1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
|
//===-- RISCVTargetMachine.cpp - Define TargetMachine for RISC-V ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the info about RISC-V target spec.
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetMachine.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVTargetObjectFile.h"
#include "RISCVTargetTransformInfo.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Vectorize/LoopIdiomVectorize.h"
#include <optional>
using namespace llvm;
static cl::opt<bool> EnableRedundantCopyElimination(
"riscv-enable-copyelim",
cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
cl::Hidden);
// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
EnableGlobalMerge("riscv-enable-global-merge", cl::Hidden,
cl::desc("Enable the global merge pass"));
static cl::opt<bool>
EnableMachineCombiner("riscv-enable-machine-combiner",
cl::desc("Enable the machine combiner pass"),
cl::init(true), cl::Hidden);
static cl::opt<unsigned> RVVVectorBitsMaxOpt(
"riscv-v-vector-bits-max",
cl::desc("Assume V extension vector registers are at most this big, "
"with zero meaning no maximum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<int> RVVVectorBitsMinOpt(
"riscv-v-vector-bits-min",
cl::desc("Assume V extension vector registers are at least this big, "
"with zero meaning no minimum size is assumed. A value of -1 "
"means use Zvl*b extension. This is primarily used to enable "
"autovectorization with fixed width vectors."),
cl::init(-1), cl::Hidden);
static cl::opt<bool> EnableRISCVCopyPropagation(
"riscv-enable-copy-propagation",
cl::desc("Enable the copy propagation with RISC-V copy instr"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableRISCVDeadRegisterElimination(
"riscv-enable-dead-defs", cl::Hidden,
cl::desc("Enable the pass that removes dead"
" definitons and replaces stores to"
" them with stores to x0"),
cl::init(true));
static cl::opt<bool>
EnableSinkFold("riscv-enable-sink-fold",
cl::desc("Enable sinking and folding of instruction copies"),
cl::init(true), cl::Hidden);
static cl::opt<bool>
EnableLoopDataPrefetch("riscv-enable-loop-data-prefetch", cl::Hidden,
cl::desc("Enable the loop data prefetch pass"),
cl::init(true));
static cl::opt<bool> EnableMISchedLoadClustering(
"riscv-misched-load-clustering", cl::Hidden,
cl::desc("Enable load clustering in the machine scheduler"),
cl::init(false));
static cl::opt<bool> EnableVSETVLIAfterRVVRegAlloc(
"riscv-vsetvl-after-rvv-regalloc", cl::Hidden,
cl::desc("Insert vsetvls after vector register allocation"),
cl::init(true));
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVTarget() {
RegisterTargetMachine<RISCVTargetMachine> X(getTheRISCV32Target());
RegisterTargetMachine<RISCVTargetMachine> Y(getTheRISCV64Target());
auto *PR = PassRegistry::getPassRegistry();
initializeGlobalISel(*PR);
initializeRISCVO0PreLegalizerCombinerPass(*PR);
initializeRISCVPreLegalizerCombinerPass(*PR);
initializeRISCVPostLegalizerCombinerPass(*PR);
initializeKCFIPass(*PR);
initializeRISCVDeadRegisterDefinitionsPass(*PR);
initializeRISCVMakeCompressibleOptPass(*PR);
initializeRISCVGatherScatterLoweringPass(*PR);
initializeRISCVCodeGenPreparePass(*PR);
initializeRISCVPostRAExpandPseudoPass(*PR);
initializeRISCVMergeBaseOffsetOptPass(*PR);
initializeRISCVOptWInstrsPass(*PR);
initializeRISCVPreRAExpandPseudoPass(*PR);
initializeRISCVExpandPseudoPass(*PR);
initializeRISCVVectorPeepholePass(*PR);
initializeRISCVInsertVSETVLIPass(*PR);
initializeRISCVInsertReadWriteCSRPass(*PR);
initializeRISCVInsertWriteVXRMPass(*PR);
initializeRISCVDAGToDAGISelLegacyPass(*PR);
initializeRISCVMoveMergePass(*PR);
initializeRISCVPushPopOptPass(*PR);
}
static StringRef computeDataLayout(const Triple &TT,
const TargetOptions &Options) {
StringRef ABIName = Options.MCOptions.getABIName();
if (TT.isArch64Bit()) {
if (ABIName == "lp64e")
return "e-m:e-p:64:64-i64:64-i128:128-n32:64-S64";
return "e-m:e-p:64:64-i64:64-i128:128-n32:64-S128";
}
assert(TT.isArch32Bit() && "only RV32 and RV64 are currently supported");
if (ABIName == "ilp32e")
return "e-m:e-p:32:32-i64:64-n32-S32";
return "e-m:e-p:32:32-i64:64-n32-S128";
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
std::optional<Reloc::Model> RM) {
return RM.value_or(Reloc::Static);
}
RISCVTargetMachine::RISCVTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
std::optional<Reloc::Model> RM,
std::optional<CodeModel::Model> CM,
CodeGenOptLevel OL, bool JIT)
: LLVMTargetMachine(T, computeDataLayout(TT, Options), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, RM),
getEffectiveCodeModel(CM, CodeModel::Small), OL),
TLOF(std::make_unique<RISCVELFTargetObjectFile>()) {
initAsmInfo();
// RISC-V supports the MachineOutliner.
setMachineOutliner(true);
setSupportsDefaultOutlining(true);
if (TT.isOSFuchsia() && !TT.isArch64Bit())
report_fatal_error("Fuchsia is only supported for 64-bit");
}
const RISCVSubtarget *
RISCVTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
unsigned RVVBitsMin = RVVVectorBitsMinOpt;
unsigned RVVBitsMax = RVVVectorBitsMaxOpt;
Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange);
if (VScaleRangeAttr.isValid()) {
if (!RVVVectorBitsMinOpt.getNumOccurrences())
RVVBitsMin = VScaleRangeAttr.getVScaleRangeMin() * RISCV::RVVBitsPerBlock;
std::optional<unsigned> VScaleMax = VScaleRangeAttr.getVScaleRangeMax();
if (VScaleMax.has_value() && !RVVVectorBitsMaxOpt.getNumOccurrences())
RVVBitsMax = *VScaleMax * RISCV::RVVBitsPerBlock;
}
if (RVVBitsMin != -1U) {
// FIXME: Change to >= 32 when VLEN = 32 is supported.
assert((RVVBitsMin == 0 || (RVVBitsMin >= 64 && RVVBitsMin <= 65536 &&
isPowerOf2_32(RVVBitsMin))) &&
"V or Zve* extension requires vector length to be in the range of "
"64 to 65536 and a power 2!");
assert((RVVBitsMax >= RVVBitsMin || RVVBitsMax == 0) &&
"Minimum V extension vector length should not be larger than its "
"maximum!");
}
assert((RVVBitsMax == 0 || (RVVBitsMax >= 64 && RVVBitsMax <= 65536 &&
isPowerOf2_32(RVVBitsMax))) &&
"V or Zve* extension requires vector length to be in the range of "
"64 to 65536 and a power 2!");
if (RVVBitsMin != -1U) {
if (RVVBitsMax != 0) {
RVVBitsMin = std::min(RVVBitsMin, RVVBitsMax);
RVVBitsMax = std::max(RVVBitsMin, RVVBitsMax);
}
RVVBitsMin = llvm::bit_floor(
(RVVBitsMin < 64 || RVVBitsMin > 65536) ? 0 : RVVBitsMin);
}
RVVBitsMax =
llvm::bit_floor((RVVBitsMax < 64 || RVVBitsMax > 65536) ? 0 : RVVBitsMax);
SmallString<512> Key;
raw_svector_ostream(Key) << "RVVMin" << RVVBitsMin << "RVVMax" << RVVBitsMax
<< CPU << TuneCPU << FS;
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
auto ABIName = Options.MCOptions.getABIName();
if (const MDString *ModuleTargetABI = dyn_cast_or_null<MDString>(
F.getParent()->getModuleFlag("target-abi"))) {
auto TargetABI = RISCVABI::getTargetABI(ABIName);
if (TargetABI != RISCVABI::ABI_Unknown &&
ModuleTargetABI->getString() != ABIName) {
report_fatal_error("-target-abi option != target-abi module flag");
}
ABIName = ModuleTargetABI->getString();
}
I = std::make_unique<RISCVSubtarget>(
TargetTriple, CPU, TuneCPU, FS, ABIName, RVVBitsMin, RVVBitsMax, *this);
}
return I.get();
}
MachineFunctionInfo *RISCVTargetMachine::createMachineFunctionInfo(
BumpPtrAllocator &Allocator, const Function &F,
const TargetSubtargetInfo *STI) const {
return RISCVMachineFunctionInfo::create<RISCVMachineFunctionInfo>(Allocator,
F, STI);
}
TargetTransformInfo
RISCVTargetMachine::getTargetTransformInfo(const Function &F) const {
return TargetTransformInfo(RISCVTTIImpl(this, F));
}
// A RISC-V hart has a single byte-addressable address space of 2^XLEN bytes
// for all memory accesses, so it is reasonable to assume that an
// implementation has no-op address space casts. If an implementation makes a
// change to this, they can override it here.
bool RISCVTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DstAS) const {
return true;
}
namespace {
class RVVRegisterRegAlloc : public RegisterRegAllocBase<RVVRegisterRegAlloc> {
public:
RVVRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
: RegisterRegAllocBase(N, D, C) {}
};
static bool onlyAllocateRVVReg(const TargetRegisterInfo &TRI,
const MachineRegisterInfo &MRI,
const Register Reg) {
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
return RISCVRegisterInfo::isRVVRegClass(RC);
}
static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
static llvm::once_flag InitializeDefaultRVVRegisterAllocatorFlag;
/// -riscv-rvv-regalloc=<fast|basic|greedy> command line option.
/// This option could designate the rvv register allocator only.
/// For example: -riscv-rvv-regalloc=basic
static cl::opt<RVVRegisterRegAlloc::FunctionPassCtor, false,
RegisterPassParser<RVVRegisterRegAlloc>>
RVVRegAlloc("riscv-rvv-regalloc", cl::Hidden,
cl::init(&useDefaultRegisterAllocator),
cl::desc("Register allocator to use for RVV register."));
static void initializeDefaultRVVRegisterAllocatorOnce() {
RegisterRegAlloc::FunctionPassCtor Ctor = RVVRegisterRegAlloc::getDefault();
if (!Ctor) {
Ctor = RVVRegAlloc;
RVVRegisterRegAlloc::setDefault(RVVRegAlloc);
}
}
static FunctionPass *createBasicRVVRegisterAllocator() {
return createBasicRegisterAllocator(onlyAllocateRVVReg);
}
static FunctionPass *createGreedyRVVRegisterAllocator() {
return createGreedyRegisterAllocator(onlyAllocateRVVReg);
}
static FunctionPass *createFastRVVRegisterAllocator() {
return createFastRegisterAllocator(onlyAllocateRVVReg, false);
}
static RVVRegisterRegAlloc basicRegAllocRVVReg("basic",
"basic register allocator",
createBasicRVVRegisterAllocator);
static RVVRegisterRegAlloc
greedyRegAllocRVVReg("greedy", "greedy register allocator",
createGreedyRVVRegisterAllocator);
static RVVRegisterRegAlloc fastRegAllocRVVReg("fast", "fast register allocator",
createFastRVVRegisterAllocator);
class RISCVPassConfig : public TargetPassConfig {
public:
RISCVPassConfig(RISCVTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {
if (TM.getOptLevel() != CodeGenOptLevel::None)
substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
setEnableSinkAndFold(EnableSinkFold);
}
RISCVTargetMachine &getRISCVTargetMachine() const {
return getTM<RISCVTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = nullptr;
if (EnableMISchedLoadClustering) {
DAG = createGenericSchedLive(C);
DAG->addMutation(createLoadClusterDAGMutation(
DAG->TII, DAG->TRI, /*ReorderWhileClustering=*/true));
}
return DAG;
}
void addIRPasses() override;
bool addPreISel() override;
void addCodeGenPrepare() override;
bool addInstSelector() override;
bool addIRTranslator() override;
void addPreLegalizeMachineIR() override;
bool addLegalizeMachineIR() override;
void addPreRegBankSelect() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreSched2() override;
void addMachineSSAOptimization() override;
FunctionPass *createRVVRegAllocPass(bool Optimized);
bool addRegAssignAndRewriteFast() override;
bool addRegAssignAndRewriteOptimized() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
void addFastRegAlloc() override;
};
} // namespace
TargetPassConfig *RISCVTargetMachine::createPassConfig(PassManagerBase &PM) {
return new RISCVPassConfig(*this, PM);
}
FunctionPass *RISCVPassConfig::createRVVRegAllocPass(bool Optimized) {
// Initialize the global default.
llvm::call_once(InitializeDefaultRVVRegisterAllocatorFlag,
initializeDefaultRVVRegisterAllocatorOnce);
RegisterRegAlloc::FunctionPassCtor Ctor = RVVRegisterRegAlloc::getDefault();
if (Ctor != useDefaultRegisterAllocator)
return Ctor();
if (Optimized)
return createGreedyRVVRegisterAllocator();
return createFastRVVRegisterAllocator();
}
bool RISCVPassConfig::addRegAssignAndRewriteFast() {
addPass(createRVVRegAllocPass(false));
if (EnableVSETVLIAfterRVVRegAlloc)
addPass(createRISCVInsertVSETVLIPass());
if (TM->getOptLevel() != CodeGenOptLevel::None &&
EnableRISCVDeadRegisterElimination)
addPass(createRISCVDeadRegisterDefinitionsPass());
return TargetPassConfig::addRegAssignAndRewriteFast();
}
bool RISCVPassConfig::addRegAssignAndRewriteOptimized() {
addPass(createRVVRegAllocPass(true));
addPass(createVirtRegRewriter(false));
if (EnableVSETVLIAfterRVVRegAlloc)
addPass(createRISCVInsertVSETVLIPass());
if (TM->getOptLevel() != CodeGenOptLevel::None &&
EnableRISCVDeadRegisterElimination)
addPass(createRISCVDeadRegisterDefinitionsPass());
return TargetPassConfig::addRegAssignAndRewriteOptimized();
}
void RISCVPassConfig::addIRPasses() {
addPass(createAtomicExpandLegacyPass());
if (getOptLevel() != CodeGenOptLevel::None) {
if (EnableLoopDataPrefetch)
addPass(createLoopDataPrefetchPass());
addPass(createRISCVGatherScatterLoweringPass());
addPass(createInterleavedAccessPass());
addPass(createRISCVCodeGenPreparePass());
}
TargetPassConfig::addIRPasses();
}
bool RISCVPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOptLevel::None) {
// Add a barrier before instruction selection so that we will not get
// deleted block address after enabling default outlining. See D99707 for
// more details.
addPass(createBarrierNoopPass());
}
if (EnableGlobalMerge == cl::BOU_TRUE) {
addPass(createGlobalMergePass(TM, /* MaxOffset */ 2047,
/* OnlyOptimizeForSize */ false,
/* MergeExternalByDefault */ true));
}
return false;
}
void RISCVPassConfig::addCodeGenPrepare() {
if (getOptLevel() != CodeGenOptLevel::None)
addPass(createTypePromotionLegacyPass());
TargetPassConfig::addCodeGenPrepare();
}
bool RISCVPassConfig::addInstSelector() {
addPass(createRISCVISelDag(getRISCVTargetMachine(), getOptLevel()));
return false;
}
bool RISCVPassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
void RISCVPassConfig::addPreLegalizeMachineIR() {
if (getOptLevel() == CodeGenOptLevel::None) {
addPass(createRISCVO0PreLegalizerCombiner());
} else {
addPass(createRISCVPreLegalizerCombiner());
}
}
bool RISCVPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
void RISCVPassConfig::addPreRegBankSelect() {
if (getOptLevel() != CodeGenOptLevel::None)
addPass(createRISCVPostLegalizerCombiner());
}
bool RISCVPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool RISCVPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
return false;
}
void RISCVPassConfig::addPreSched2() {
addPass(createRISCVPostRAExpandPseudoPass());
// Emit KCFI checks for indirect calls.
addPass(createKCFIPass());
}
void RISCVPassConfig::addPreEmitPass() {
// TODO: It would potentially be better to schedule copy propagation after
// expanding pseudos (in addPreEmitPass2). However, performing copy
// propagation after the machine outliner (which runs after addPreEmitPass)
// currently leads to incorrect code-gen, where copies to registers within
// outlined functions are removed erroneously.
if (TM->getOptLevel() >= CodeGenOptLevel::Default &&
EnableRISCVCopyPropagation)
addPass(createMachineCopyPropagationPass(true));
addPass(&BranchRelaxationPassID);
addPass(createRISCVMakeCompressibleOptPass());
}
void RISCVPassConfig::addPreEmitPass2() {
if (TM->getOptLevel() != CodeGenOptLevel::None) {
addPass(createRISCVMoveMergePass());
// Schedule PushPop Optimization before expansion of Pseudo instruction,
// ensuring return instruction is detected correctly.
addPass(createRISCVPushPopOptimizationPass());
}
addPass(createRISCVExpandPseudoPass());
// Schedule the expansion of AMOs at the last possible moment, avoiding the
// possibility for other passes to break the requirements for forward
// progress in the LR/SC block.
addPass(createRISCVExpandAtomicPseudoPass());
// KCFI indirect call checks are lowered to a bundle.
addPass(createUnpackMachineBundles([&](const MachineFunction &MF) {
return MF.getFunction().getParent()->getModuleFlag("kcfi");
}));
}
void RISCVPassConfig::addMachineSSAOptimization() {
addPass(createRISCVVectorPeepholePass());
TargetPassConfig::addMachineSSAOptimization();
if (EnableMachineCombiner)
addPass(&MachineCombinerID);
if (TM->getTargetTriple().isRISCV64()) {
addPass(createRISCVOptWInstrsPass());
}
}
void RISCVPassConfig::addPreRegAlloc() {
addPass(createRISCVPreRAExpandPseudoPass());
if (TM->getOptLevel() != CodeGenOptLevel::None)
addPass(createRISCVMergeBaseOffsetOptPass());
addPass(createRISCVInsertReadWriteCSRPass());
addPass(createRISCVInsertWriteVXRMPass());
// Run RISCVInsertVSETVLI after PHI elimination. On O1 and above do it after
// register coalescing so needVSETVLIPHI doesn't need to look through COPYs.
if (!EnableVSETVLIAfterRVVRegAlloc) {
if (TM->getOptLevel() == CodeGenOptLevel::None)
insertPass(&PHIEliminationID, &RISCVInsertVSETVLIID);
else
insertPass(&RegisterCoalescerID, &RISCVInsertVSETVLIID);
}
}
void RISCVPassConfig::addFastRegAlloc() {
addPass(&InitUndefID);
TargetPassConfig::addFastRegAlloc();
}
void RISCVPassConfig::addPostRegAlloc() {
if (TM->getOptLevel() != CodeGenOptLevel::None &&
EnableRedundantCopyElimination)
addPass(createRISCVRedundantCopyEliminationPass());
}
void RISCVTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
PB.registerLateLoopOptimizationsEPCallback([=](LoopPassManager &LPM,
OptimizationLevel Level) {
LPM.addPass(LoopIdiomVectorizePass(LoopIdiomVectorizeStyle::Predicated));
});
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::RISCVMachineFunctionInfo();
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<RISCVMachineFunctionInfo>();
return new yaml::RISCVMachineFunctionInfo(*MFI);
}
bool RISCVTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const auto &YamlMFI =
static_cast<const yaml::RISCVMachineFunctionInfo &>(MFI);
PFS.MF.getInfo<RISCVMachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
return false;
}
|