETINVORIMask : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
// The immediate should not be a simm12.
if (isInt<12>(N->getSExtValue()))
return false;
// There should be only one set bit from bit 11 to the top.
return isPowerOf2_64(N->getZExtValue() & ~0x7ff);
}]>;
def BSETINVORIMaskLow : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 0x7ff,
SDLoc(N), N->getValueType(0));
}]>;
// Check if (and r, i) can be optimized to (BCLRI (BCLRI r, i0), i1),
// in which i = ~((1<<i0) | (1<<i1)).
def BCLRITwoBitsMask : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
// The immediate should not be a simm12.
if (isInt<12>(N->getSExtValue()))
return false;
// The immediate must have exactly two bits clear.
return (unsigned)llvm::popcount(N->getZExtValue()) == Subtarget->getXLen() - 2;
}]>;
def BCLRITwoBitsMaskLow : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(llvm::countr_zero(~N->getZExtValue()),
SDLoc(N), N->getValueType(0));
}]>;
def BCLRITwoBitsMaskHigh : SDNodeXForm<imm, [{
uint64_t I = N->getSExtValue();
if (!Subtarget->is64Bit())
I |= 0xffffffffull << 32;
return CurDAG->getTargetConstant(llvm::Log2_64(~I), SDLoc(N),
N->getValueType(0));
}]>;
// Check if (and r, i) can be optimized to (BCLRI (ANDI r, i0), i1),
// in which i = i0 & ~(1<<i1).
def BCLRIANDIMask : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
// The immediate should not be a simm12.
if (isInt<12>(N->getSExtValue()))
return false;
// There should be only one clear bit from bit 11 to the top.
uint64_t I = N->getZExtValue() | 0x7ff;
return Subtarget->is64Bit() ? isPowerOf2_64(~I) : isPowerOf2_32(~I);
}]>;
def BCLRIANDIMaskLow : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((N->getZExtValue() & 0x7ff) | ~0x7ffull,
SDLoc(N), N->getValueType(0));
}]>;
def CSImm12MulBy4 : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
int64_t C = N->getSExtValue();
// Skip if C is simm12, an lui, or can be optimized by the PatLeaf AddiPair.
return !isInt<13>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 2>(C);
}]>;
def CSImm12MulBy8 : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
int64_t C = N->getSExtValue();
// Skip if C is simm12, an lui or can be optimized by the PatLeaf AddiPair or
// CSImm12MulBy4.
return !isInt<14>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 3>(C);
}]>;
def SimmShiftRightBy2XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() >> 2, SDLoc(N),
N->getValueType(0));
}]>;
def SimmShiftRightBy3XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() >> 3, SDLoc(N),
N->getValueType(0));
}]>;
// Pattern to exclude simm12 immediates from matching, namely `non_imm12`.
// GISel currently doesn't support PatFrag for leaf nodes, so `non_imm12`
// cannot be implemented in that way. To reuse patterns between the two
// ISels, we instead create PatFrag on operators that use `non_imm12`.
class binop_with_non_imm12<SDPatternOperator binop>
: PatFrag<(ops node:$x, node:$y), (binop node:$x, node:$y), [{
auto *C = dyn_cast<ConstantSDNode>(Operands[1]);
return !C || !isInt<12>(C->getSExtValue());
}]> {
let PredicateCodeUsesOperands = 1;
let GISelPredicateCode = [{
const MachineOperand &ImmOp = *Operands[1];
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (ImmOp.isReg() && ImmOp.getReg())
if (auto Val = getIConstantVRegValWithLookThrough(ImmOp.getReg(), MRI)) {
// We do NOT want immediates that fit in 12 bits.
return !isInt<12>(Val->Value.getSExtValue());
}
return true;
}];
}
def add_non_imm12 : binop_with_non_imm12<add>;
def add_like_non_imm12 : binop_with_non_imm12<add_like>;
def Shifted32OnesMask : IntImmLeaf<XLenVT, [{
if (!Imm.isShiftedMask())
return false;
unsigned TrailingZeros = Imm.countr_zero();
return TrailingZeros > 0 && TrailingZeros < 32 &&
Imm == UINT64_C(0xFFFFFFFF) << TrailingZeros;
}], TrailingZeros>;
def sh1add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<1>", [], [], 6>;
def sh2add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<2>", [], [], 6>;
def sh3add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<3>", [], [], 6>;
def sh1add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<1>", [], [], 6>;
def sh2add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<2>", [], [], 6>;
def sh3add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<3>", [], [], 6>;
//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class RVBUnary<bits<12> imm12, bits<3> funct3,
RISCVOpcode opcode, string opcodestr>
: RVInstIUnary<imm12, funct3, opcode, (outs GPR:$rd), (ins GPR:$rs1),
opcodestr, "$rd, $rs1">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class RVBShift_ri<bits<5> imm11_7, bits<3> funct3, RISCVOpcode opcode,
string opcodestr>
: RVInstIShift<imm11_7, funct3, opcode, (outs GPR:$rd),
(ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
"$rd, $rs1, $shamt">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class RVBShiftW_ri<bits<7> imm11_5, bits<3> funct3, RISCVOpcode opcode,
string opcodestr>
: RVInstIShiftW<imm11_5, funct3, opcode, (outs GPR:$rd),
(ins GPR:$rs1, uimm5:$shamt), opcodestr,
"$rd, $rs1, $shamt">;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtZbbOrZbkb] in {
def ANDN : ALU_rr<0b0100000, 0b111, "andn">,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def ORN : ALU_rr<0b0100000, 0b110, "orn">,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def XNOR : ALU_rr<0b0100000, 0b100, "xnor">,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbbOrZbkb]
let Predicates = [HasStdExtZba] in {
def SH1ADD : ALU_rr<0b0010000, 0b010, "sh1add">,
Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>;
def SH2ADD : ALU_rr<0b0010000, 0b100, "sh2add">,
Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>;
def SH3ADD : ALU_rr<0b0010000, 0b110, "sh3add">,
Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>;
} // Predicates = [HasStdExtZba]
let Predicates = [HasStdExtZba, IsRV64] in {
def SLLI_UW : RVBShift_ri<0b00001, 0b001, OPC_OP_IMM_32, "slli.uw">,
Sched<[WriteShiftImm32, ReadShiftImm32]>;
def ADD_UW : ALUW_rr<0b0000100, 0b000, "add.uw">,
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SH1ADD_UW : ALUW_rr<0b0010000, 0b010, "sh1add.uw">,
Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>;
def SH2ADD_UW : ALUW_rr<0b0010000, 0b100, "sh2add.uw">,
Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>;
def SH3ADD_UW : ALUW_rr<0b0010000, 0b110, "sh3add.uw">,
Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>;
} // Predicates = [HasStdExtZba, IsRV64]
let Predicates = [HasStdExtZbbOrZbkb] in {
def ROL : ALU_rr<0b0110000, 0b001, "rol">,
Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>;
def ROR : ALU_rr<0b0110000, 0b101, "ror">,
Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>;
def RORI : RVBShift_ri<0b01100, 0b101, OPC_OP_IMM, "rori">,
Sched<[WriteRotateImm, ReadRotateImm]>;
} // Predicates = [HasStdExtZbbOrZbkb]
let Predicates = [HasStdExtZbbOrZbkb, IsRV64], IsSignExtendingOpW = 1 in {
def ROLW : ALUW_rr<0b0110000, 0b001, "rolw">,
Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>;
def RORW : ALUW_rr<0b0110000, 0b101, "rorw">,
Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>;
def RORIW : RVBShiftW_ri<0b0110000, 0b101, OPC_OP_IMM_32, "roriw">,
Sched<[WriteRotateImm32, ReadRotateImm32]>;
} // Predicates = [HasStdExtZbbOrZbkb, IsRV64]
let Predicates = [HasStdExtZbs] in {
def BCLR : ALU_rr<0b0100100, 0b001, "bclr">,
Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>;
def BSET : ALU_rr<0b0010100, 0b001, "bset">,
Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>;
def BINV : ALU_rr<0b0110100, 0b001, "binv">,
Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>;
let IsSignExtendingOpW = 1 in
def BEXT : ALU_rr<0b0100100, 0b101, "bext">,
Sched<[WriteBEXT, ReadSingleBit, ReadSingleBit]>;
def BCLRI : RVBShift_ri<0b01001, 0b001, OPC_OP_IMM, "bclri">,
Sched<[WriteSingleBitImm, ReadSingleBitImm]>;
def BSETI : RVBShift_ri<0b00101, 0b001, OPC_OP_IMM, "bseti">,
Sched<[WriteSingleBitImm, ReadSingleBitImm]>;
def BINVI : RVBShift_ri<0b01101, 0b001, OPC_OP_IMM, "binvi">,
Sched<[WriteSingleBitImm, ReadSingleBitImm]>;
let IsSignExtendingOpW = 1 in
def BEXTI : RVBShift_ri<0b01001, 0b101, OPC_OP_IMM, "bexti">,
Sched<[WriteBEXTI, ReadSingleBitImm]>;
} // Predicates = [HasStdExtZbs]
// These instructions were named xperm.n and xperm.b in the last version of
// the draft bit manipulation specification they were included in. However, we
// use the mnemonics given to them in the ratified Zbkx extension.
let Predicates = [HasStdExtZbkx] in {
def XPERM4 : ALU_rr<0b0010100, 0b010, "xperm4">,
Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>;
def XPERM8 : ALU_rr<0b0010100, 0b100, "xperm8">,
Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>;
} // Predicates = [HasStdExtZbkx]
let Predicates = [HasStdExtZbb], IsSignExtendingOpW = 1 in {
def CLZ : RVBUnary<0b011000000000, 0b001, OPC_OP_IMM, "clz">,
Sched<[WriteCLZ, ReadCLZ]>;
def CTZ : RVBUnary<0b011000000001, 0b001, OPC_OP_IMM, "ctz">,
Sched<[WriteCTZ, ReadCTZ]>;
def CPOP : RVBUnary<0b011000000010, 0b001, OPC_OP_IMM, "cpop">,
Sched<[WriteCPOP, ReadCPOP]>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in {
def CLZW : RVBUnary<0b011000000000, 0b001, OPC_OP_IMM_32, "clzw">,
Sched<[WriteCLZ32, ReadCLZ32]>;
def CTZW : RVBUnary<0b011000000001, 0b001, OPC_OP_IMM_32, "ctzw">,
Sched<[WriteCTZ32, ReadCTZ32]>;
def CPOPW : RVBUnary<0b011000000010, 0b001, OPC_OP_IMM_32, "cpopw">,
Sched<[WriteCPOP32, ReadCPOP32]>;
} // Predicates = [HasStdExtZbb, IsRV64]
let Predicates = [HasStdExtZbb], IsSignExtendingOpW = 1 in {
def SEXT_B : RVBUnary<0b011000000100, 0b001, OPC_OP_IMM, "sext.b">,
Sched<[WriteIALU, ReadIALU]>;
def SEXT_H : RVBUnary<0b011000000101, 0b001, OPC_OP_IMM, "sext.h">,
Sched<[WriteIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbc] in {
def CLMULR : ALU_rr<0b0000101, 0b010, "clmulr", Commutable=1>,
Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>;
} // Predicates = [HasStdExtZbc]
let Predicates = [HasStdExtZbcOrZbkc] in {
def CLMUL : ALU_rr<0b0000101, 0b001, "clmul", Commutable=1>,
Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>;
def CLMULH : ALU_rr<0b0000101, 0b011, "clmulh", Commutable=1>,
Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>;
} // Predicates = [HasStdExtZbcOrZbkc]
let Predicates = [HasStdExtZbb] in {
def MIN : ALU_rr<0b0000101, 0b100, "min", Commutable=1>,
Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
def MINU : ALU_rr<0b0000101, 0b101, "minu", Commutable=1>,
Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
def MAX : ALU_rr<0b0000101, 0b110, "max", Commutable=1>,
Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
def MAXU : ALU_rr<0b0000101, 0b111, "maxu", Commutable=1>,
Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbkb] in {
def PACK : ALU_rr<0b0000100, 0b100, "pack">,
Sched<[WritePACK, ReadPACK, ReadPACK]>;
let IsSignExtendingOpW = 1 in
def PACKH : ALU_rr<0b0000100, 0b111, "packh">,
Sched<[WritePACK, ReadPACK, ReadPACK]>;
} // Predicates = [HasStdExtZbkb]
let Predicates = [HasStdExtZbkb, IsRV64], IsSignExtendingOpW = 1 in
def PACKW : ALUW_rr<0b0000100, 0b100, "packw">,
Sched<[WritePACK32, ReadPACK32, ReadPACK32]>;
let Predicates = [HasStdExtZbb, IsRV32] in {
def ZEXT_H_RV32 : RVBUnary<0b000010000000, 0b100, OPC_OP, "zext.h">,
Sched<[WriteIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbb, IsRV32]
let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in {
def ZEXT_H_RV64 : RVBUnary<0b000010000000, 0b100, OPC_OP_32, "zext.h">,
Sched<[WriteIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbb, IsRV64]
let Predicates = [HasStdExtZbbOrZbkb, IsRV32] in {
def REV8_RV32 : RVBUnary<0b011010011000, 0b101, OPC_OP_IMM, "rev8">,
Sched<[WriteREV8, ReadREV8]>;
} // Predicates = [HasStdExtZbbOrZbkb, IsRV32]
let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in {
def REV8_RV64 : RVBUnary<0b011010111000, 0b101, OPC_OP_IMM, "rev8">,
Sched<[WriteREV8, ReadREV8]>;
} // Predicates = [HasStdExtZbbOrZbkb, IsRV64]
let Predicates = [HasStdExtZbb] in {
def ORC_B : RVBUnary<0b001010000111, 0b101, OPC_OP_IMM, "orc.b">,
Sched<[WriteORCB, ReadORCB]>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbkb] in
def BREV8 : RVBUnary<0b011010000111, 0b101, OPC_OP_IMM, "brev8">,
Sched<[WriteBREV8, ReadBREV8]>;
let Predicates = [HasStdExtZbkb, IsRV32] in {
def ZIP_RV32 : RVBUnary<0b000010001111, 0b001, OPC_OP_IMM, "zip">,
Sched<[WriteZIP, ReadZIP]>;
def UNZIP_RV32 : RVBUnary<0b000010001111, 0b101, OPC_OP_IMM, "unzip">,
Sched<[WriteZIP, ReadZIP]>;
} // Predicates = [HasStdExtZbkb, IsRV32]
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtZba, IsRV64] in {
def : InstAlias<"zext.w $rd, $rs", (ADD_UW GPR:$rd, GPR:$rs, X0)>;
} // Predicates = [HasStdExtZba, IsRV64]
let Predicates = [HasStdExtZbb] in {
def : InstAlias<"ror $rd, $rs1, $shamt",
(RORI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbb, IsRV64] in {
def : InstAlias<"rorw $rd, $rs1, $shamt",
(RORIW GPR:$rd, GPR:$rs1, uimm5:$shamt), 0>;
} // Predicates = [HasStdExtZbb, IsRV64]
let Predicates = [HasStdExtZbs] in {
def : InstAlias<"bset $rd, $rs1, $shamt",
(BSETI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
def : InstAlias<"bclr $rd, $rs1, $shamt",
(BCLRI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
def : InstAlias<"binv $rd, $rs1, $shamt",
(BINVI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
def : InstAlias<"bext $rd, $rs1, $shamt",
(BEXTI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
} // Predicates = [HasStdExtZbs]
let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32] in {
def : InstAlias<"zext.h $rd, $rs", (PACK GPR:$rd, GPR:$rs, X0)>;
} // Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32]
let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in {
def : InstAlias<"zext.h $rd, $rs", (PACKW GPR:$rd, GPR:$rs, X0)>;
} // Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64]
//===----------------------------------------------------------------------===//
// Codegen patterns
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtZbbOrZbkb] in {
def : Pat<(XLenVT (and GPR:$rs1, (not GPR:$rs2))), (ANDN GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (or GPR:$rs1, (not GPR:$rs2))), (ORN GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (xor GPR:$rs1, (not GPR:$rs2))), (XNOR GPR:$rs1, GPR:$rs2)>;
} // Predicates = [HasStdExtZbbOrZbkb]
let Predicates = [HasStdExtZbbOrZbkb] in {
def : PatGprGpr<shiftop<rotl>, ROL>;
def : PatGprGpr<shiftop<rotr>, ROR>;
def : PatGprImm<rotr, RORI, uimmlog2xlen>;
// There's no encoding for roli in the the 'B' extension as it can be
// implemented with rori by negating the immediate.
def : Pat<(XLenVT (rotl GPR:$rs1, uimmlog2xlen:$shamt)),
(RORI GPR:$rs1, (ImmSubFromXLen uimmlog2xlen:$shamt))>;
} // Predicates = [HasStdExtZbbOrZbkb]
let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in {
def : PatGprGpr<shiftopw<riscv_rolw>, ROLW>;
def : PatGprGpr<shiftopw<riscv_rorw>, RORW>;
def : PatGprImm<riscv_rorw, RORIW, uimm5>;
def : Pat<(riscv_rolw GPR:$rs1, uimm5:$rs2),
(RORIW GPR:$rs1, (ImmSubFrom32 uimm5:$rs2))>;
} // Predicates = [HasStdExtZbbOrZbkb, IsRV64]
let Predicates = [HasStdExtZbs] in {
def : Pat<(XLenVT (and (not (shiftop<shl> 1, (XLenVT GPR:$rs2))), GPR:$rs1)),
(BCLR GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (and (rotl -2, (XLenVT GPR:$rs2)), GPR:$rs1)),
(BCLR GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (or (shiftop<shl> 1, (XLenVT GPR:$rs2)), GPR:$rs1)),
(BSET GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (xor (shiftop<shl> 1, (XLenVT GPR:$rs2)), GPR:$rs1)),
(BINV GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (and (shiftop<srl> GPR:$rs1, (XLenVT GPR:$rs2)), 1)),
(BEXT GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (shiftop<shl> 1, (XLenVT GPR:$rs2))),
(BSET (XLenVT X0), GPR:$rs2)>;
def : Pat<(XLenVT (not (shiftop<shl> -1, (XLenVT GPR:$rs2)))),
(ADDI (XLenVT (BSET (XLenVT X0), GPR:$rs2)), -1)>;
def : Pat<(XLenVT (and GPR:$rs1, BCLRMask:$mask)),
(BCLRI GPR:$rs1, BCLRMask:$mask)>;
def : Pat<(XLenVT (or GPR:$rs1, SingleBitSetMask:$mask)),
(BSETI GPR:$rs1, SingleBitSetMask:$mask)>;
def : Pat<(XLenVT (xor GPR:$rs1, SingleBitSetMask:$mask)),
(BINVI GPR:$rs1, SingleBitSetMask:$mask)>;
def : Pat<(XLenVT (and (srl GPR:$rs1, uimmlog2xlen:$shamt), (XLenVT 1))),
(BEXTI GPR:$rs1, uimmlog2xlen:$shamt)>;
def : Pat<(XLenVT (seteq (XLenVT (and GPR:$rs1, SingleBitSetMask:$mask)), 0)),
(BEXTI (XLenVT (XORI GPR:$rs1, -1)), SingleBitSetMask:$mask)>;
def : Pat<(XLenVT (or GPR:$r, BSETINVTwoBitsMask:$i)),
(BSETI (XLenVT (BSETI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i))),
(BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>;
def : Pat<(XLenVT (xor GPR:$r, BSETINVTwoBitsMask:$i)),
(BINVI (XLenVT (BINVI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i))),
(BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>;
def : Pat<(XLenVT (or GPR:$r, BSETINVORIMask:$i)),
(BSETI (XLenVT (ORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i))),
(BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>;
def : Pat<(XLenVT (xor GPR:$r, BSETINVORIMask:$i)),
(BINVI (XLenVT (XORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i))),
(BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>;
def : Pat<(XLenVT (and GPR:$r, BCLRITwoBitsMask:$i)),
(BCLRI (XLenVT (BCLRI GPR:$r, (BCLRITwoBitsMaskLow BCLRITwoBitsMask:$i))),
(BCLRITwoBitsMaskHigh BCLRITwoBitsMask:$i))>;
def : Pat<(XLenVT (and GPR:$r, BCLRIANDIMask:$i)),
(BCLRI (XLenVT (ANDI GPR:$r, (BCLRIANDIMaskLow BCLRIANDIMask:$i))),
(BCLRITwoBitsMaskHigh BCLRIANDIMask:$i))>;
} // Predicates = [HasStdExtZbs]
let Predicates = [HasStdExtZbb] in
def : PatGpr<riscv_orc_b, ORC_B>;
let Predicates = [HasStdExtZbkb] in
def : PatGpr<riscv_brev8, BREV8>;
let Predicates = [HasStdExtZbkb, IsRV32] in {
// We treat zip and unzip as separate instructions, so match it directly.
def : PatGpr<riscv_zip, ZIP_RV32, i32>;
def : PatGpr<riscv_unzip, UNZIP_RV32, i32>;
} // Predicates = [HasStdExtZbkb, IsRV32]
let Predicates = [HasStdExtZbb] in {
def : PatGpr<ctlz, CLZ>;
def : PatGpr<cttz, CTZ>;
def : PatGpr<ctpop, CPOP>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbb, IsRV64] in {
def : PatGpr<riscv_clzw, CLZW>;
def : PatGpr<riscv_ctzw, CTZW>;
def : Pat<(i64 (ctpop (i64 (zexti32 (i64 GPR:$rs1))))), (CPOPW GPR:$rs1)>;
def : Pat<(i64 (riscv_absw GPR:$rs1)),
(MAX GPR:$rs1, (XLenVT (SUBW (XLenVT X0), GPR:$rs1)))>;
} // Predicates = [HasStdExtZbb, IsRV64]
let Predicates = [HasStdExtZbb] in {
def : Pat<(XLenVT (sext_inreg GPR:$rs1, i8)), (SEXT_B GPR:$rs1)>;
def : Pat<(XLenVT (sext_inreg GPR:$rs1, i16)), (SEXT_H GPR:$rs1)>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbb] in {
def : PatGprGpr<smin, MIN>;
def : PatGprGpr<smax, MAX>;
def : PatGprGpr<umin, MINU>;
def : PatGprGpr<umax, MAXU>;
} // Predicates = [HasStdExtZbb]
let Predicates = [HasStdExtZbbOrZbkb, IsRV32] in
def : PatGpr<bswap, REV8_RV32, i32>;
let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in
def : PatGpr<bswap, REV8_RV64, i64>;
let Predicates = [HasStdExtZbkb] in {
def : Pat<(or (and (shl GPR:$rs2, (XLenVT 8)), 0xFFFF),
(zexti8 (XLenVT GPR:$rs1))),
(PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(or (shl (zexti8 (XLenVT GPR:$rs2)), (XLenVT 8)),
(zexti8 (XLenVT GPR:$rs1))),
(PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(and (or (shl GPR:$rs2, (XLenVT 8)),
(zexti8 (XLenVT GPR:$rs1))), 0xFFFF),
(PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(binop_allhusers<or> (shl GPR:$rs2, (XLenVT 8)),
(zexti8 (XLenVT GPR:$rs1))),
(PACKH GPR:$rs1, GPR:$rs2)>;
} // Predicates = [HasStdExtZbkb]
let Predicates = [HasStdExtZbkb, IsRV32] in
def : Pat<(i32 (or (zexti16 (i32 GPR:$rs1)), (shl GPR:$rs2, (i32 16)))),
(PACK GPR:$rs1, GPR:$rs2)>;
let Predicates = [HasStdExtZbkb, IsRV64] in {
def : Pat<(i64 (or (zexti32 (i64 GPR:$rs1)), (shl GPR:$rs2, (i64 32)))),
(PACK GPR:$rs1, GPR:$rs2)>;
def : Pat<(binop_allwusers<or> (shl GPR:$rs2, (i64 16)),
(zexti16 (i64 GPR:$rs1))),
(PACKW GPR:$rs1, GPR:$rs2)>;
def : Pat<(i64 (or (sext_inreg (shl GPR:$rs2, (i64 16)), i32),
(zexti16 (i64 GPR:$rs1)))),
(PACKW GPR:$rs1, GPR:$rs2)>;
} // Predicates = [HasStdExtZbkb, IsRV64]
let Predicates = [HasStdExtZbb, IsRV32] in
def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV32 GPR:$rs)>;
let Predicates = [HasStdExtZbb, IsRV64] in
def : Pat<(i64 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV64 GPR:$rs)>;
let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32] in
def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (PACK GPR:$rs, (XLenVT X0))>;
let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in
def : Pat<(i64 (and GPR:$rs, 0xFFFF)), (PACKW GPR:$rs, (XLenVT X0))>;
let Predicates = [HasStdExtZba] in {
foreach i = {1,2,3} in {
defvar shxadd = !cast<Instruction>("SH"#i#"ADD");
def : Pat<(XLenVT (add_like_non_imm12 (shl GPR:$rs1, (XLenVT i)), GPR:$rs2)),
(shxadd GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (riscv_shl_add GPR:$rs1, (XLenVT i), GPR:$rs2)),
(shxadd GPR:$rs1, GPR:$rs2)>;
defvar pat = !cast<ComplexPattern>("sh"#i#"add_op");
// More complex cases use a ComplexPattern.
def : Pat<(XLenVT (add_like_non_imm12 pat:$rs1, GPR:$rs2)),
(shxadd pat:$rs1, GPR:$rs2)>;
}
def : Pat<(add_like (XLenVT GPR:$r), CSImm12MulBy4:$i),
(SH2ADD (XLenVT (ADDI (XLenVT X0), (SimmShiftRightBy2XForm CSImm12MulBy4:$i))),
GPR:$r)>;
def : Pat<(add_like (XLenVT GPR:$r), CSImm12MulBy8:$i),
(SH3ADD (XLenVT (ADDI (XLenVT X0), (SimmShiftRightBy3XForm CSImm12MulBy8:$i))),
GPR:$r)>;
} // Predicates = [HasStdExtZba]
let Predicates = [HasStdExtZba, IsRV64] in {
def : Pat<(i64 (shl (and GPR:$rs1, 0xFFFFFFFF), uimm5:$shamt)),
(SLLI_UW GPR:$rs1, uimm5:$shamt)>;
// Match a shifted 0xffffffff mask. Use SRLI to clear the LSBs and SLLI_UW to
// mask and shift.
def : Pat<(i64 (and GPR:$rs1, Shifted32OnesMask:$mask)),
(SLLI_UW (XLenVT (SRLI GPR:$rs1, Shifted32OnesMask:$mask)),
Shifted32OnesMask:$mask)>;
def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFF), GPR:$rs2)),
(ADD_UW GPR:$rs1, GPR:$rs2)>;
def : Pat<(i64 (and GPR:$rs, 0xFFFFFFFF)), (ADD_UW GPR:$rs, (XLenVT X0))>;
foreach i = {1,2,3} in {
defvar shxadd_uw = !cast<Instruction>("SH"#i#"ADD_UW");
def : Pat<(i64 (add_like_non_imm12 (shl (and GPR:$rs1, 0xFFFFFFFF), (i64 i)), (XLenVT GPR:$rs2))),
(shxadd_uw GPR:$rs1, GPR:$rs2)>;
def : Pat<(i64 (riscv_shl_add (and GPR:$rs1, 0xFFFFFFFF), (i64 i), GPR:$rs2)),
(shxadd_uw GPR:$rs1, GPR:$rs2)>;
}
def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 1)), 0x1FFFFFFFF), (XLenVT GPR:$rs2))),
(SH1ADD_UW GPR:$rs1, GPR:$rs2)>;
def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 2)), 0x3FFFFFFFF), (XLenVT GPR:$rs2))),
(SH2ADD_UW GPR:$rs1, GPR:$rs2)>;
def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 3)), 0x7FFFFFFFF), (XLenVT GPR:$rs2))),
(SH3ADD_UW GPR:$rs1, GPR:$rs2)>;
// More complex cases use a ComplexPattern.
foreach i = {1,2,3} in {
defvar pat = !cast<ComplexPattern>("sh"#i#"add_uw_op");
def : Pat<(i64 (add_like_non_imm12 pat:$rs1, (XLenVT GPR:$rs2))),
(!cast<Instruction>("SH"#i#"ADD_UW") pat:$rs1, GPR:$rs2)>;
}
def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFE), (XLenVT GPR:$rs2))),
(SH1ADD (XLenVT (SRLIW GPR:$rs1, 1)), GPR:$rs2)>;
def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFC), (XLenVT GPR:$rs2))),
(SH2ADD (XLenVT (SRLIW GPR:$rs1, 2)), GPR:$rs2)>;
def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFF8), (XLenVT GPR:$rs2))),
(SH3ADD (XLenVT (SRLIW GPR:$rs1, 3)), GPR:$rs2)>;
// Use SRLI to clear the LSBs and SHXADD_UW to mask and shift.
def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x1FFFFFFFE), (XLenVT GPR:$rs2))),
(SH1ADD_UW (XLenVT (SRLI GPR:$rs1, 1)), GPR:$rs2)>;
def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x3FFFFFFFC), (XLenVT GPR:$rs2))),
(SH2ADD_UW (XLenVT (SRLI GPR:$rs1, 2)), GPR:$rs2)>;
def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x7FFFFFFF8), (XLenVT GPR:$rs2))),
(SH3ADD_UW (XLenVT (SRLI GPR:$rs1, 3)), GPR:$rs2)>;
} // Predicates = [HasStdExtZba, IsRV64]
let Predicates = [HasStdExtZbcOrZbkc] in {
def : PatGprGpr<riscv_clmul, CLMUL>;
def : PatGprGpr<riscv_clmulh, CLMULH>;
} // Predicates = [HasStdExtZbcOrZbkc]
let Predicates = [HasStdExtZbc] in
def : PatGprGpr<riscv_clmulr, CLMULR>;
let Predicates = [HasStdExtZbkx] in {
def : PatGprGpr<int_riscv_xperm4, XPERM4>;
def : PatGprGpr<int_riscv_xperm8, XPERM8>;
} // Predicates = [HasStdExtZbkx]
//===----------------------------------------------------------------------===//
// Experimental RV64 i32 legalization patterns.
//===----------------------------------------------------------------------===//
def BCLRMaski32 : ImmLeaf<i32, [{
return !isInt<12>(Imm) && isPowerOf2_32(~Imm);
}]>;
def SingleBitSetMaski32 : ImmLeaf<i32, [{
return !isInt<12>(Imm) && isPowerOf2_32(Imm);
}]>;
let Predicates = [HasStdExtZbb, IsRV64] in {
def : PatGpr<ctlz, CLZW, i32>;
def : PatGpr<cttz, CTZW, i32>;
def : PatGpr<ctpop, CPOPW, i32>;
def : Pat<(i32 (sext_inreg GPR:$rs1, i8)), (SEXT_B GPR:$rs1)>;
def : Pat<(i32 (sext_inreg GPR:$rs1, i16)), (SEXT_H GPR:$rs1)>;
def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV64 GPR:$rs)>;
} // Predicates = [HasStdExtZbb, IsRV64]
let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in {
def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (PACKW GPR:$rs, (XLenVT X0))>;
}
let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in {
def : Pat<(i32 (and GPR:$rs1, (not GPR:$rs2))), (ANDN GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (or GPR:$rs1, (not GPR:$rs2))), (ORN GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (xor GPR:$rs1, (not GPR:$rs2))), (XNOR GPR:$rs1, GPR:$rs2)>;
def : PatGprGpr<shiftopw<rotl>, ROLW, i32, i64>;
def : PatGprGpr<shiftopw<rotr>, RORW, i32, i64>;
def : PatGprImm<rotr, RORIW, uimm5, i32>;
def : Pat<(i32 (rotl GPR:$rs1, uimm5:$rs2)),
(RORIW GPR:$rs1, (ImmSubFrom32 uimm5:$rs2))>;
} // Predicates = [HasStdExtZbbOrZbkb, IsRV64]
let Predicates = [HasStdExtZbkb, IsRV64] in {
def : Pat<(or (and (shl GPR:$rs2, (i64 8)), 0xFFFF),
(zexti8i32 (i32 GPR:$rs1))),
(PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(or (shl (zexti8i32 (i32 GPR:$rs2)), (i64 8)),
(zexti8i32 (i32 GPR:$rs1))),
(PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(and (anyext (or (shl GPR:$rs2, (XLenVT 8)),
(zexti8i32 (i32 GPR:$rs1)))), 0xFFFF),
(PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (or (shl GPR:$rs2, (i64 16)), (zexti16i32 (i32 GPR:$rs1)))),
(PACKW GPR:$rs1, GPR:$rs2)>;
} // Predicates = [HasStdExtZbkb, IsRV64]
let Predicates = [HasStdExtZba, IsRV64] in {
def : Pat<(shl (i64 (zext i32:$rs1)), uimm5:$shamt),
(SLLI_UW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (add_like_non_imm12 (zext GPR:$rs1), GPR:$rs2)),
(ADD_UW GPR:$rs1, GPR:$rs2)>;
def : Pat<(zext GPR:$src), (ADD_UW GPR:$src, (XLenVT X0))>;
foreach i = {1,2,3} in {
defvar shxadd = !cast<Instruction>("SH"#i#"ADD");
def : Pat<(i32 (add_like_non_imm12 (shl GPR:$rs1, (i64 i)), GPR:$rs2)),
(shxadd GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (riscv_shl_add GPR:$rs1, (i32 i), GPR:$rs2)),
(shxadd GPR:$rs1, GPR:$rs2)>;
}
}
let Predicates = [HasStdExtZbs, IsRV64] in {
def : Pat<(i32 (and (not (shiftop<shl> 1, (i64 GPR:$rs2))), GPR:$rs1)),
(BCLR GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (and (rotl -2, (i64 GPR:$rs2)), GPR:$rs1)),
(BCLR GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (or (shiftop<shl> 1, (i64 GPR:$rs2)), GPR:$rs1)),
(BSET GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (xor (shiftop<shl> 1, (i64 GPR:$rs2)), GPR:$rs1)),
(BINV GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (and (shiftop<srl> GPR:$rs1, (i64 GPR:$rs2)), 1)),
(BEXT GPR:$rs1, GPR:$rs2)>;
def : Pat<(i64 (and (anyext (i32 (shiftop<srl> GPR:$rs1, (i64 GPR:$rs2)))), 1)),
(BEXT GPR:$rs1, GPR:$rs2)>;
def : Pat<(i32 (shiftop<shl> 1, (i64 GPR:$rs2))),
(BSET (XLenVT X0), GPR:$rs2)>;
def : Pat<(i32 (not (shiftop<shl> -1, (i64 GPR:$rs2)))),
(ADDI (i32 (BSET (XLenVT X0), GPR:$rs2)), -1)>;
def : Pat<(i32 (and (srl GPR:$rs1, uimm5:$shamt), (i32 1))),
(BEXTI GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i32 (and GPR:$rs1, BCLRMaski32:$mask)),
(BCLRI GPR:$rs1, (i64 (BCLRXForm $mask)))>;
def : Pat<(i32 (or GPR:$rs1, SingleBitSetMaski32:$mask)),
(BSETI GPR:$rs1, (i64 (SingleBitSetMaskToIndex $mask)))>;
def : Pat<(i32 (xor GPR:$rs1, SingleBitSetMaski32:$mask)),
(BINVI GPR:$rs1, (i64 (SingleBitSetMaskToIndex $mask)))>;
} // Predicates = [HasStdExtZbs, IsRV64]
|