1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines a TargetTransformInfo::Concept conforming object specific
/// to the RISC-V target machine. It uses the target's detailed information to
/// provide more precise answers to certain TTI queries, while letting the
/// target independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
#include <optional>
namespace llvm {
class RISCVTTIImpl : public BasicTTIImplBase<RISCVTTIImpl> {
using BaseT = BasicTTIImplBase<RISCVTTIImpl>;
using TTI = TargetTransformInfo;
friend BaseT;
const RISCVSubtarget *ST;
const RISCVTargetLowering *TLI;
const RISCVSubtarget *getST() const { return ST; }
const RISCVTargetLowering *getTLI() const { return TLI; }
/// This function returns an estimate for VL to be used in VL based terms
/// of the cost model. For fixed length vectors, this is simply the
/// vector length. For scalable vectors, we return results consistent
/// with getVScaleForTuning under the assumption that clients are also
/// using that when comparing costs between scalar and vector representation.
/// This does unfortunately mean that we can both undershoot and overshot
/// the true cost significantly if getVScaleForTuning is wildly off for the
/// actual target hardware.
unsigned getEstimatedVLFor(VectorType *Ty);
InstructionCost getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
TTI::TargetCostKind CostKind);
/// Return the cost of accessing a constant pool entry of the specified
/// type.
InstructionCost getConstantPoolLoadCost(Type *Ty,
TTI::TargetCostKind CostKind);
public:
explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
: BaseT(TM, F.getDataLayout()), ST(TM->getSubtargetImpl(F)),
TLI(ST->getTargetLowering()) {}
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const;
/// Return the cost of materializing an immediate for a value operand of
/// a store instruction.
InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo,
TTI::TargetCostKind CostKind);
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind);
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst = nullptr);
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind);
/// \name EVL Support for predicated vectorization.
/// Whether the target supports the %evl parameter of VP intrinsic efficiently
/// in hardware, for the given opcode and type/alignment. (see LLVM Language
/// Reference - "Vector Predication Intrinsics",
/// https://llvm.org/docs/LangRef.html#vector-predication-intrinsics and
/// "IR-level VP intrinsics",
/// https://llvm.org/docs/Proposals/VectorPredication.html#ir-level-vp-intrinsics).
/// \param Opcode the opcode of the instruction checked for predicated version
/// support.
/// \param DataType the type of the instruction with the \p Opcode checked for
/// prediction support.
/// \param Alignment the alignment for memory access operation checked for
/// predicated version support.
bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
Align Alignment) const;
TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
bool shouldExpandReduction(const IntrinsicInst *II) const;
bool supportsScalableVectors() const { return ST->hasVInstructions(); }
bool enableOrderedReductions() const { return true; }
bool enableScalableVectorization() const { return ST->hasVInstructions(); }
TailFoldingStyle
getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const {
return ST->hasVInstructions() ? TailFoldingStyle::Data
: TailFoldingStyle::DataWithoutLaneMask;
}
std::optional<unsigned> getMaxVScale() const;
std::optional<unsigned> getVScaleForTuning() const;
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const;
unsigned getRegUsageForType(Type *Ty);
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
bool preferEpilogueVectorization() const {
// Epilogue vectorization is usually unprofitable - tail folding or
// a smaller VF would have been better. This a blunt hammer - we
// should re-examine this once vectorization is better tuned.
return false;
}
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind);
InstructionCost getPointersChainCost(ArrayRef<const Value *> Ptrs,
const Value *Base,
const TTI::PointersChainInfo &Info,
Type *AccessTy,
TTI::TargetCostKind CostKind);
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE);
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP);
unsigned getMinVectorRegisterBitWidth() const {
return ST->useRVVForFixedLengthVectors() ? 16 : 0;
}
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask,
TTI::TargetCostKind CostKind, int Index,
VectorType *SubTp,
ArrayRef<const Value *> Args = std::nullopt,
const Instruction *CxtI = nullptr);
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind);
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond = false, bool UseMaskForGaps = false);
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I);
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I);
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
FastMathFlags FMF,
TTI::TargetCostKind CostKind);
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind);
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
Type *ResTy, VectorType *ValTy,
FastMathFlags FMF,
TTI::TargetCostKind CostKind);
InstructionCost
getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
unsigned AddressSpace, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo OpdInfo = {TTI::OK_AnyValue, TTI::OP_None},
const Instruction *I = nullptr);
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
using BaseT::getVectorInstrCost;
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0, Value *Op1);
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
ArrayRef<const Value *> Args = std::nullopt,
const Instruction *CxtI = nullptr);
bool isElementTypeLegalForScalableVector(Type *Ty) const {
return TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty));
}
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
if (!ST->hasVInstructions())
return false;
EVT DataTypeVT = TLI->getValueType(DL, DataType);
// Only support fixed vectors if we know the minimum vector size.
if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
return false;
EVT ElemType = DataTypeVT.getScalarType();
if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
return false;
return TLI->isLegalElementTypeForRVV(ElemType);
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalMaskedStore(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) {
if (!ST->hasVInstructions())
return false;
EVT DataTypeVT = TLI->getValueType(DL, DataType);
// Only support fixed vectors if we know the minimum vector size.
if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
return false;
EVT ElemType = DataTypeVT.getScalarType();
if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
return false;
return TLI->isLegalElementTypeForRVV(ElemType);
}
bool isLegalMaskedGather(Type *DataType, Align Alignment) {
return isLegalMaskedGatherScatter(DataType, Alignment);
}
bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
return isLegalMaskedGatherScatter(DataType, Alignment);
}
bool forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
// Scalarize masked gather for RV64 if EEW=64 indices aren't supported.
return ST->is64Bit() && !ST->hasVInstructionsI64();
}
bool forceScalarizeMaskedScatter(VectorType *VTy, Align Alignment) {
// Scalarize masked scatter for RV64 if EEW=64 indices aren't supported.
return ST->is64Bit() && !ST->hasVInstructionsI64();
}
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) {
EVT DataTypeVT = TLI->getValueType(DL, DataType);
return TLI->isLegalStridedLoadStore(DataTypeVT, Alignment);
}
bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment);
bool isVScaleKnownToBeAPowerOfTwo() const {
return TLI->isVScaleKnownToBeAPowerOfTwo();
}
/// \returns How the target needs this vector-predicated operation to be
/// transformed.
TargetTransformInfo::VPLegalization
getVPLegalizationStrategy(const VPIntrinsic &PI) const {
using VPLegalization = TargetTransformInfo::VPLegalization;
if (!ST->hasVInstructions() ||
(PI.getIntrinsicID() == Intrinsic::vp_reduce_mul &&
cast<VectorType>(PI.getArgOperand(1)->getType())
->getElementType()
->getIntegerBitWidth() != 1))
return VPLegalization(VPLegalization::Discard, VPLegalization::Convert);
return VPLegalization(VPLegalization::Legal, VPLegalization::Legal);
}
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const {
if (!VF.isScalable())
return true;
Type *Ty = RdxDesc.getRecurrenceType();
if (!TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty)))
return false;
switch (RdxDesc.getRecurrenceKind()) {
case RecurKind::Add:
case RecurKind::FAdd:
case RecurKind::And:
case RecurKind::Or:
case RecurKind::Xor:
case RecurKind::SMin:
case RecurKind::SMax:
case RecurKind::UMin:
case RecurKind::UMax:
case RecurKind::FMin:
case RecurKind::FMax:
case RecurKind::FMulAdd:
case RecurKind::IAnyOf:
case RecurKind::FAnyOf:
return true;
default:
return false;
}
}
unsigned getMaxInterleaveFactor(ElementCount VF) {
// Don't interleave if the loop has been vectorized with scalable vectors.
if (VF.isScalable())
return 1;
// If the loop will not be vectorized, don't interleave the loop.
// Let regular unroll to unroll the loop.
return VF.isScalar() ? 1 : ST->getMaxInterleaveFactor();
}
bool enableInterleavedAccessVectorization() { return true; }
enum RISCVRegisterClass { GPRRC, FPRRC, VRRC };
unsigned getNumberOfRegisters(unsigned ClassID) const {
switch (ClassID) {
case RISCVRegisterClass::GPRRC:
// 31 = 32 GPR - x0 (zero register)
// FIXME: Should we exclude fixed registers like SP, TP or GP?
return 31;
case RISCVRegisterClass::FPRRC:
if (ST->hasStdExtF())
return 32;
return 0;
case RISCVRegisterClass::VRRC:
// Although there are 32 vector registers, v0 is special in that it is the
// only register that can be used to hold a mask.
// FIXME: Should we conservatively return 31 as the number of usable
// vector registers?
return ST->hasVInstructions() ? 32 : 0;
}
llvm_unreachable("unknown register class");
}
unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
if (Vector)
return RISCVRegisterClass::VRRC;
if (!Ty)
return RISCVRegisterClass::GPRRC;
Type *ScalarTy = Ty->getScalarType();
if ((ScalarTy->isHalfTy() && ST->hasStdExtZfhmin()) ||
(ScalarTy->isFloatTy() && ST->hasStdExtF()) ||
(ScalarTy->isDoubleTy() && ST->hasStdExtD())) {
return RISCVRegisterClass::FPRRC;
}
return RISCVRegisterClass::GPRRC;
}
const char *getRegisterClassName(unsigned ClassID) const {
switch (ClassID) {
case RISCVRegisterClass::GPRRC:
return "RISCV::GPRRC";
case RISCVRegisterClass::FPRRC:
return "RISCV::FPRRC";
case RISCVRegisterClass::VRRC:
return "RISCV::VRRC";
}
llvm_unreachable("unknown register class");
}
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2);
bool shouldFoldTerminatingConditionAfterLSR() const {
return true;
}
std::optional<unsigned> getMinPageSize() const { return 4096; }
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
|