File: SPIRVConvergenceRegionAnalysis.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (350 lines) | stat: -rw-r--r-- 11,094 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
//===- ConvergenceRegionAnalysis.h -----------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis determines the convergence region for each basic block of
// the module, and provides a tree-like structure describing the region
// hierarchy.
//
//===----------------------------------------------------------------------===//

#include "SPIRVConvergenceRegionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include <optional>
#include <queue>

#define DEBUG_TYPE "spirv-convergence-region-analysis"

using namespace llvm;

namespace llvm {
void initializeSPIRVConvergenceRegionAnalysisWrapperPassPass(PassRegistry &);
} // namespace llvm

INITIALIZE_PASS_BEGIN(SPIRVConvergenceRegionAnalysisWrapperPass,
                      "convergence-region",
                      "SPIRV convergence regions analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(SPIRVConvergenceRegionAnalysisWrapperPass,
                    "convergence-region", "SPIRV convergence regions analysis",
                    true, true)

namespace llvm {
namespace SPIRV {
namespace {

template <typename BasicBlockType, typename IntrinsicInstType>
std::optional<IntrinsicInstType *>
getConvergenceTokenInternal(BasicBlockType *BB) {
  static_assert(std::is_const_v<IntrinsicInstType> ==
                    std::is_const_v<BasicBlockType>,
                "Constness must match between input and output.");
  static_assert(std::is_same_v<BasicBlock, std::remove_const_t<BasicBlockType>>,
                "Input must be a basic block.");
  static_assert(
      std::is_same_v<IntrinsicInst, std::remove_const_t<IntrinsicInstType>>,
      "Output type must be an intrinsic instruction.");

  for (auto &I : *BB) {
    if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
      switch (II->getIntrinsicID()) {
      case Intrinsic::experimental_convergence_entry:
      case Intrinsic::experimental_convergence_loop:
        return II;
      case Intrinsic::experimental_convergence_anchor: {
        auto Bundle = II->getOperandBundle(LLVMContext::OB_convergencectrl);
        assert(Bundle->Inputs.size() == 1 &&
               Bundle->Inputs[0]->getType()->isTokenTy());
        auto TII = dyn_cast<IntrinsicInst>(Bundle->Inputs[0].get());
        assert(TII != nullptr);
        return TII;
      }
      }
    }

    if (auto *CI = dyn_cast<CallInst>(&I)) {
      auto OB = CI->getOperandBundle(LLVMContext::OB_convergencectrl);
      if (!OB.has_value())
        continue;
      return dyn_cast<IntrinsicInst>(OB.value().Inputs[0]);
    }
  }

  return std::nullopt;
}

// Given a ConvergenceRegion tree with |Start| as its root, finds the smallest
// region |Entry| belongs to. If |Entry| does not belong to the region defined
// by |Start|, this function returns |nullptr|.
ConvergenceRegion *findParentRegion(ConvergenceRegion *Start,
                                    BasicBlock *Entry) {
  ConvergenceRegion *Candidate = nullptr;
  ConvergenceRegion *NextCandidate = Start;

  while (Candidate != NextCandidate && NextCandidate != nullptr) {
    Candidate = NextCandidate;
    NextCandidate = nullptr;

    // End of the search, we can return.
    if (Candidate->Children.size() == 0)
      return Candidate;

    for (auto *Child : Candidate->Children) {
      if (Child->Blocks.count(Entry) != 0) {
        NextCandidate = Child;
        break;
      }
    }
  }

  return Candidate;
}

} // anonymous namespace

std::optional<IntrinsicInst *> getConvergenceToken(BasicBlock *BB) {
  return getConvergenceTokenInternal<BasicBlock, IntrinsicInst>(BB);
}

std::optional<const IntrinsicInst *> getConvergenceToken(const BasicBlock *BB) {
  return getConvergenceTokenInternal<const BasicBlock, const IntrinsicInst>(BB);
}

ConvergenceRegion::ConvergenceRegion(DominatorTree &DT, LoopInfo &LI,
                                     Function &F)
    : DT(DT), LI(LI), Parent(nullptr) {
  Entry = &F.getEntryBlock();
  ConvergenceToken = getConvergenceToken(Entry);
  for (auto &B : F) {
    Blocks.insert(&B);
    if (isa<ReturnInst>(B.getTerminator()))
      Exits.insert(&B);
  }
}

ConvergenceRegion::ConvergenceRegion(
    DominatorTree &DT, LoopInfo &LI,
    std::optional<IntrinsicInst *> ConvergenceToken, BasicBlock *Entry,
    SmallPtrSet<BasicBlock *, 8> &&Blocks, SmallPtrSet<BasicBlock *, 2> &&Exits)
    : DT(DT), LI(LI), ConvergenceToken(ConvergenceToken), Entry(Entry),
      Exits(std::move(Exits)), Blocks(std::move(Blocks)) {
  for ([[maybe_unused]] auto *BB : this->Exits)
    assert(this->Blocks.count(BB) != 0);
  assert(this->Blocks.count(this->Entry) != 0);
}

void ConvergenceRegion::releaseMemory() {
  // Parent memory is owned by the parent.
  Parent = nullptr;
  for (auto *Child : Children) {
    Child->releaseMemory();
    delete Child;
  }
  Children.resize(0);
}

void ConvergenceRegion::dump(const unsigned IndentSize) const {
  const std::string Indent(IndentSize, '\t');
  dbgs() << Indent << this << ": {\n";
  dbgs() << Indent << "	Parent: " << Parent << "\n";

  if (ConvergenceToken.value_or(nullptr)) {
    dbgs() << Indent
           << "	ConvergenceToken: " << ConvergenceToken.value()->getName()
           << "\n";
  }

  if (Entry->getName() != "")
    dbgs() << Indent << "	Entry: " << Entry->getName() << "\n";
  else
    dbgs() << Indent << "	Entry: " << Entry << "\n";

  dbgs() << Indent << "	Exits: { ";
  for (const auto &Exit : Exits) {
    if (Exit->getName() != "")
      dbgs() << Exit->getName() << ", ";
    else
      dbgs() << Exit << ", ";
  }
  dbgs() << "	}\n";

  dbgs() << Indent << "	Blocks: { ";
  for (const auto &Block : Blocks) {
    if (Block->getName() != "")
      dbgs() << Block->getName() << ", ";
    else
      dbgs() << Block << ", ";
  }
  dbgs() << "	}\n";

  dbgs() << Indent << "	Children: {\n";
  for (const auto Child : Children)
    Child->dump(IndentSize + 2);
  dbgs() << Indent << "	}\n";

  dbgs() << Indent << "}\n";
}

class ConvergenceRegionAnalyzer {

public:
  ConvergenceRegionAnalyzer(Function &F, DominatorTree &DT, LoopInfo &LI)
      : DT(DT), LI(LI), F(F) {}

private:
  bool isBackEdge(const BasicBlock *From, const BasicBlock *To) const {
    assert(From != To && "From == To. This is awkward.");

    // We only handle loop in the simplified form. This means:
    // - a single back-edge, a single latch.
    // - meaning the back-edge target can only be the loop header.
    // - meaning the From can only be the loop latch.
    if (!LI.isLoopHeader(To))
      return false;

    auto *L = LI.getLoopFor(To);
    if (L->contains(From) && L->isLoopLatch(From))
      return true;

    return false;
  }

  std::unordered_set<BasicBlock *>
  findPathsToMatch(LoopInfo &LI, BasicBlock *From,
                   std::function<bool(const BasicBlock *)> isMatch) const {
    std::unordered_set<BasicBlock *> Output;

    if (isMatch(From))
      Output.insert(From);

    auto *Terminator = From->getTerminator();
    for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
      auto *To = Terminator->getSuccessor(i);
      if (isBackEdge(From, To))
        continue;

      auto ChildSet = findPathsToMatch(LI, To, isMatch);
      if (ChildSet.size() == 0)
        continue;

      Output.insert(ChildSet.begin(), ChildSet.end());
      Output.insert(From);
      if (LI.isLoopHeader(From)) {
        auto *L = LI.getLoopFor(From);
        for (auto *BB : L->getBlocks()) {
          Output.insert(BB);
        }
      }
    }

    return Output;
  }

  SmallPtrSet<BasicBlock *, 2>
  findExitNodes(const SmallPtrSetImpl<BasicBlock *> &RegionBlocks) {
    SmallPtrSet<BasicBlock *, 2> Exits;

    for (auto *B : RegionBlocks) {
      auto *Terminator = B->getTerminator();
      for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
        auto *Child = Terminator->getSuccessor(i);
        if (RegionBlocks.count(Child) == 0)
          Exits.insert(B);
      }
    }

    return Exits;
  }

public:
  ConvergenceRegionInfo analyze() {
    ConvergenceRegion *TopLevelRegion = new ConvergenceRegion(DT, LI, F);
    std::queue<Loop *> ToProcess;
    for (auto *L : LI.getLoopsInPreorder())
      ToProcess.push(L);

    while (ToProcess.size() != 0) {
      auto *L = ToProcess.front();
      ToProcess.pop();
      assert(L->isLoopSimplifyForm());

      auto CT = getConvergenceToken(L->getHeader());
      SmallPtrSet<BasicBlock *, 8> RegionBlocks(L->block_begin(),
                                                L->block_end());
      SmallVector<BasicBlock *> LoopExits;
      L->getExitingBlocks(LoopExits);
      if (CT.has_value()) {
        for (auto *Exit : LoopExits) {
          auto N = findPathsToMatch(LI, Exit, [&CT](const BasicBlock *block) {
            auto Token = getConvergenceToken(block);
            if (Token == std::nullopt)
              return false;
            return Token.value() == CT.value();
          });
          RegionBlocks.insert(N.begin(), N.end());
        }
      }

      auto RegionExits = findExitNodes(RegionBlocks);
      ConvergenceRegion *Region = new ConvergenceRegion(
          DT, LI, CT, L->getHeader(), std::move(RegionBlocks),
          std::move(RegionExits));
      Region->Parent = findParentRegion(TopLevelRegion, Region->Entry);
      assert(Region->Parent != nullptr && "This is impossible.");
      Region->Parent->Children.push_back(Region);
    }

    return ConvergenceRegionInfo(TopLevelRegion);
  }

private:
  DominatorTree &DT;
  LoopInfo &LI;
  Function &F;
};

ConvergenceRegionInfo getConvergenceRegions(Function &F, DominatorTree &DT,
                                            LoopInfo &LI) {
  ConvergenceRegionAnalyzer Analyzer(F, DT, LI);
  return Analyzer.analyze();
}

} // namespace SPIRV

char SPIRVConvergenceRegionAnalysisWrapperPass::ID = 0;

SPIRVConvergenceRegionAnalysisWrapperPass::
    SPIRVConvergenceRegionAnalysisWrapperPass()
    : FunctionPass(ID) {}

bool SPIRVConvergenceRegionAnalysisWrapperPass::runOnFunction(Function &F) {
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

  CRI = SPIRV::getConvergenceRegions(F, DT, LI);
  // Nothing was modified.
  return false;
}

SPIRVConvergenceRegionAnalysis::Result
SPIRVConvergenceRegionAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
  Result CRI;
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  CRI = SPIRV::getConvergenceRegions(F, DT, LI);
  return CRI;
}

AnalysisKey SPIRVConvergenceRegionAnalysis::Key;

} // namespace llvm