1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
|
//===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetTransformInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include <cmath>
#include <optional>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "riscvtti"
static cl::opt<unsigned> RVVRegisterWidthLMUL(
"riscv-v-register-bit-width-lmul",
cl::desc(
"The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
"by autovectorized code. Fractional LMULs are not supported."),
cl::init(2), cl::Hidden);
static cl::opt<unsigned> SLPMaxVF(
"riscv-v-slp-max-vf",
cl::desc(
"Overrides result used for getMaximumVF query which is used "
"exclusively by SLP vectorizer."),
cl::Hidden);
InstructionCost
RISCVTTIImpl::getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
TTI::TargetCostKind CostKind) {
// Check if the type is valid for all CostKind
if (!VT.isVector())
return InstructionCost::getInvalid();
size_t NumInstr = OpCodes.size();
if (CostKind == TTI::TCK_CodeSize)
return NumInstr;
InstructionCost LMULCost = TLI->getLMULCost(VT);
if ((CostKind != TTI::TCK_RecipThroughput) && (CostKind != TTI::TCK_Latency))
return LMULCost * NumInstr;
InstructionCost Cost = 0;
for (auto Op : OpCodes) {
switch (Op) {
case RISCV::VRGATHER_VI:
Cost += TLI->getVRGatherVICost(VT);
break;
case RISCV::VRGATHER_VV:
Cost += TLI->getVRGatherVVCost(VT);
break;
case RISCV::VSLIDEUP_VI:
case RISCV::VSLIDEDOWN_VI:
Cost += TLI->getVSlideVICost(VT);
break;
case RISCV::VSLIDEUP_VX:
case RISCV::VSLIDEDOWN_VX:
Cost += TLI->getVSlideVXCost(VT);
break;
case RISCV::VREDMAX_VS:
case RISCV::VREDMIN_VS:
case RISCV::VREDMAXU_VS:
case RISCV::VREDMINU_VS:
case RISCV::VREDSUM_VS:
case RISCV::VREDAND_VS:
case RISCV::VREDOR_VS:
case RISCV::VREDXOR_VS:
case RISCV::VFREDMAX_VS:
case RISCV::VFREDMIN_VS:
case RISCV::VFREDUSUM_VS: {
unsigned VL = VT.getVectorMinNumElements();
if (!VT.isFixedLengthVector())
VL *= *getVScaleForTuning();
Cost += Log2_32_Ceil(VL);
break;
}
case RISCV::VFREDOSUM_VS: {
unsigned VL = VT.getVectorMinNumElements();
if (!VT.isFixedLengthVector())
VL *= *getVScaleForTuning();
Cost += VL;
break;
}
case RISCV::VMV_X_S:
case RISCV::VMV_S_X:
case RISCV::VFMV_F_S:
case RISCV::VFMV_S_F:
case RISCV::VMOR_MM:
case RISCV::VMXOR_MM:
case RISCV::VMAND_MM:
case RISCV::VMANDN_MM:
case RISCV::VMNAND_MM:
case RISCV::VCPOP_M:
case RISCV::VFIRST_M:
Cost += 1;
break;
default:
Cost += LMULCost;
}
}
return Cost;
}
static InstructionCost getIntImmCostImpl(const DataLayout &DL,
const RISCVSubtarget *ST,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
bool FreeZeroes) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Otherwise, we check how many instructions it will take to materialise.
return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty), *ST,
/*CompressionCost=*/false, FreeZeroes);
}
InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind, false);
}
// Look for patterns of shift followed by AND that can be turned into a pair of
// shifts. We won't need to materialize an immediate for the AND so these can
// be considered free.
static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) {
uint64_t Mask = Imm.getZExtValue();
auto *BO = dyn_cast<BinaryOperator>(Inst->getOperand(0));
if (!BO || !BO->hasOneUse())
return false;
if (BO->getOpcode() != Instruction::Shl)
return false;
if (!isa<ConstantInt>(BO->getOperand(1)))
return false;
unsigned ShAmt = cast<ConstantInt>(BO->getOperand(1))->getZExtValue();
// (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1
// is a mask shifted by c2 bits with c3 leading zeros.
if (isShiftedMask_64(Mask)) {
unsigned Trailing = llvm::countr_zero(Mask);
if (ShAmt == Trailing)
return true;
}
return false;
}
InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Some instructions in RISC-V can take a 12-bit immediate. Some of these are
// commutative, in others the immediate comes from a specific argument index.
bool Takes12BitImm = false;
unsigned ImmArgIdx = ~0U;
switch (Opcode) {
case Instruction::GetElementPtr:
// Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
// split up large offsets in GEP into better parts than ConstantHoisting
// can.
return TTI::TCC_Free;
case Instruction::Store: {
// Use the materialization cost regardless of if it's the address or the
// value that is constant, except for if the store is misaligned and
// misaligned accesses are not legal (experience shows constant hoisting
// can sometimes be harmful in such cases).
if (Idx == 1 || !Inst)
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
/*FreeZeroes=*/true);
StoreInst *ST = cast<StoreInst>(Inst);
if (!getTLI()->allowsMemoryAccessForAlignment(
Ty->getContext(), DL, getTLI()->getValueType(DL, Ty),
ST->getPointerAddressSpace(), ST->getAlign()))
return TTI::TCC_Free;
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
/*FreeZeroes=*/true);
}
case Instruction::Load:
// If the address is a constant, use the materialization cost.
return getIntImmCost(Imm, Ty, CostKind);
case Instruction::And:
// zext.h
if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
return TTI::TCC_Free;
// zext.w
if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZba())
return TTI::TCC_Free;
// bclri
if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
return TTI::TCC_Free;
if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
canUseShiftPair(Inst, Imm))
return TTI::TCC_Free;
Takes12BitImm = true;
break;
case Instruction::Add:
Takes12BitImm = true;
break;
case Instruction::Or:
case Instruction::Xor:
// bseti/binvi
if (ST->hasStdExtZbs() && Imm.isPowerOf2())
return TTI::TCC_Free;
Takes12BitImm = true;
break;
case Instruction::Mul:
// Power of 2 is a shift. Negated power of 2 is a shift and a negate.
if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
return TTI::TCC_Free;
// One more or less than a power of 2 can use SLLI+ADD/SUB.
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2())
return TTI::TCC_Free;
// FIXME: There is no MULI instruction.
Takes12BitImm = true;
break;
case Instruction::Sub:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Takes12BitImm = true;
ImmArgIdx = 1;
break;
default:
break;
}
if (Takes12BitImm) {
// Check immediate is the correct argument...
if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
// ... and fits into the 12-bit immediate.
if (Imm.getSignificantBits() <= 64 &&
getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
return TTI::TCC_Free;
}
}
// Otherwise, use the full materialisation cost.
return getIntImmCost(Imm, Ty, CostKind);
}
// By default, prevent hoisting.
return TTI::TCC_Free;
}
InstructionCost
RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
// Prevent hoisting in unknown cases.
return TTI::TCC_Free;
}
bool RISCVTTIImpl::hasActiveVectorLength(unsigned, Type *DataTy, Align) const {
return ST->hasVInstructions();
}
TargetTransformInfo::PopcntSupportKind
RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return ST->hasStdExtZbb() || ST->hasVendorXCVbitmanip()
? TTI::PSK_FastHardware
: TTI::PSK_Software;
}
bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
// Currently, the ExpandReductions pass can't expand scalable-vector
// reductions, but we still request expansion as RVV doesn't support certain
// reductions and the SelectionDAG can't legalize them either.
switch (II->getIntrinsicID()) {
default:
return false;
// These reductions have no equivalent in RVV
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_fmul:
return true;
}
}
std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
if (ST->hasVInstructions())
return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock;
return BaseT::getMaxVScale();
}
std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const {
if (ST->hasVInstructions())
if (unsigned MinVLen = ST->getRealMinVLen();
MinVLen >= RISCV::RVVBitsPerBlock)
return MinVLen / RISCV::RVVBitsPerBlock;
return BaseT::getVScaleForTuning();
}
TypeSize
RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
unsigned LMUL =
llvm::bit_floor(std::clamp<unsigned>(RVVRegisterWidthLMUL, 1, 8));
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(ST->getXLen());
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(
ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(
(ST->hasVInstructions() &&
ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock)
? LMUL * RISCV::RVVBitsPerBlock
: 0);
}
llvm_unreachable("Unsupported register kind");
}
InstructionCost
RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty, TTI::TargetCostKind CostKind) {
// Add a cost of address generation + the cost of the load. The address
// is expected to be a PC relative offset to a constant pool entry
// using auipc/addi.
return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty),
/*AddressSpace=*/0, CostKind);
}
static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST,
LLVMContext &C) {
assert((DataVT.getScalarSizeInBits() != 8 ||
DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering");
MVT IndexVT = DataVT.changeTypeToInteger();
if (IndexVT.getScalarType().bitsGT(ST.getXLenVT()))
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
return cast<VectorType>(EVT(IndexVT).getTypeForEVT(C));
}
InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *Tp, ArrayRef<int> Mask,
TTI::TargetCostKind CostKind,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args,
const Instruction *CxtI) {
Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
// First, handle cases where having a fixed length vector enables us to
// give a more accurate cost than falling back to generic scalable codegen.
// TODO: Each of these cases hints at a modeling gap around scalable vectors.
if (isa<FixedVectorType>(Tp)) {
switch (Kind) {
default:
break;
case TTI::SK_PermuteSingleSrc: {
if (Mask.size() >= 2 && LT.second.isFixedLengthVector()) {
MVT EltTp = LT.second.getVectorElementType();
// If the size of the element is < ELEN then shuffles of interleaves and
// deinterleaves of 2 vectors can be lowered into the following
// sequences
if (EltTp.getScalarSizeInBits() < ST->getELen()) {
// Example sequence:
// vsetivli zero, 4, e8, mf4, ta, ma (ignored)
// vwaddu.vv v10, v8, v9
// li a0, -1 (ignored)
// vwmaccu.vx v10, a0, v9
if (ShuffleVectorInst::isInterleaveMask(Mask, 2, Mask.size()))
return 2 * LT.first * TLI->getLMULCost(LT.second);
if (Mask[0] == 0 || Mask[0] == 1) {
auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size());
// Example sequence:
// vnsrl.wi v10, v8, 0
if (equal(DeinterleaveMask, Mask))
return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI,
LT.second, CostKind);
}
}
}
// vrgather + cost of generating the mask constant.
// We model this for an unknown mask with a single vrgather.
if (LT.second.isFixedLengthVector() && LT.first == 1 &&
(LT.second.getScalarSizeInBits() != 8 ||
LT.second.getVectorNumElements() <= 256)) {
VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, Tp->getContext());
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
return IndexCost +
getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind);
}
[[fallthrough]];
}
case TTI::SK_Transpose:
case TTI::SK_PermuteTwoSrc: {
// 2 x (vrgather + cost of generating the mask constant) + cost of mask
// register for the second vrgather. We model this for an unknown
// (shuffle) mask.
if (LT.second.isFixedLengthVector() && LT.first == 1 &&
(LT.second.getScalarSizeInBits() != 8 ||
LT.second.getVectorNumElements() <= 256)) {
auto &C = Tp->getContext();
auto EC = Tp->getElementCount();
VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, C);
VectorType *MaskTy = VectorType::get(IntegerType::getInt1Ty(C), EC);
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
InstructionCost MaskCost = getConstantPoolLoadCost(MaskTy, CostKind);
return 2 * IndexCost +
getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV},
LT.second, CostKind) +
MaskCost;
}
[[fallthrough]];
}
case TTI::SK_Select: {
// We are going to permute multiple sources and the result will be in
// multiple destinations. Providing an accurate cost only for splits where
// the element type remains the same.
if (!Mask.empty() && LT.first.isValid() && LT.first != 1 &&
LT.second.isFixedLengthVector() &&
LT.second.getVectorElementType().getSizeInBits() ==
Tp->getElementType()->getPrimitiveSizeInBits() &&
LT.second.getVectorNumElements() <
cast<FixedVectorType>(Tp)->getNumElements() &&
divideCeil(Mask.size(),
cast<FixedVectorType>(Tp)->getNumElements()) ==
static_cast<unsigned>(*LT.first.getValue())) {
unsigned NumRegs = *LT.first.getValue();
unsigned VF = cast<FixedVectorType>(Tp)->getNumElements();
unsigned SubVF = PowerOf2Ceil(VF / NumRegs);
auto *SubVecTy = FixedVectorType::get(Tp->getElementType(), SubVF);
InstructionCost Cost = 0;
for (unsigned I = 0; I < NumRegs; ++I) {
bool IsSingleVector = true;
SmallVector<int> SubMask(SubVF, PoisonMaskElem);
transform(Mask.slice(I * SubVF,
I == NumRegs - 1 ? Mask.size() % SubVF : SubVF),
SubMask.begin(), [&](int I) {
bool SingleSubVector = I / VF == 0;
IsSingleVector &= SingleSubVector;
return (SingleSubVector ? 0 : 1) * SubVF + I % VF;
});
Cost += getShuffleCost(IsSingleVector ? TTI::SK_PermuteSingleSrc
: TTI::SK_PermuteTwoSrc,
SubVecTy, SubMask, CostKind, 0, nullptr);
return Cost;
}
}
break;
}
}
};
// Handle scalable vectors (and fixed vectors legalized to scalable vectors).
switch (Kind) {
default:
// Fallthrough to generic handling.
// TODO: Most of these cases will return getInvalid in generic code, and
// must be implemented here.
break;
case TTI::SK_ExtractSubvector:
// Extract at zero is always a subregister extract
if (Index == 0)
return TTI::TCC_Free;
// If we're extracting a subvector of at most m1 size at a sub-register
// boundary - which unfortunately we need exact vlen to identify - this is
// a subregister extract at worst and thus won't require a vslidedown.
// TODO: Extend for aligned m2, m4 subvector extracts
// TODO: Extend for misalgined (but contained) extracts
// TODO: Extend for scalable subvector types
if (std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) {
const unsigned MinVLen = ST->getRealMinVLen();
const unsigned MaxVLen = ST->getRealMaxVLen();
if (MinVLen == MaxVLen &&
SubLT.second.getScalarSizeInBits() * Index % MinVLen == 0 &&
SubLT.second.getSizeInBits() <= MinVLen)
return TTI::TCC_Free;
}
// Example sequence:
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
// vslidedown.vi v8, v9, 2
return LT.first *
getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second, CostKind);
case TTI::SK_InsertSubvector:
// Example sequence:
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
// vslideup.vi v8, v9, 2
return LT.first *
getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second, CostKind);
case TTI::SK_Select: {
// Example sequence:
// li a0, 90
// vsetivli zero, 8, e8, mf2, ta, ma (ignored)
// vmv.s.x v0, a0
// vmerge.vvm v8, v9, v8, v0
// We use 2 for the cost of the mask materialization as this is the true
// cost for small masks and most shuffles are small. At worst, this cost
// should be a very small constant for the constant pool load. As such,
// we may bias towards large selects slightly more than truely warranted.
return LT.first *
(1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM},
LT.second, CostKind));
}
case TTI::SK_Broadcast: {
bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(Args[0]) ==
Instruction::InsertElement);
if (LT.second.getScalarSizeInBits() == 1) {
if (HasScalar) {
// Example sequence:
// andi a0, a0, 1
// vsetivli zero, 2, e8, mf8, ta, ma (ignored)
// vmv.v.x v8, a0
// vmsne.vi v0, v8, 0
return LT.first *
(1 + getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
LT.second, CostKind));
}
// Example sequence:
// vsetivli zero, 2, e8, mf8, ta, mu (ignored)
// vmv.v.i v8, 0
// vmerge.vim v8, v8, 1, v0
// vmv.x.s a0, v8
// andi a0, a0, 1
// vmv.v.x v8, a0
// vmsne.vi v0, v8, 0
return LT.first *
(1 + getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM,
RISCV::VMV_X_S, RISCV::VMV_V_X,
RISCV::VMSNE_VI},
LT.second, CostKind));
}
if (HasScalar) {
// Example sequence:
// vmv.v.x v8, a0
return LT.first *
getRISCVInstructionCost(RISCV::VMV_V_X, LT.second, CostKind);
}
// Example sequence:
// vrgather.vi v9, v8, 0
return LT.first *
getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second, CostKind);
}
case TTI::SK_Splice: {
// vslidedown+vslideup.
// TODO: Multiplying by LT.first implies this legalizes into multiple copies
// of similar code, but I think we expand through memory.
unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX};
if (Index >= 0 && Index < 32)
Opcodes[0] = RISCV::VSLIDEDOWN_VI;
else if (Index < 0 && Index > -32)
Opcodes[1] = RISCV::VSLIDEUP_VI;
return LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
case TTI::SK_Reverse: {
// TODO: Cases to improve here:
// * Illegal vector types
// * i64 on RV32
// * i1 vector
// At low LMUL, most of the cost is producing the vrgather index register.
// At high LMUL, the cost of the vrgather itself will dominate.
// Example sequence:
// csrr a0, vlenb
// srli a0, a0, 3
// addi a0, a0, -1
// vsetvli a1, zero, e8, mf8, ta, mu (ignored)
// vid.v v9
// vrsub.vx v10, v9, a0
// vrgather.vv v9, v8, v10
InstructionCost LenCost = 3;
if (LT.second.isFixedLengthVector())
// vrsub.vi has a 5 bit immediate field, otherwise an li suffices
LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV};
if (LT.second.isFixedLengthVector() &&
isInt<5>(LT.second.getVectorNumElements() - 1))
Opcodes[1] = RISCV::VRSUB_VI;
InstructionCost GatherCost =
getRISCVInstructionCost(Opcodes, LT.second, CostKind);
// Mask operation additionally required extend and truncate
InstructionCost ExtendCost = Tp->getElementType()->isIntegerTy(1) ? 3 : 0;
return LT.first * (LenCost + GatherCost + ExtendCost);
}
}
return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
}
InstructionCost
RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
if (!isLegalMaskedLoadStore(Src, Alignment) ||
CostKind != TTI::TCK_RecipThroughput)
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
}
InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) {
if (isa<ScalableVectorType>(VecTy) && Factor != 2)
return InstructionCost::getInvalid();
// The interleaved memory access pass will lower interleaved memory ops (i.e
// a load and store followed by a specific shuffle) to vlseg/vsseg
// intrinsics. In those cases then we can treat it as if it's just one (legal)
// memory op
if (!UseMaskForCond && !UseMaskForGaps &&
Factor <= TLI->getMaxSupportedInterleaveFactor()) {
auto *VTy = cast<VectorType>(VecTy);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VTy);
// Need to make sure type has't been scalarized
if (LT.second.isVector()) {
auto *SubVecTy =
VectorType::get(VTy->getElementType(),
VTy->getElementCount().divideCoefficientBy(Factor));
if (VTy->getElementCount().isKnownMultipleOf(Factor) &&
TLI->isLegalInterleavedAccessType(SubVecTy, Factor, Alignment,
AddressSpace, DL)) {
// FIXME: We use the memory op cost of the *legalized* type here,
// because it's getMemoryOpCost returns a really expensive cost for
// types like <6 x i8>, which show up when doing interleaves of
// Factor=3 etc. Should the memory op cost of these be cheaper?
auto *LegalVTy = VectorType::get(VTy->getElementType(),
LT.second.getVectorElementCount());
InstructionCost LegalMemCost = getMemoryOpCost(
Opcode, LegalVTy, Alignment, AddressSpace, CostKind);
return LT.first + LegalMemCost;
}
}
}
// TODO: Return the cost of interleaved accesses for scalable vector when
// unable to convert to segment accesses instructions.
if (isa<ScalableVectorType>(VecTy))
return InstructionCost::getInvalid();
auto *FVTy = cast<FixedVectorType>(VecTy);
InstructionCost MemCost =
getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, CostKind);
unsigned VF = FVTy->getNumElements() / Factor;
// An interleaved load will look like this for Factor=3:
// %wide.vec = load <12 x i32>, ptr %3, align 4
// %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
// %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
// %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
if (Opcode == Instruction::Load) {
InstructionCost Cost = MemCost;
for (unsigned Index : Indices) {
FixedVectorType *SubVecTy =
FixedVectorType::get(FVTy->getElementType(), VF * Factor);
auto Mask = createStrideMask(Index, Factor, VF);
InstructionCost ShuffleCost =
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, SubVecTy, Mask,
CostKind, 0, nullptr, {});
Cost += ShuffleCost;
}
return Cost;
}
// TODO: Model for NF > 2
// We'll need to enhance getShuffleCost to model shuffles that are just
// inserts and extracts into subvectors, since they won't have the full cost
// of a vrgather.
// An interleaved store for 3 vectors of 4 lanes will look like
// %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7>
// %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3>
// %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11>
// %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask>
// store <12 x i32> %interleaved.vec, ptr %10, align 4
if (Factor != 2)
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
assert(Opcode == Instruction::Store && "Opcode must be a store");
// For an interleaving store of 2 vectors, we perform one large interleaving
// shuffle that goes into the wide store
auto Mask = createInterleaveMask(VF, Factor);
InstructionCost ShuffleCost =
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, FVTy, Mask,
CostKind, 0, nullptr, {});
return MemCost + ShuffleCost;
}
InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
if ((Opcode == Instruction::Load &&
!isLegalMaskedGather(DataTy, Align(Alignment))) ||
(Opcode == Instruction::Store &&
!isLegalMaskedScatter(DataTy, Align(Alignment))))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
// Cost is proportional to the number of memory operations implied. For
// scalable vectors, we use an estimate on that number since we don't
// know exactly what VL will be.
auto &VTy = *cast<VectorType>(DataTy);
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
{TTI::OK_AnyValue, TTI::OP_None}, I);
unsigned NumLoads = getEstimatedVLFor(&VTy);
return NumLoads * MemOpCost;
}
InstructionCost RISCVTTIImpl::getStridedMemoryOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
!isLegalStridedLoadStore(DataTy, Alignment)) ||
(Opcode != Instruction::Load && Opcode != Instruction::Store))
return BaseT::getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
if (CostKind == TTI::TCK_CodeSize)
return TTI::TCC_Basic;
// Cost is proportional to the number of memory operations implied. For
// scalable vectors, we use an estimate on that number since we don't
// know exactly what VL will be.
auto &VTy = *cast<VectorType>(DataTy);
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
{TTI::OK_AnyValue, TTI::OP_None}, I);
unsigned NumLoads = getEstimatedVLFor(&VTy);
return NumLoads * MemOpCost;
}
// Currently, these represent both throughput and codesize costs
// for the respective intrinsics. The costs in this table are simply
// instruction counts with the following adjustments made:
// * One vsetvli is considered free.
static const CostTblEntry VectorIntrinsicCostTable[]{
{Intrinsic::floor, MVT::f32, 9},
{Intrinsic::floor, MVT::f64, 9},
{Intrinsic::ceil, MVT::f32, 9},
{Intrinsic::ceil, MVT::f64, 9},
{Intrinsic::trunc, MVT::f32, 7},
{Intrinsic::trunc, MVT::f64, 7},
{Intrinsic::round, MVT::f32, 9},
{Intrinsic::round, MVT::f64, 9},
{Intrinsic::roundeven, MVT::f32, 9},
{Intrinsic::roundeven, MVT::f64, 9},
{Intrinsic::rint, MVT::f32, 7},
{Intrinsic::rint, MVT::f64, 7},
{Intrinsic::lrint, MVT::i32, 1},
{Intrinsic::lrint, MVT::i64, 1},
{Intrinsic::llrint, MVT::i64, 1},
{Intrinsic::nearbyint, MVT::f32, 9},
{Intrinsic::nearbyint, MVT::f64, 9},
{Intrinsic::bswap, MVT::i16, 3},
{Intrinsic::bswap, MVT::i32, 12},
{Intrinsic::bswap, MVT::i64, 31},
{Intrinsic::vp_bswap, MVT::i16, 3},
{Intrinsic::vp_bswap, MVT::i32, 12},
{Intrinsic::vp_bswap, MVT::i64, 31},
{Intrinsic::vp_fshl, MVT::i8, 7},
{Intrinsic::vp_fshl, MVT::i16, 7},
{Intrinsic::vp_fshl, MVT::i32, 7},
{Intrinsic::vp_fshl, MVT::i64, 7},
{Intrinsic::vp_fshr, MVT::i8, 7},
{Intrinsic::vp_fshr, MVT::i16, 7},
{Intrinsic::vp_fshr, MVT::i32, 7},
{Intrinsic::vp_fshr, MVT::i64, 7},
{Intrinsic::bitreverse, MVT::i8, 17},
{Intrinsic::bitreverse, MVT::i16, 24},
{Intrinsic::bitreverse, MVT::i32, 33},
{Intrinsic::bitreverse, MVT::i64, 52},
{Intrinsic::vp_bitreverse, MVT::i8, 17},
{Intrinsic::vp_bitreverse, MVT::i16, 24},
{Intrinsic::vp_bitreverse, MVT::i32, 33},
{Intrinsic::vp_bitreverse, MVT::i64, 52},
{Intrinsic::ctpop, MVT::i8, 12},
{Intrinsic::ctpop, MVT::i16, 19},
{Intrinsic::ctpop, MVT::i32, 20},
{Intrinsic::ctpop, MVT::i64, 21},
{Intrinsic::vp_ctpop, MVT::i8, 12},
{Intrinsic::vp_ctpop, MVT::i16, 19},
{Intrinsic::vp_ctpop, MVT::i32, 20},
{Intrinsic::vp_ctpop, MVT::i64, 21},
{Intrinsic::vp_ctlz, MVT::i8, 19},
{Intrinsic::vp_ctlz, MVT::i16, 28},
{Intrinsic::vp_ctlz, MVT::i32, 31},
{Intrinsic::vp_ctlz, MVT::i64, 35},
{Intrinsic::vp_cttz, MVT::i8, 16},
{Intrinsic::vp_cttz, MVT::i16, 23},
{Intrinsic::vp_cttz, MVT::i32, 24},
{Intrinsic::vp_cttz, MVT::i64, 25},
};
static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) {
switch (ID) {
#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
case Intrinsic::VPID: \
return ISD::VPSD;
#include "llvm/IR/VPIntrinsics.def"
#undef HELPER_MAP_VPID_TO_VPSD
}
return ISD::DELETED_NODE;
}
InstructionCost
RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
auto *RetTy = ICA.getReturnType();
switch (ICA.getID()) {
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::lrint:
case Intrinsic::llrint:
case Intrinsic::round:
case Intrinsic::roundeven: {
// These all use the same code.
auto LT = getTypeLegalizationCost(RetTy);
if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
return LT.first * 8;
break;
}
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax: {
auto LT = getTypeLegalizationCost(RetTy);
if (LT.second.isScalarInteger() && ST->hasStdExtZbb())
return LT.first;
if (ST->hasVInstructions() && LT.second.isVector()) {
unsigned Op;
switch (ICA.getID()) {
case Intrinsic::umin:
Op = RISCV::VMINU_VV;
break;
case Intrinsic::umax:
Op = RISCV::VMAXU_VV;
break;
case Intrinsic::smin:
Op = RISCV::VMIN_VV;
break;
case Intrinsic::smax:
Op = RISCV::VMAX_VV;
break;
}
return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
}
break;
}
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::fabs:
case Intrinsic::sqrt: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && LT.second.isVector())
return LT.first;
break;
}
case Intrinsic::ctpop: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector())
return LT.first;
break;
}
case Intrinsic::abs: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && LT.second.isVector()) {
// vrsub.vi v10, v8, 0
// vmax.vv v8, v8, v10
return LT.first * 2;
}
break;
}
case Intrinsic::get_active_lane_mask: {
if (ST->hasVInstructions()) {
Type *ExpRetTy = VectorType::get(
ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount());
auto LT = getTypeLegalizationCost(ExpRetTy);
// vid.v v8 // considered hoisted
// vsaddu.vx v8, v8, a0
// vmsltu.vx v0, v8, a1
return LT.first *
getRISCVInstructionCost({RISCV::VSADDU_VX, RISCV::VMSLTU_VX},
LT.second, CostKind);
}
break;
}
// TODO: add more intrinsic
case Intrinsic::experimental_stepvector: {
auto LT = getTypeLegalizationCost(RetTy);
// Legalisation of illegal types involves an `index' instruction plus
// (LT.first - 1) vector adds.
if (ST->hasVInstructions())
return getRISCVInstructionCost(RISCV::VID_V, LT.second, CostKind) +
(LT.first - 1) *
getRISCVInstructionCost(RISCV::VADD_VX, LT.second, CostKind);
return 1 + (LT.first - 1);
}
case Intrinsic::experimental_cttz_elts: {
Type *ArgTy = ICA.getArgTypes()[0];
EVT ArgType = TLI->getValueType(DL, ArgTy, true);
if (getTLI()->shouldExpandCttzElements(ArgType))
break;
InstructionCost Cost = getRISCVInstructionCost(
RISCV::VFIRST_M, getTypeLegalizationCost(ArgTy).second, CostKind);
// If zero_is_poison is false, then we will generate additional
// cmp + select instructions to convert -1 to EVL.
Type *BoolTy = Type::getInt1Ty(RetTy->getContext());
if (ICA.getArgs().size() > 1 &&
cast<ConstantInt>(ICA.getArgs()[1])->isZero())
Cost += getCmpSelInstrCost(Instruction::ICmp, BoolTy, RetTy,
CmpInst::ICMP_SLT, CostKind) +
getCmpSelInstrCost(Instruction::Select, RetTy, BoolTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return Cost;
}
case Intrinsic::vp_rint: {
// RISC-V target uses at least 5 instructions to lower rounding intrinsics.
unsigned Cost = 5;
auto LT = getTypeLegalizationCost(RetTy);
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
return Cost * LT.first;
break;
}
case Intrinsic::vp_nearbyint: {
// More one read and one write for fflags than vp_rint.
unsigned Cost = 7;
auto LT = getTypeLegalizationCost(RetTy);
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
return Cost * LT.first;
break;
}
case Intrinsic::vp_ceil:
case Intrinsic::vp_floor:
case Intrinsic::vp_round:
case Intrinsic::vp_roundeven:
case Intrinsic::vp_roundtozero: {
// Rounding with static rounding mode needs two more instructions to
// swap/write FRM than vp_rint.
unsigned Cost = 7;
auto LT = getTypeLegalizationCost(RetTy);
unsigned VPISD = getISDForVPIntrinsicID(ICA.getID());
if (TLI->isOperationCustom(VPISD, LT.second))
return Cost * LT.first;
break;
}
// vp integer arithmetic ops.
case Intrinsic::vp_add:
case Intrinsic::vp_and:
case Intrinsic::vp_ashr:
case Intrinsic::vp_lshr:
case Intrinsic::vp_mul:
case Intrinsic::vp_or:
case Intrinsic::vp_sdiv:
case Intrinsic::vp_shl:
case Intrinsic::vp_srem:
case Intrinsic::vp_sub:
case Intrinsic::vp_udiv:
case Intrinsic::vp_urem:
case Intrinsic::vp_xor:
// vp float arithmetic ops.
case Intrinsic::vp_fadd:
case Intrinsic::vp_fsub:
case Intrinsic::vp_fmul:
case Intrinsic::vp_fdiv:
case Intrinsic::vp_frem: {
std::optional<unsigned> FOp =
VPIntrinsic::getFunctionalOpcodeForVP(ICA.getID());
if (FOp)
return getArithmeticInstrCost(*FOp, ICA.getReturnType(), CostKind);
break;
}
}
if (ST->hasVInstructions() && RetTy->isVectorTy()) {
if (auto LT = getTypeLegalizationCost(RetTy);
LT.second.isVector()) {
MVT EltTy = LT.second.getVectorElementType();
if (const auto *Entry = CostTableLookup(VectorIntrinsicCostTable,
ICA.getID(), EltTy))
return LT.first * Entry->Cost;
}
}
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}
InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) {
bool IsVectorType = isa<VectorType>(Dst) && isa<VectorType>(Src);
if (!IsVectorType)
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
bool IsTypeLegal = isTypeLegal(Src) && isTypeLegal(Dst) &&
(Src->getScalarSizeInBits() <= ST->getELen()) &&
(Dst->getScalarSizeInBits() <= ST->getELen());
// FIXME: Need to compute legalizing cost for illegal types.
if (!IsTypeLegal)
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) -
(int)Log2_32(Src->getScalarSizeInBits());
switch (ISD) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
const unsigned SrcEltSize = Src->getScalarSizeInBits();
if (SrcEltSize == 1) {
// We do not use vsext/vzext to extend from mask vector.
// Instead we use the following instructions to extend from mask vector:
// vmv.v.i v8, 0
// vmerge.vim v8, v8, -1, v0
return getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM},
DstLT.second, CostKind);
}
if ((PowDiff < 1) || (PowDiff > 3))
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8};
unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8};
unsigned Op =
(ISD == ISD::SIGN_EXTEND) ? SExtOp[PowDiff - 1] : ZExtOp[PowDiff - 1];
return getRISCVInstructionCost(Op, DstLT.second, CostKind);
}
case ISD::TRUNCATE:
if (Dst->getScalarSizeInBits() == 1) {
// We do not use several vncvt to truncate to mask vector. So we could
// not use PowDiff to calculate it.
// Instead we use the following instructions to truncate to mask vector:
// vand.vi v8, v8, 1
// vmsne.vi v0, v8, 0
return getRISCVInstructionCost({RISCV::VAND_VI, RISCV::VMSNE_VI},
SrcLT.second, CostKind);
}
[[fallthrough]];
case ISD::FP_EXTEND:
case ISD::FP_ROUND: {
// Counts of narrow/widen instructions.
unsigned SrcEltSize = Src->getScalarSizeInBits();
unsigned DstEltSize = Dst->getScalarSizeInBits();
unsigned Op = (ISD == ISD::TRUNCATE) ? RISCV::VNSRL_WI
: (ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V
: RISCV::VFNCVT_F_F_W;
InstructionCost Cost = 0;
for (; SrcEltSize != DstEltSize;) {
MVT ElementMVT = (ISD == ISD::TRUNCATE)
? MVT::getIntegerVT(DstEltSize)
: MVT::getFloatingPointVT(DstEltSize);
MVT DstMVT = DstLT.second.changeVectorElementType(ElementMVT);
DstEltSize =
(DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1;
Cost += getRISCVInstructionCost(Op, DstMVT, CostKind);
}
return Cost;
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
if (Src->getScalarSizeInBits() == 1 || Dst->getScalarSizeInBits() == 1) {
// The cost of convert from or to mask vector is different from other
// cases. We could not use PowDiff to calculate it.
// For mask vector to fp, we should use the following instructions:
// vmv.v.i v8, 0
// vmerge.vim v8, v8, -1, v0
// vfcvt.f.x.v v8, v8
// And for fp vector to mask, we use:
// vfncvt.rtz.x.f.w v9, v8
// vand.vi v8, v9, 1
// vmsne.vi v0, v8, 0
return 3;
}
if (std::abs(PowDiff) <= 1)
return 1;
// Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8),
// so it only need two conversion.
if (Src->isIntOrIntVectorTy())
return 2;
// Counts of narrow/widen instructions.
return std::abs(PowDiff);
}
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) {
if (isa<ScalableVectorType>(Ty)) {
const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock;
return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize);
}
return cast<FixedVectorType>(Ty)->getNumElements();
}
InstructionCost
RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
FastMathFlags FMF,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELen())
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
if (Ty->getElementType()->isIntegerTy(1)) {
// SelectionDAGBuilder does following transforms:
// vector_reduce_{smin,umax}(<n x i1>) --> vector_reduce_or(<n x i1>)
// vector_reduce_{smax,umin}(<n x i1>) --> vector_reduce_and(<n x i1>)
if (IID == Intrinsic::umax || IID == Intrinsic::smin)
return getArithmeticReductionCost(Instruction::Or, Ty, FMF, CostKind);
else
return getArithmeticReductionCost(Instruction::And, Ty, FMF, CostKind);
}
if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) {
SmallVector<unsigned, 3> Opcodes;
InstructionCost ExtraCost = 0;
switch (IID) {
case Intrinsic::maximum:
if (FMF.noNaNs()) {
Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
} else {
Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS,
RISCV::VFMV_F_S};
// Cost of Canonical Nan + branch
// lui a0, 523264
// fmv.w.x fa0, a0
Type *DstTy = Ty->getScalarType();
const unsigned EltTyBits = DstTy->getScalarSizeInBits();
Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
ExtraCost = 1 +
getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
TTI::CastContextHint::None, CostKind) +
getCFInstrCost(Instruction::Br, CostKind);
}
break;
case Intrinsic::minimum:
if (FMF.noNaNs()) {
Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
} else {
Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS,
RISCV::VFMV_F_S};
// Cost of Canonical Nan + branch
// lui a0, 523264
// fmv.w.x fa0, a0
Type *DstTy = Ty->getScalarType();
const unsigned EltTyBits = DL.getTypeSizeInBits(DstTy);
Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
ExtraCost = 1 +
getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
TTI::CastContextHint::None, CostKind) +
getCFInstrCost(Instruction::Br, CostKind);
}
break;
}
return ExtraCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
// IR Reduction is composed by two vmv and one rvv reduction instruction.
unsigned SplitOp;
SmallVector<unsigned, 3> Opcodes;
switch (IID) {
default:
llvm_unreachable("Unsupported intrinsic");
case Intrinsic::smax:
SplitOp = RISCV::VMAX_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAX_VS, RISCV::VMV_X_S};
break;
case Intrinsic::smin:
SplitOp = RISCV::VMIN_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMIN_VS, RISCV::VMV_X_S};
break;
case Intrinsic::umax:
SplitOp = RISCV::VMAXU_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAXU_VS, RISCV::VMV_X_S};
break;
case Intrinsic::umin:
SplitOp = RISCV::VMINU_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMINU_VS, RISCV::VMV_X_S};
break;
case Intrinsic::maxnum:
SplitOp = RISCV::VFMAX_VV;
Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
break;
case Intrinsic::minnum:
SplitOp = RISCV::VFMIN_VV;
Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
break;
}
// Add a cost for data larger than LMUL8
InstructionCost SplitCost =
(LT.first > 1) ? (LT.first - 1) *
getRISCVInstructionCost(SplitOp, LT.second, CostKind)
: 0;
return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
InstructionCost
RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELen())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND &&
ISD != ISD::FADD)
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
SmallVector<unsigned, 3> Opcodes;
Type *ElementTy = Ty->getElementType();
if (ElementTy->isIntegerTy(1)) {
if (ISD == ISD::AND) {
// Example sequences:
// vsetvli a0, zero, e8, mf8, ta, ma
// vmnot.m v8, v0
// vcpop.m a0, v8
// seqz a0, a0
Opcodes = {RISCV::VMNAND_MM, RISCV::VCPOP_M};
return (LT.first - 1) +
getRISCVInstructionCost(Opcodes, LT.second, CostKind) +
getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
CmpInst::ICMP_EQ, CostKind);
} else {
// Example sequences:
// vsetvli a0, zero, e8, mf8, ta, ma
// vcpop.m a0, v0
// snez a0, a0
Opcodes = {RISCV::VCPOP_M};
return (LT.first - 1) +
getRISCVInstructionCost(Opcodes, LT.second, CostKind) +
getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
CmpInst::ICMP_NE, CostKind);
}
}
// IR Reduction is composed by two vmv and one rvv reduction instruction.
if (TTI::requiresOrderedReduction(FMF)) {
Opcodes.push_back(RISCV::VFMV_S_F);
for (unsigned i = 0; i < LT.first.getValue(); i++)
Opcodes.push_back(RISCV::VFREDOSUM_VS);
Opcodes.push_back(RISCV::VFMV_F_S);
return getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
unsigned SplitOp;
switch (ISD) {
case ISD::ADD:
SplitOp = RISCV::VADD_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S};
break;
case ISD::OR:
SplitOp = RISCV::VOR_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDOR_VS, RISCV::VMV_X_S};
break;
case ISD::XOR:
SplitOp = RISCV::VXOR_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S};
break;
case ISD::AND:
SplitOp = RISCV::VAND_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDAND_VS, RISCV::VMV_X_S};
break;
case ISD::FADD:
SplitOp = RISCV::VFADD_VV;
Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S};
break;
}
// Add a cost for data larger than LMUL8
InstructionCost SplitCost =
(LT.first > 1) ? (LT.first - 1) *
getRISCVInstructionCost(SplitOp, LT.second, CostKind)
: 0;
return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
InstructionCost RISCVTTIImpl::getExtendedReductionCost(
unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
FastMathFlags FMF, TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
// Skip if scalar size of ResTy is bigger than ELEN.
if (ResTy->getScalarSizeInBits() > ST->getELen())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
return (LT.first - 1) +
getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}
InstructionCost RISCVTTIImpl::getStoreImmCost(Type *Ty,
TTI::OperandValueInfo OpInfo,
TTI::TargetCostKind CostKind) {
assert(OpInfo.isConstant() && "non constant operand?");
if (!isa<VectorType>(Ty))
// FIXME: We need to account for immediate materialization here, but doing
// a decent job requires more knowledge about the immediate than we
// currently have here.
return 0;
if (OpInfo.isUniform())
// vmv.x.i, vmv.v.x, or vfmv.v.f
// We ignore the cost of the scalar constant materialization to be consistent
// with how we treat scalar constants themselves just above.
return 1;
return getConstantPoolLoadCost(Ty, CostKind);
}
InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
TTI::OperandValueInfo OpInfo,
const Instruction *I) {
EVT VT = TLI->getValueType(DL, Src, true);
// Type legalization can't handle structs
if (VT == MVT::Other)
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, OpInfo, I);
InstructionCost Cost = 0;
if (Opcode == Instruction::Store && OpInfo.isConstant())
Cost += getStoreImmCost(Src, OpInfo, CostKind);
InstructionCost BaseCost =
BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, OpInfo, I);
// Assume memory ops cost scale with the number of vector registers
// possible accessed by the instruction. Note that BasicTTI already
// handles the LT.first term for us.
if (std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
LT.second.isVector() && CostKind != TTI::TCK_CodeSize)
BaseCost *= TLI->getLMULCost(LT.second);
return Cost + BaseCost;
}
InstructionCost RISCVTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
// Skip if scalar size of ValTy is bigger than ELEN.
if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen())
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
if (CondTy->isVectorTy()) {
if (ValTy->getScalarSizeInBits() == 1) {
// vmandn.mm v8, v8, v9
// vmand.mm v9, v0, v9
// vmor.mm v0, v9, v8
return LT.first *
getRISCVInstructionCost(
{RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
LT.second, CostKind);
}
// vselect and max/min are supported natively.
return LT.first *
getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second, CostKind);
}
if (ValTy->getScalarSizeInBits() == 1) {
// vmv.v.x v9, a0
// vmsne.vi v9, v9, 0
// vmandn.mm v8, v8, v9
// vmand.mm v9, v0, v9
// vmor.mm v0, v9, v8
MVT InterimVT = LT.second.changeVectorElementType(MVT::i8);
return LT.first *
getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
InterimVT, CostKind) +
LT.first * getRISCVInstructionCost(
{RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
LT.second, CostKind);
}
// vmv.v.x v10, a0
// vmsne.vi v0, v10, 0
// vmerge.vvm v8, v9, v8, v0
return LT.first * getRISCVInstructionCost(
{RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM},
LT.second, CostKind);
}
if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() &&
CmpInst::isIntPredicate(VecPred)) {
// Use VMSLT_VV to represent VMSEQ, VMSNE, VMSLTU, VMSLEU, VMSLT, VMSLE
// provided they incur the same cost across all implementations
return LT.first *
getRISCVInstructionCost(RISCV::VMSLT_VV, LT.second, CostKind);
}
if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() &&
CmpInst::isFPPredicate(VecPred)) {
// Use VMXOR_MM and VMXNOR_MM to generate all true/false mask
if ((VecPred == CmpInst::FCMP_FALSE) || (VecPred == CmpInst::FCMP_TRUE))
return getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind);
// If we do not support the input floating point vector type, use the base
// one which will calculate as:
// ScalarizeCost + Num * Cost for fixed vector,
// InvalidCost for scalable vector.
if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
(ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
(ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
// Assuming vector fp compare and mask instructions are all the same cost
// until a need arises to differentiate them.
switch (VecPred) {
case CmpInst::FCMP_ONE: // vmflt.vv + vmflt.vv + vmor.mm
case CmpInst::FCMP_ORD: // vmfeq.vv + vmfeq.vv + vmand.mm
case CmpInst::FCMP_UNO: // vmfne.vv + vmfne.vv + vmor.mm
case CmpInst::FCMP_UEQ: // vmflt.vv + vmflt.vv + vmnor.mm
return LT.first * getRISCVInstructionCost(
{RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM},
LT.second, CostKind);
case CmpInst::FCMP_UGT: // vmfle.vv + vmnot.m
case CmpInst::FCMP_UGE: // vmflt.vv + vmnot.m
case CmpInst::FCMP_ULT: // vmfle.vv + vmnot.m
case CmpInst::FCMP_ULE: // vmflt.vv + vmnot.m
return LT.first *
getRISCVInstructionCost({RISCV::VMFLT_VV, RISCV::VMNAND_MM},
LT.second, CostKind);
case CmpInst::FCMP_OEQ: // vmfeq.vv
case CmpInst::FCMP_OGT: // vmflt.vv
case CmpInst::FCMP_OGE: // vmfle.vv
case CmpInst::FCMP_OLT: // vmflt.vv
case CmpInst::FCMP_OLE: // vmfle.vv
case CmpInst::FCMP_UNE: // vmfne.vv
return LT.first *
getRISCVInstructionCost(RISCV::VMFLT_VV, LT.second, CostKind);
default:
break;
}
}
// With ShortForwardBranchOpt or ConditionalMoveFusion, scalar icmp + select
// instructions will lower to SELECT_CC and lower to PseudoCCMOVGPR which will
// generate a conditional branch + mv. The cost of scalar (icmp + select) will
// be (0 + select instr cost).
if (ST->hasConditionalMoveFusion() && I && isa<ICmpInst>(I) &&
ValTy->isIntegerTy() && !I->user_empty()) {
if (all_of(I->users(), [&](const User *U) {
return match(U, m_Select(m_Specific(I), m_Value(), m_Value())) &&
U->getType()->isIntegerTy() &&
!isa<ConstantData>(U->getOperand(1)) &&
!isa<ConstantData>(U->getOperand(2));
}))
return 0;
}
// TODO: Add cost for scalar type.
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
InstructionCost RISCVTTIImpl::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return Opcode == Instruction::PHI ? 0 : 1;
// Branches are assumed to be predicted.
return 0;
}
InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0,
Value *Op1) {
assert(Val->isVectorTy() && "This must be a vector type");
if (Opcode != Instruction::ExtractElement &&
Opcode != Instruction::InsertElement)
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector()) {
auto *FixedVecTy = cast<FixedVectorType>(Val);
// If Index is a known constant, cost is zero.
if (Index != -1U)
return 0;
// Extract/InsertElement with non-constant index is very costly when
// scalarized; estimate cost of loads/stores sequence via the stack:
// ExtractElement cost: store vector to stack, load scalar;
// InsertElement cost: store vector to stack, store scalar, load vector.
Type *ElemTy = FixedVecTy->getElementType();
auto NumElems = FixedVecTy->getNumElements();
auto Align = DL.getPrefTypeAlign(ElemTy);
InstructionCost LoadCost =
getMemoryOpCost(Instruction::Load, ElemTy, Align, 0, CostKind);
InstructionCost StoreCost =
getMemoryOpCost(Instruction::Store, ElemTy, Align, 0, CostKind);
return Opcode == Instruction::ExtractElement
? StoreCost * NumElems + LoadCost
: (StoreCost + LoadCost) * NumElems + StoreCost;
}
// For unsupported scalable vector.
if (LT.second.isScalableVector() && !LT.first.isValid())
return LT.first;
if (!isTypeLegal(Val))
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
// Mask vector extract/insert is expanded via e8.
if (Val->getScalarSizeInBits() == 1) {
VectorType *WideTy =
VectorType::get(IntegerType::get(Val->getContext(), 8),
cast<VectorType>(Val)->getElementCount());
if (Opcode == Instruction::ExtractElement) {
InstructionCost ExtendCost
= getCastInstrCost(Instruction::ZExt, WideTy, Val,
TTI::CastContextHint::None, CostKind);
InstructionCost ExtractCost
= getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
return ExtendCost + ExtractCost;
}
InstructionCost ExtendCost
= getCastInstrCost(Instruction::ZExt, WideTy, Val,
TTI::CastContextHint::None, CostKind);
InstructionCost InsertCost
= getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
InstructionCost TruncCost
= getCastInstrCost(Instruction::Trunc, Val, WideTy,
TTI::CastContextHint::None, CostKind);
return ExtendCost + InsertCost + TruncCost;
}
// In RVV, we could use vslidedown + vmv.x.s to extract element from vector
// and vslideup + vmv.s.x to insert element to vector.
unsigned BaseCost = 1;
// When insertelement we should add the index with 1 as the input of vslideup.
unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;
if (Index != -1U) {
// The type may be split. For fixed-width vectors we can normalize the
// index to the new type.
if (LT.second.isFixedLengthVector()) {
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
}
// We could extract/insert the first element without vslidedown/vslideup.
if (Index == 0)
SlideCost = 0;
else if (Opcode == Instruction::InsertElement)
SlideCost = 1; // With a constant index, we do not need to use addi.
}
// Extract i64 in the target that has XLEN=32 need more instruction.
if (Val->getScalarType()->isIntegerTy() &&
ST->getXLen() < Val->getScalarSizeInBits()) {
// For extractelement, we need the following instructions:
// vsetivli zero, 1, e64, m1, ta, mu (not count)
// vslidedown.vx v8, v8, a0
// vmv.x.s a0, v8
// li a1, 32
// vsrl.vx v8, v8, a1
// vmv.x.s a1, v8
// For insertelement, we need the following instructions:
// vsetivli zero, 2, e32, m4, ta, mu (not count)
// vmv.v.i v12, 0
// vslide1up.vx v16, v12, a1
// vslide1up.vx v12, v16, a0
// addi a0, a2, 1
// vsetvli zero, a0, e64, m4, tu, mu (not count)
// vslideup.vx v8, v12, a2
// TODO: should we count these special vsetvlis?
BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
}
return BaseCost + SlideCost;
}
InstructionCost RISCVTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI) {
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
// Skip if scalar size of Ty is bigger than ELEN.
if (isa<VectorType>(Ty) && Ty->getScalarSizeInBits() > ST->getELen())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
// TODO: Handle scalar type.
if (!LT.second.isVector())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
auto getConstantMatCost =
[&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost {
if (OpInfo.isUniform() && TLI->canSplatOperand(Opcode, Operand))
// Two sub-cases:
// * Has a 5 bit immediate operand which can be splatted.
// * Has a larger immediate which must be materialized in scalar register
// We return 0 for both as we currently ignore the cost of materializing
// scalar constants in GPRs.
return 0;
return getConstantPoolLoadCost(Ty, CostKind);
};
// Add the cost of materializing any constant vectors required.
InstructionCost ConstantMatCost = 0;
if (Op1Info.isConstant())
ConstantMatCost += getConstantMatCost(0, Op1Info);
if (Op2Info.isConstant())
ConstantMatCost += getConstantMatCost(1, Op2Info);
unsigned Op;
switch (TLI->InstructionOpcodeToISD(Opcode)) {
case ISD::ADD:
case ISD::SUB:
Op = RISCV::VADD_VV;
break;
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
Op = RISCV::VSLL_VV;
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV;
break;
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
Op = RISCV::VMUL_VV;
break;
case ISD::SDIV:
case ISD::UDIV:
Op = RISCV::VDIV_VV;
break;
case ISD::SREM:
case ISD::UREM:
Op = RISCV::VREM_VV;
break;
case ISD::FADD:
case ISD::FSUB:
// TODO: Address FP16 with VFHMIN
Op = RISCV::VFADD_VV;
break;
case ISD::FMUL:
// TODO: Address FP16 with VFHMIN
Op = RISCV::VFMUL_VV;
break;
case ISD::FDIV:
Op = RISCV::VFDIV_VV;
break;
case ISD::FNEG:
Op = RISCV::VFSGNJN_VV;
break;
default:
// Assuming all other instructions have the same cost until a need arises to
// differentiate them.
return ConstantMatCost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
Op1Info, Op2Info,
Args, CxtI);
}
InstructionCost InstrCost = getRISCVInstructionCost(Op, LT.second, CostKind);
// We use BasicTTIImpl to calculate scalar costs, which assumes floating point
// ops are twice as expensive as integer ops. Do the same for vectors so
// scalar floating point ops aren't cheaper than their vector equivalents.
if (Ty->isFPOrFPVectorTy())
InstrCost *= 2;
return ConstantMatCost + LT.first * InstrCost;
}
// TODO: Deduplicate from TargetTransformInfoImplCRTPBase.
InstructionCost RISCVTTIImpl::getPointersChainCost(
ArrayRef<const Value *> Ptrs, const Value *Base,
const TTI::PointersChainInfo &Info, Type *AccessTy,
TTI::TargetCostKind CostKind) {
InstructionCost Cost = TTI::TCC_Free;
// In the basic model we take into account GEP instructions only
// (although here can come alloca instruction, a value, constants and/or
// constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
// pointer). Typically, if Base is a not a GEP-instruction and all the
// pointers are relative to the same base address, all the rest are
// either GEP instructions, PHIs, bitcasts or constants. When we have same
// base, we just calculate cost of each non-Base GEP as an ADD operation if
// any their index is a non-const.
// If no known dependecies between the pointers cost is calculated as a sum
// of costs of GEP instructions.
for (auto [I, V] : enumerate(Ptrs)) {
const auto *GEP = dyn_cast<GetElementPtrInst>(V);
if (!GEP)
continue;
if (Info.isSameBase() && V != Base) {
if (GEP->hasAllConstantIndices())
continue;
// If the chain is unit-stride and BaseReg + stride*i is a legal
// addressing mode, then presume the base GEP is sitting around in a
// register somewhere and check if we can fold the offset relative to
// it.
unsigned Stride = DL.getTypeStoreSize(AccessTy);
if (Info.isUnitStride() &&
isLegalAddressingMode(AccessTy,
/* BaseGV */ nullptr,
/* BaseOffset */ Stride * I,
/* HasBaseReg */ true,
/* Scale */ 0,
GEP->getType()->getPointerAddressSpace()))
continue;
Cost += getArithmeticInstrCost(Instruction::Add, GEP->getType(), CostKind,
{TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_AnyValue, TTI::OP_None},
std::nullopt);
} else {
SmallVector<const Value *> Indices(GEP->indices());
Cost += getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
Indices, AccessTy, CostKind);
}
}
return Cost;
}
void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// TODO: More tuning on benchmarks and metrics with changes as needed
// would apply to all settings below to enable performance.
if (ST->enableDefaultUnroll())
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
// Enable Upper bound unrolling universally, not dependant upon the conditions
// below.
UP.UpperBound = true;
// Disable loop unrolling for Oz and Os.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
if (L->getHeader()->getParent()->hasOptSize())
return;
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
LLVM_DEBUG(dbgs() << "Loop has:\n"
<< "Blocks: " << L->getNumBlocks() << "\n"
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
// Only allow another exit other than the latch. This acts as an early exit
// as it mirrors the profitability calculation of the runtime unroller.
if (ExitingBlocks.size() > 2)
return;
// Limit the CFG of the loop body for targets with a branch predictor.
// Allowing 4 blocks permits if-then-else diamonds in the body.
if (L->getNumBlocks() > 4)
return;
// Don't unroll vectorized loops, including the remainder loop
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return;
// Scan the loop: don't unroll loops with calls as this could prevent
// inlining.
InstructionCost Cost = 0;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
// Initial setting - Don't unroll loops containing vectorized
// instructions.
if (I.getType()->isVectorTy())
return;
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!isLoweredToCall(F))
continue;
}
return;
}
SmallVector<const Value *> Operands(I.operand_values());
Cost += getInstructionCost(&I, Operands,
TargetTransformInfo::TCK_SizeAndLatency);
}
}
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
UP.Partial = true;
UP.Runtime = true;
UP.UnrollRemainder = true;
UP.UnrollAndJam = true;
UP.UnrollAndJamInnerLoopThreshold = 60;
// Force unrolling small loops can be very useful because of the branch
// taken cost of the backedge.
if (Cost < 12)
UP.Force = true;
}
void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) {
TypeSize Size = DL.getTypeSizeInBits(Ty);
if (Ty->isVectorTy()) {
if (Size.isScalable() && ST->hasVInstructions())
return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);
if (ST->useRVVForFixedLengthVectors())
return divideCeil(Size, ST->getRealMinVLen());
}
return BaseT::getRegUsageForType(Ty);
}
unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
if (SLPMaxVF.getNumOccurrences())
return SLPMaxVF;
// Return how many elements can fit in getRegisterBitwidth. This is the
// same routine as used in LoopVectorizer. We should probably be
// accounting for whether we actually have instructions with the right
// lane type, but we don't have enough information to do that without
// some additional plumbing which hasn't been justified yet.
TypeSize RegWidth =
getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
// If no vector registers, or absurd element widths, disable
// vectorization by returning 1.
return std::max<unsigned>(1U, RegWidth.getFixedValue() / ElemWidth);
}
bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) {
// RISC-V specific here are "instruction number 1st priority".
// If we need to emit adds inside the loop to add up base registers, then
// we need at least one extra temporary register.
unsigned C1NumRegs = C1.NumRegs + (C1.NumBaseAdds != 0);
unsigned C2NumRegs = C2.NumRegs + (C2.NumBaseAdds != 0);
return std::tie(C1.Insns, C1NumRegs, C1.AddRecCost,
C1.NumIVMuls, C1.NumBaseAdds,
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
std::tie(C2.Insns, C2NumRegs, C2.AddRecCost,
C2.NumIVMuls, C2.NumBaseAdds,
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
}
bool RISCVTTIImpl::isLegalMaskedCompressStore(Type *DataTy, Align Alignment) {
auto *VTy = dyn_cast<VectorType>(DataTy);
if (!VTy || VTy->isScalableTy())
return false;
if (!isLegalMaskedLoadStore(DataTy, Alignment))
return false;
return true;
}
bool RISCVTTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const FeatureBitset &CallerBits =
TM.getSubtargetImpl(*Caller)->getFeatureBits();
const FeatureBitset &CalleeBits =
TM.getSubtargetImpl(*Callee)->getFeatureBits();
// Inline a callee if its target-features are a subset of the callers
// target-features.
return (CallerBits & CalleeBits) == CalleeBits;
}
|