1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
//===-- RISCVInstrInfoZfh.td - RISC-V 'Zfh' instructions ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'Zfh'
// half-precision floating-point extension, version 1.0.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_RISCVFMV_H_X
: SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, XLenVT>]>;
def SDT_RISCVFMV_X_EXTH
: SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>;
def riscv_fmv_h_x
: SDNode<"RISCVISD::FMV_H_X", SDT_RISCVFMV_H_X>;
def riscv_fmv_x_anyexth
: SDNode<"RISCVISD::FMV_X_ANYEXTH", SDT_RISCVFMV_X_EXTH>;
def riscv_fmv_x_signexth
: SDNode<"RISCVISD::FMV_X_SIGNEXTH", SDT_RISCVFMV_X_EXTH>;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
// Zhinxmin and Zhinx
def FPR16INX : RegisterOperand<GPRF16> {
let ParserMatchClass = GPRAsFPR;
let DecoderMethod = "DecodeGPRRegisterClass";
}
def ZfhExt : ExtInfo<"", "", [HasStdExtZfh],
f16, FPR16, FPR32, ?, FPR16>;
def ZfhminExt : ExtInfo<"", "", [HasStdExtZfhmin],
f16, FPR16, FPR32, ?, FPR16>;
def ZfhDExt : ExtInfo<"", "", [HasStdExtZfh, HasStdExtD],
?, ?, FPR32, FPR64, FPR16>;
def ZfhminDExt : ExtInfo<"", "", [HasStdExtZfhmin, HasStdExtD],
?, ?, FPR32, FPR64, FPR16>;
def ZhinxExt : ExtInfo<"_INX", "RVZfinx",
[HasStdExtZhinx],
f16, FPR16INX, FPR32INX, ?, FPR16INX>;
def ZhinxminExt : ExtInfo<"_INX", "RVZfinx",
[HasStdExtZhinxmin],
f16, FPR16INX, FPR32INX, ?, FPR16INX>;
def ZhinxZdinxExt : ExtInfo<"_INX", "RVZfinx",
[HasStdExtZhinx, HasStdExtZdinx, IsRV64],
?, ?, FPR32INX, FPR64INX, FPR16INX>;
def ZhinxminZdinxExt : ExtInfo<"_INX", "RVZfinx",
[HasStdExtZhinxmin, HasStdExtZdinx, IsRV64],
?, ?, FPR32INX, FPR64INX, FPR16INX>;
def ZhinxZdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx",
[HasStdExtZhinx, HasStdExtZdinx, IsRV32],
?, ?, FPR32INX, FPR64IN32X, FPR16INX >;
def ZhinxminZdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx",
[HasStdExtZhinxmin, HasStdExtZdinx, IsRV32],
?, ?, FPR32INX, FPR64IN32X, FPR16INX>;
defvar ZfhExts = [ZfhExt, ZhinxExt];
defvar ZfhminExts = [ZfhminExt, ZhinxminExt];
defvar ZfhDExts = [ZfhDExt, ZhinxZdinxExt, ZhinxZdinx32Ext];
defvar ZfhminDExts = [ZfhminDExt, ZhinxminZdinxExt, ZhinxminZdinx32Ext];
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasHalfFPLoadStoreMove] in {
def FLH : FPLoad_r<0b001, "flh", FPR16, WriteFLD16>;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
def FSH : FPStore_r<0b001, "fsh", FPR16, WriteFST16>;
} // Predicates = [HasHalfFPLoadStoreMove]
foreach Ext = ZfhExts in {
let SchedRW = [WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16Addend] in {
defm FMADD_H : FPFMA_rrr_frm_m<OPC_MADD, 0b10, "fmadd.h", Ext>;
defm FMSUB_H : FPFMA_rrr_frm_m<OPC_MSUB, 0b10, "fmsub.h", Ext>;
defm FNMSUB_H : FPFMA_rrr_frm_m<OPC_NMSUB, 0b10, "fnmsub.h", Ext>;
defm FNMADD_H : FPFMA_rrr_frm_m<OPC_NMADD, 0b10, "fnmadd.h", Ext>;
}
let SchedRW = [WriteFAdd16, ReadFAdd16, ReadFAdd16] in {
defm FADD_H : FPALU_rr_frm_m<0b0000010, "fadd.h", Ext, Commutable=1>;
defm FSUB_H : FPALU_rr_frm_m<0b0000110, "fsub.h", Ext>;
}
let SchedRW = [WriteFMul16, ReadFMul16, ReadFMul16] in
defm FMUL_H : FPALU_rr_frm_m<0b0001010, "fmul.h", Ext, Commutable=1>;
let SchedRW = [WriteFDiv16, ReadFDiv16, ReadFDiv16] in
defm FDIV_H : FPALU_rr_frm_m<0b0001110, "fdiv.h", Ext>;
defm FSQRT_H : FPUnaryOp_r_frm_m<0b0101110, 0b00000, Ext, Ext.PrimaryTy,
Ext.PrimaryTy, "fsqrt.h">,
Sched<[WriteFSqrt16, ReadFSqrt16]>;
let SchedRW = [WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16],
mayRaiseFPException = 0 in {
defm FSGNJ_H : FPALU_rr_m<0b0010010, 0b000, "fsgnj.h", Ext>;
defm FSGNJN_H : FPALU_rr_m<0b0010010, 0b001, "fsgnjn.h", Ext>;
defm FSGNJX_H : FPALU_rr_m<0b0010010, 0b010, "fsgnjx.h", Ext>;
}
let SchedRW = [WriteFMinMax16, ReadFMinMax16, ReadFMinMax16] in {
defm FMIN_H : FPALU_rr_m<0b0010110, 0b000, "fmin.h", Ext, Commutable=1>;
defm FMAX_H : FPALU_rr_m<0b0010110, 0b001, "fmax.h", Ext, Commutable=1>;
}
let IsSignExtendingOpW = 1 in
defm FCVT_W_H : FPUnaryOp_r_frm_m<0b1100010, 0b00000, Ext, GPR, Ext.PrimaryTy,
"fcvt.w.h">,
Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
let IsSignExtendingOpW = 1 in
defm FCVT_WU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00001, Ext, GPR, Ext.PrimaryTy,
"fcvt.wu.h">,
Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
defm FCVT_H_W : FPUnaryOp_r_frm_m<0b1101010, 0b00000, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.w">,
Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
defm FCVT_H_WU : FPUnaryOp_r_frm_m<0b1101010, 0b00001, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.wu">,
Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
} // foreach Ext = ZfhExts
foreach Ext = ZfhminExts in {
defm FCVT_H_S : FPUnaryOp_r_frm_m<0b0100010, 0b00000, Ext, Ext.PrimaryTy,
Ext.F32Ty, "fcvt.h.s">,
Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]>;
defm FCVT_S_H : FPUnaryOp_r_frmlegacy_m<0b0100000, 0b00010,Ext, Ext.F32Ty,
Ext.PrimaryTy, "fcvt.s.h">,
Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]>;
} // foreach Ext = ZfhminExts
let Predicates = [HasHalfFPLoadStoreMove] in {
let mayRaiseFPException = 0, IsSignExtendingOpW = 1 in
def FMV_X_H : FPUnaryOp_r<0b1110010, 0b00000, 0b000, GPR, FPR16, "fmv.x.h">,
Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]>;
let mayRaiseFPException = 0 in
def FMV_H_X : FPUnaryOp_r<0b1111010, 0b00000, 0b000, FPR16, GPR, "fmv.h.x">,
Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]>;
} // Predicates = [HasHalfFPLoadStoreMove]
foreach Ext = ZfhExts in {
let SchedRW = [WriteFCmp16, ReadFCmp16, ReadFCmp16] in {
defm FEQ_H : FPCmp_rr_m<0b1010010, 0b010, "feq.h", Ext, Commutable=1>;
defm FLT_H : FPCmp_rr_m<0b1010010, 0b001, "flt.h", Ext>;
defm FLE_H : FPCmp_rr_m<0b1010010, 0b000, "fle.h", Ext>;
}
let mayRaiseFPException = 0 in
defm FCLASS_H : FPUnaryOp_r_m<0b1110010, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
"fclass.h">,
Sched<[WriteFClass16, ReadFClass16]>;
defm FCVT_L_H : FPUnaryOp_r_frm_m<0b1100010, 0b00010, Ext, GPR, Ext.PrimaryTy,
"fcvt.l.h", [IsRV64]>,
Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
defm FCVT_LU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00011, Ext, GPR, Ext.PrimaryTy,
"fcvt.lu.h", [IsRV64]>,
Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
defm FCVT_H_L : FPUnaryOp_r_frm_m<0b1101010, 0b00010, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.l", [IsRV64]>,
Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
defm FCVT_H_LU : FPUnaryOp_r_frm_m<0b1101010, 0b00011, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.lu", [IsRV64]>,
Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
} // foreach Ext = ZfhExts
foreach Ext = ZfhminDExts in {
defm FCVT_H_D : FPUnaryOp_r_frm_m<0b0100010, 0b00001, Ext, Ext.F16Ty,
Ext.F64Ty, "fcvt.h.d">,
Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]>;
defm FCVT_D_H : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00010, Ext, Ext.F64Ty,
Ext.F16Ty, "fcvt.d.h">,
Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]>;
} // foreach Ext = ZfhminDExts
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtZfhmin] in {
def : InstAlias<"flh $rd, (${rs1})", (FLH FPR16:$rd, GPR:$rs1, 0), 0>;
def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZfh] in {
def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
// fgt.h/fge.h are recognised by the GNU assembler but the canonical
// flt.h/fle.h forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.h $rd, $rs, $rt",
(FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
def : InstAlias<"fge.h $rd, $rs, $rt",
(FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_H : PseudoQuietFCMP<FPR16>;
def PseudoQuietFLT_H : PseudoQuietFCMP<FPR16>;
}
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZfhmin] in {
def PseudoFLH : PseudoFloatLoad<"flh", FPR16>;
def PseudoFSH : PseudoStore<"fsh", FPR16>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZhinx] in {
def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
def : InstAlias<"fgt.h $rd, $rs, $rt",
(FLT_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
def : InstAlias<"fge.h $rd, $rs, $rt",
(FLE_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_H_INX : PseudoQuietFCMP<FPR16INX>;
def PseudoQuietFLT_H_INX : PseudoQuietFCMP<FPR16INX>;
}
} // Predicates = [HasStdExtZhinxmin]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
/// Float conversion operations
// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
foreach Ext = ZfhExts in {
defm : PatFprFprDynFrm_m<any_fadd, FADD_H, Ext>;
defm : PatFprFprDynFrm_m<any_fsub, FSUB_H, Ext>;
defm : PatFprFprDynFrm_m<any_fmul, FMUL_H, Ext>;
defm : PatFprFprDynFrm_m<any_fdiv, FDIV_H, Ext>;
}
let Predicates = [HasStdExtZfh] in {
def : Pat<(f16 (any_fsqrt FPR16:$rs1)), (FSQRT_H FPR16:$rs1, FRM_DYN)>;
def : Pat<(f16 (fneg FPR16:$rs1)), (FSGNJN_H $rs1, $rs1)>;
def : Pat<(f16 (fabs FPR16:$rs1)), (FSGNJX_H $rs1, $rs1)>;
def : Pat<(riscv_fclass (f16 FPR16:$rs1)), (FCLASS_H $rs1)>;
def : PatFprFpr<fcopysign, FSGNJ_H, FPR16, f16>;
def : Pat<(f16 (fcopysign FPR16:$rs1, (f16 (fneg FPR16:$rs2)))), (FSGNJN_H $rs1, $rs2)>;
def : Pat<(f16 (fcopysign FPR16:$rs1, FPR32:$rs2)),
(FSGNJ_H $rs1, (FCVT_H_S $rs2, FRM_DYN))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3)),
(FMADD_H $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3))),
(FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3)),
(FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3))),
(FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(f16 (fneg (any_fma_nsz FPR16:$rs1, FPR16:$rs2, FPR16:$rs3))),
(FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx] in {
/// Float conversion operations
// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
def : Pat<(any_fsqrt FPR16INX:$rs1), (FSQRT_H_INX FPR16INX:$rs1, FRM_DYN)>;
def : Pat<(fneg FPR16INX:$rs1), (FSGNJN_H_INX $rs1, $rs1)>;
def : Pat<(fabs FPR16INX:$rs1), (FSGNJX_H_INX $rs1, $rs1)>;
def : Pat<(riscv_fclass FPR16INX:$rs1), (FCLASS_H_INX $rs1)>;
def : PatFprFpr<fcopysign, FSGNJ_H_INX, FPR16INX, f16>;
def : Pat<(fcopysign FPR16INX:$rs1, (fneg FPR16INX:$rs2)), (FSGNJN_H_INX $rs1, $rs2)>;
def : Pat<(fcopysign FPR16INX:$rs1, FPR32INX:$rs2),
(FSGNJ_H_INX $rs1, (FCVT_H_S_INX $rs2, FRM_DYN))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3),
(FMADD_H_INX $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, (fneg FPR16INX:$rs3)),
(FMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, FPR16INX:$rs3),
(FNMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, (fneg FPR16INX:$rs3)),
(FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3)),
(FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZhinx]
// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
foreach Ext = ZfhExts in {
defm : PatFprFpr_m<fminnum, FMIN_H, Ext>;
defm : PatFprFpr_m<fmaxnum, FMAX_H, Ext>;
defm : PatFprFpr_m<riscv_fmin, FMIN_H, Ext>;
defm : PatFprFpr_m<riscv_fmax, FMAX_H, Ext>;
}
/// Setcc
// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
// strict versions of those.
// Match non-signaling FEQ_D
foreach Ext = ZfhExts in {
defm : PatSetCC_m<any_fsetcc, SETEQ, FEQ_H, Ext>;
defm : PatSetCC_m<any_fsetcc, SETOEQ, FEQ_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETLT, PseudoQuietFLT_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETLE, PseudoQuietFLE_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_H, Ext>;
}
let Predicates = [HasStdExtZfh] in {
// Match signaling FEQ_H
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETEQ)),
(AND (XLenVT (FLE_H $rs1, $rs2)),
(XLenVT (FLE_H $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETOEQ)),
(AND (XLenVT (FLE_H $rs1, $rs2)),
(XLenVT (FLE_H $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETEQ)),
(FLE_H $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETOEQ)),
(FLE_H $rs1, $rs1)>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx] in {
// Match signaling FEQ_H
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETEQ)),
(AND (XLenVT (FLE_H_INX $rs1, $rs2)),
(XLenVT (FLE_H_INX $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETOEQ)),
(AND (XLenVT (FLE_H_INX $rs1, $rs2)),
(XLenVT (FLE_H_INX $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETEQ)),
(FLE_H_INX $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETOEQ)),
(FLE_H_INX $rs1, $rs1)>;
} // Predicates = [HasStdExtZhinx]
foreach Ext = ZfhExts in {
defm : PatSetCC_m<any_fsetccs, SETLT, FLT_H, Ext>;
defm : PatSetCC_m<any_fsetccs, SETOLT, FLT_H, Ext>;
defm : PatSetCC_m<any_fsetccs, SETLE, FLE_H, Ext>;
defm : PatSetCC_m<any_fsetccs, SETOLE, FLE_H, Ext>;
}
let Predicates = [HasStdExtZfh] in {
defm Select_FPR16 : SelectCC_GPR_rrirr<FPR16, f16>;
def PseudoFROUND_H : PseudoFROUND<FPR16, f16>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx] in {
defm Select_FPR16INX : SelectCC_GPR_rrirr<FPR16INX, f16>;
def PseudoFROUND_H_INX : PseudoFROUND<FPR16INX, f16>;
} // Predicates = [HasStdExtZhinx]
let Predicates = [HasStdExtZfhmin] in {
/// Loads
def : LdPat<load, FLH, f16>;
/// Stores
def : StPat<store, FSH, FPR16, f16>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZhinxmin] in {
/// Loads
def : Pat<(f16 (load (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12))),
(COPY_TO_REGCLASS (LH GPR:$rs1, simm12:$imm12), GPRF16)>;
/// Stores
def : Pat<(store (f16 FPR16INX:$rs2),
(AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12)),
(SH (COPY_TO_REGCLASS FPR16INX:$rs2, GPR), GPR:$rs1, simm12:$imm12)>;
} // Predicates = [HasStdExtZhinxmin]
let Predicates = [HasStdExtZfhmin] in {
/// Float conversion operations
// f32 -> f16, f16 -> f32
def : Pat<(f16 (any_fpround FPR32:$rs1)), (FCVT_H_S FPR32:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_S_H FPR16:$rs1, FRM_RNE)>;
// Moves (no conversion)
def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (FMV_H_X GPR:$src)>;
def : Pat<(riscv_fmv_x_anyexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>;
def : Pat<(riscv_fmv_x_signexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>;
def : Pat<(fcopysign FPR32:$rs1, (f16 FPR16:$rs2)), (FSGNJ_S $rs1, (FCVT_S_H $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZhinxmin] in {
/// Float conversion operations
// f32 -> f16, f16 -> f32
def : Pat<(any_fpround FPR32INX:$rs1), (FCVT_H_S_INX FPR32INX:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_S_H_INX FPR16INX:$rs1, FRM_RNE)>;
// Moves (no conversion)
def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (COPY_TO_REGCLASS GPR:$src, GPR)>;
def : Pat<(riscv_fmv_x_anyexth FPR16INX:$src), (COPY_TO_REGCLASS FPR16INX:$src, GPR)>;
def : Pat<(riscv_fmv_x_signexth FPR16INX:$src), (COPY_TO_REGCLASS FPR16INX:$src, GPR)>;
def : Pat<(fcopysign FPR32INX:$rs1, FPR16INX:$rs2), (FSGNJ_S_INX $rs1, (FCVT_S_H_INX $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZhinxmin]
let Predicates = [HasStdExtZfh] in {
// half->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, 0b001)>;
def : Pat<(i32 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_WU_H $rs1, 0b001)>;
// Saturating half->[u]int32.
def : Pat<(i32 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_W_H $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_WU_H $rs1, timm:$frm)>;
// half->int32 with current rounding mode.
def : Pat<(i32 (any_lrint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_DYN)>;
// half->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_RMM)>;
// [u]int->half. Match GCC and default to using dynamic rounding mode.
def : Pat<(f16 (any_sint_to_fp (i32 GPR:$rs1))), (FCVT_H_W $rs1, FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i32 GPR:$rs1))), (FCVT_H_WU $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx] in {
// half->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, 0b001)>;
def : Pat<(i32 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_WU_H_INX $rs1, 0b001)>;
// Saturating float->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_W_H_INX $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_WU_H_INX $rs1, timm:$frm)>;
// half->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_DYN)>;
// half->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_RMM)>;
// [u]int->half. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU_INX $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZhinx]
let Predicates = [HasStdExtZfh, IsRV64] in {
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_W_H $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_WU_H $rs1, timm:$frm)>;
// half->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, 0b001)>;
def : Pat<(i64 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_LU_H $rs1, 0b001)>;
// Saturating half->[u]int64.
def : Pat<(i64 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_L_H $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_LU_H $rs1, timm:$frm)>;
// half->int64 with current rounding mode.
def : Pat<(i64 (any_lrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>;
// half->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(f16 (any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1))))), (FCVT_H_W $rs1, FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1))))), (FCVT_H_WU $rs1, FRM_DYN)>;
def : Pat<(f16 (any_sint_to_fp (i64 GPR:$rs1))), (FCVT_H_L $rs1, FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i64 GPR:$rs1))), (FCVT_H_LU $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZfh, IsRV64]
let Predicates = [HasStdExtZhinx, IsRV64] in {
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_W_H_INX $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_WU_H_INX $rs1, timm:$frm)>;
// half->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, 0b001)>;
def : Pat<(i64 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_LU_H_INX $rs1, 0b001)>;
// Saturating float->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_L_H_INX $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_LU_H_INX $rs1, timm:$frm)>;
// half->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>;
// half->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU_INX $rs1, FRM_DYN)>;
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU_INX $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZhinx, IsRV64]
let Predicates = [HasStdExtZfhmin, HasStdExtD] in {
/// Float conversion operations
// f64 -> f16, f16 -> f64
def : Pat<(f16 (any_fpround FPR64:$rs1)), (FCVT_H_D FPR64:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_D_H FPR16:$rs1, FRM_RNE)>;
/// Float arithmetic operations
def : Pat<(f16 (fcopysign FPR16:$rs1, FPR64:$rs2)),
(FSGNJ_H $rs1, (FCVT_H_D $rs2, FRM_DYN))>;
def : Pat<(fcopysign FPR64:$rs1, (f16 FPR16:$rs2)), (FSGNJ_D $rs1, (FCVT_D_H $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZfhmin, HasStdExtD]
let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32] in {
/// Float conversion operations
// f64 -> f16, f16 -> f64
def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_H_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_IN32X FPR16INX:$rs1, FRM_RNE)>;
/// Float arithmetic operations
def : Pat<(fcopysign FPR16INX:$rs1, FPR64IN32X:$rs2),
(FSGNJ_H_INX $rs1, (FCVT_H_D_IN32X $rs2, 0b111))>;
def : Pat<(fcopysign FPR64IN32X:$rs1, FPR16INX:$rs2), (FSGNJ_D_IN32X $rs1, (FCVT_D_H_IN32X $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32]
let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64] in {
/// Float conversion operations
// f64 -> f16, f16 -> f64
def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_H_D_INX FPR64INX:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_INX FPR16INX:$rs1, FRM_RNE)>;
/// Float arithmetic operations
def : Pat<(fcopysign FPR16INX:$rs1, FPR64INX:$rs2),
(FSGNJ_H_INX $rs1, (FCVT_H_D_INX $rs2, 0b111))>;
def : Pat<(fcopysign FPR64INX:$rs1, FPR16INX:$rs2), (FSGNJ_D_INX $rs1, (FCVT_D_H_INX $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64]
let Predicates = [HasStdExtZfhmin, NoStdExtZfh] in {
// half->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_W_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_WU_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>;
// half->int32 with current rounding mode.
def : Pat<(i32 (any_lrint (f16 FPR16:$rs1))), (FCVT_W_S (FCVT_S_H $rs1, FRM_RNE), FRM_DYN)>;
// half->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround (f16 FPR16:$rs1))), (FCVT_W_S (FCVT_S_H $rs1, FRM_RNE), FRM_RMM)>;
// [u]int->half. Match GCC and default to using dynamic rounding mode.
def : Pat<(f16 (any_sint_to_fp (i32 GPR:$rs1))), (FCVT_H_S (FCVT_S_W $rs1, FRM_DYN), FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i32 GPR:$rs1))), (FCVT_H_S (FCVT_S_WU $rs1, FRM_DYN), FRM_DYN)>;
} // Predicates = [HasStdExtZfhmin, NoStdExtZfh]
let Predicates = [HasStdExtZhinxmin, NoStdExtZhinx] in {
// half->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_W_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_WU_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>;
// half->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR16INX:$rs1)), (FCVT_W_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_DYN)>;
// half->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR16INX:$rs1)), (FCVT_W_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RMM)>;
// [u]int->half. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_W_INX $rs1, FRM_DYN), FRM_DYN)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_WU_INX $rs1, FRM_DYN), FRM_DYN)>;
} // Predicates = [HasStdExtZhinxmin, NoStdExtZhinx]
let Predicates = [HasStdExtZfhmin, NoStdExtZfh, IsRV64] in {
// half->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_LU_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>;
// half->int64 with current rounding mode.
def : Pat<(i64 (any_lrint (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_DYN)>;
def : Pat<(i64 (any_llrint (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_DYN)>;
// half->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_RMM)>;
def : Pat<(i64 (any_llround (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_RMM)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(f16 (any_sint_to_fp (i64 GPR:$rs1))), (FCVT_H_S (FCVT_S_L $rs1, FRM_DYN), FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i64 GPR:$rs1))), (FCVT_H_S (FCVT_S_LU $rs1, FRM_DYN), FRM_DYN)>;
} // Predicates = [HasStdExtZfhmin, NoStdExtZfh, IsRV64]
let Predicates = [HasStdExtZhinxmin, NoStdExtZhinx, IsRV64] in {
// half->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_LU_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>;
// half->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_DYN)>;
// half->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RMM)>;
def : Pat<(i64 (any_llround FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RMM)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_L_INX $rs1, FRM_DYN), FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_LU_INX $rs1, FRM_DYN), FRM_DYN)>;
} // Predicates = [HasStdExtZhinxmin, NoStdExtZhinx, IsRV64]
|