1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
|
//===--- SPIRVCallLowering.cpp - Call lowering ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the lowering of LLVM calls to machine code calls for
// GlobalISel.
//
//===----------------------------------------------------------------------===//
#include "SPIRVCallLowering.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVBuiltins.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVISelLowering.h"
#include "SPIRVMetadata.h"
#include "SPIRVRegisterInfo.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include "llvm/Support/ModRef.h"
using namespace llvm;
SPIRVCallLowering::SPIRVCallLowering(const SPIRVTargetLowering &TLI,
SPIRVGlobalRegistry *GR)
: CallLowering(&TLI), GR(GR) {}
bool SPIRVCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val, ArrayRef<Register> VRegs,
FunctionLoweringInfo &FLI,
Register SwiftErrorVReg) const {
// Maybe run postponed production of types for function pointers
if (IndirectCalls.size() > 0) {
produceIndirectPtrTypes(MIRBuilder);
IndirectCalls.clear();
}
// Currently all return types should use a single register.
// TODO: handle the case of multiple registers.
if (VRegs.size() > 1)
return false;
if (Val) {
const auto &STI = MIRBuilder.getMF().getSubtarget();
return MIRBuilder.buildInstr(SPIRV::OpReturnValue)
.addUse(VRegs[0])
.constrainAllUses(MIRBuilder.getTII(), *STI.getRegisterInfo(),
*STI.getRegBankInfo());
}
MIRBuilder.buildInstr(SPIRV::OpReturn);
return true;
}
// Based on the LLVM function attributes, get a SPIR-V FunctionControl.
static uint32_t getFunctionControl(const Function &F) {
MemoryEffects MemEffects = F.getMemoryEffects();
uint32_t FuncControl = static_cast<uint32_t>(SPIRV::FunctionControl::None);
if (F.hasFnAttribute(Attribute::AttrKind::NoInline))
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::DontInline);
else if (F.hasFnAttribute(Attribute::AttrKind::AlwaysInline))
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Inline);
if (MemEffects.doesNotAccessMemory())
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Pure);
else if (MemEffects.onlyReadsMemory())
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Const);
return FuncControl;
}
static ConstantInt *getConstInt(MDNode *MD, unsigned NumOp) {
if (MD->getNumOperands() > NumOp) {
auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(NumOp));
if (CMeta)
return dyn_cast<ConstantInt>(CMeta->getValue());
}
return nullptr;
}
// If the function has pointer arguments, we are forced to re-create this
// function type from the very beginning, changing PointerType by
// TypedPointerType for each pointer argument. Otherwise, the same `Type*`
// potentially corresponds to different SPIR-V function type, effectively
// invalidating logic behind global registry and duplicates tracker.
static FunctionType *
fixFunctionTypeIfPtrArgs(SPIRVGlobalRegistry *GR, const Function &F,
FunctionType *FTy, const SPIRVType *SRetTy,
const SmallVector<SPIRVType *, 4> &SArgTys) {
if (F.getParent()->getNamedMetadata("spv.cloned_funcs"))
return FTy;
bool hasArgPtrs = false;
for (auto &Arg : F.args()) {
// check if it's an instance of a non-typed PointerType
if (Arg.getType()->isPointerTy()) {
hasArgPtrs = true;
break;
}
}
if (!hasArgPtrs) {
Type *RetTy = FTy->getReturnType();
// check if it's an instance of a non-typed PointerType
if (!RetTy->isPointerTy())
return FTy;
}
// re-create function type, using TypedPointerType instead of PointerType to
// properly trace argument types
const Type *RetTy = GR->getTypeForSPIRVType(SRetTy);
SmallVector<Type *, 4> ArgTys;
for (auto SArgTy : SArgTys)
ArgTys.push_back(const_cast<Type *>(GR->getTypeForSPIRVType(SArgTy)));
return FunctionType::get(const_cast<Type *>(RetTy), ArgTys, false);
}
// This code restores function args/retvalue types for composite cases
// because the final types should still be aggregate whereas they're i32
// during the translation to cope with aggregate flattening etc.
static FunctionType *getOriginalFunctionType(const Function &F) {
auto *NamedMD = F.getParent()->getNamedMetadata("spv.cloned_funcs");
if (NamedMD == nullptr)
return F.getFunctionType();
Type *RetTy = F.getFunctionType()->getReturnType();
SmallVector<Type *, 4> ArgTypes;
for (auto &Arg : F.args())
ArgTypes.push_back(Arg.getType());
auto ThisFuncMDIt =
std::find_if(NamedMD->op_begin(), NamedMD->op_end(), [&F](MDNode *N) {
return isa<MDString>(N->getOperand(0)) &&
cast<MDString>(N->getOperand(0))->getString() == F.getName();
});
// TODO: probably one function can have numerous type mutations,
// so we should support this.
if (ThisFuncMDIt != NamedMD->op_end()) {
auto *ThisFuncMD = *ThisFuncMDIt;
MDNode *MD = dyn_cast<MDNode>(ThisFuncMD->getOperand(1));
assert(MD && "MDNode operand is expected");
ConstantInt *Const = getConstInt(MD, 0);
if (Const) {
auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(1));
assert(CMeta && "ConstantAsMetadata operand is expected");
assert(Const->getSExtValue() >= -1);
// Currently -1 indicates return value, greater values mean
// argument numbers.
if (Const->getSExtValue() == -1)
RetTy = CMeta->getType();
else
ArgTypes[Const->getSExtValue()] = CMeta->getType();
}
}
return FunctionType::get(RetTy, ArgTypes, F.isVarArg());
}
static SPIRV::AccessQualifier::AccessQualifier
getArgAccessQual(const Function &F, unsigned ArgIdx) {
if (F.getCallingConv() != CallingConv::SPIR_KERNEL)
return SPIRV::AccessQualifier::ReadWrite;
MDString *ArgAttribute = getOCLKernelArgAccessQual(F, ArgIdx);
if (!ArgAttribute)
return SPIRV::AccessQualifier::ReadWrite;
if (ArgAttribute->getString() == "read_only")
return SPIRV::AccessQualifier::ReadOnly;
if (ArgAttribute->getString() == "write_only")
return SPIRV::AccessQualifier::WriteOnly;
return SPIRV::AccessQualifier::ReadWrite;
}
static std::vector<SPIRV::Decoration::Decoration>
getKernelArgTypeQual(const Function &F, unsigned ArgIdx) {
MDString *ArgAttribute = getOCLKernelArgTypeQual(F, ArgIdx);
if (ArgAttribute && ArgAttribute->getString() == "volatile")
return {SPIRV::Decoration::Volatile};
return {};
}
static SPIRVType *getArgSPIRVType(const Function &F, unsigned ArgIdx,
SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIRBuilder,
const SPIRVSubtarget &ST) {
// Read argument's access qualifier from metadata or default.
SPIRV::AccessQualifier::AccessQualifier ArgAccessQual =
getArgAccessQual(F, ArgIdx);
Type *OriginalArgType = getOriginalFunctionType(F)->getParamType(ArgIdx);
// If OriginalArgType is non-pointer, use the OriginalArgType (the type cannot
// be legally reassigned later).
if (!isPointerTy(OriginalArgType))
return GR->getOrCreateSPIRVType(OriginalArgType, MIRBuilder, ArgAccessQual);
Argument *Arg = F.getArg(ArgIdx);
Type *ArgType = Arg->getType();
if (isTypedPointerTy(ArgType)) {
SPIRVType *ElementType = GR->getOrCreateSPIRVType(
cast<TypedPointerType>(ArgType)->getElementType(), MIRBuilder);
return GR->getOrCreateSPIRVPointerType(
ElementType, MIRBuilder,
addressSpaceToStorageClass(getPointerAddressSpace(ArgType), ST));
}
// In case OriginalArgType is of untyped pointer type, there are three
// possibilities:
// 1) This is a pointer of an LLVM IR element type, passed byval/byref.
// 2) This is an OpenCL/SPIR-V builtin type if there is spv_assign_type
// intrinsic assigning a TargetExtType.
// 3) This is a pointer, try to retrieve pointer element type from a
// spv_assign_ptr_type intrinsic or otherwise use default pointer element
// type.
if (hasPointeeTypeAttr(Arg)) {
SPIRVType *ElementType =
GR->getOrCreateSPIRVType(getPointeeTypeByAttr(Arg), MIRBuilder);
return GR->getOrCreateSPIRVPointerType(
ElementType, MIRBuilder,
addressSpaceToStorageClass(getPointerAddressSpace(ArgType), ST));
}
for (auto User : Arg->users()) {
auto *II = dyn_cast<IntrinsicInst>(User);
// Check if this is spv_assign_type assigning OpenCL/SPIR-V builtin type.
if (II && II->getIntrinsicID() == Intrinsic::spv_assign_type) {
MetadataAsValue *VMD = cast<MetadataAsValue>(II->getOperand(1));
Type *BuiltinType =
cast<ConstantAsMetadata>(VMD->getMetadata())->getType();
assert(BuiltinType->isTargetExtTy() && "Expected TargetExtType");
return GR->getOrCreateSPIRVType(BuiltinType, MIRBuilder, ArgAccessQual);
}
// Check if this is spv_assign_ptr_type assigning pointer element type.
if (!II || II->getIntrinsicID() != Intrinsic::spv_assign_ptr_type)
continue;
MetadataAsValue *VMD = cast<MetadataAsValue>(II->getOperand(1));
Type *ElementTy =
toTypedPointer(cast<ConstantAsMetadata>(VMD->getMetadata())->getType());
SPIRVType *ElementType = GR->getOrCreateSPIRVType(ElementTy, MIRBuilder);
return GR->getOrCreateSPIRVPointerType(
ElementType, MIRBuilder,
addressSpaceToStorageClass(
cast<ConstantInt>(II->getOperand(2))->getZExtValue(), ST));
}
// Replace PointerType with TypedPointerType to be able to map SPIR-V types to
// LLVM types in a consistent manner
return GR->getOrCreateSPIRVType(toTypedPointer(OriginalArgType), MIRBuilder,
ArgAccessQual);
}
static SPIRV::ExecutionModel::ExecutionModel
getExecutionModel(const SPIRVSubtarget &STI, const Function &F) {
if (STI.isOpenCLEnv())
return SPIRV::ExecutionModel::Kernel;
auto attribute = F.getFnAttribute("hlsl.shader");
if (!attribute.isValid()) {
report_fatal_error(
"This entry point lacks mandatory hlsl.shader attribute.");
}
const auto value = attribute.getValueAsString();
if (value == "compute")
return SPIRV::ExecutionModel::GLCompute;
report_fatal_error("This HLSL entry point is not supported by this backend.");
}
bool SPIRVCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
const Function &F,
ArrayRef<ArrayRef<Register>> VRegs,
FunctionLoweringInfo &FLI) const {
assert(GR && "Must initialize the SPIRV type registry before lowering args.");
GR->setCurrentFunc(MIRBuilder.getMF());
// Get access to information about available extensions
const SPIRVSubtarget *ST =
static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
// Assign types and names to all args, and store their types for later.
SmallVector<SPIRVType *, 4> ArgTypeVRegs;
if (VRegs.size() > 0) {
unsigned i = 0;
for (const auto &Arg : F.args()) {
// Currently formal args should use single registers.
// TODO: handle the case of multiple registers.
if (VRegs[i].size() > 1)
return false;
auto *SpirvTy = getArgSPIRVType(F, i, GR, MIRBuilder, *ST);
GR->assignSPIRVTypeToVReg(SpirvTy, VRegs[i][0], MIRBuilder.getMF());
ArgTypeVRegs.push_back(SpirvTy);
if (Arg.hasName())
buildOpName(VRegs[i][0], Arg.getName(), MIRBuilder);
if (isPointerTy(Arg.getType())) {
auto DerefBytes = static_cast<unsigned>(Arg.getDereferenceableBytes());
if (DerefBytes != 0)
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::MaxByteOffset, {DerefBytes});
}
if (Arg.hasAttribute(Attribute::Alignment)) {
auto Alignment = static_cast<unsigned>(
Arg.getAttribute(Attribute::Alignment).getValueAsInt());
buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Alignment,
{Alignment});
}
if (Arg.hasAttribute(Attribute::ReadOnly)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoWrite);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::ZExt)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Zext);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::NoAlias)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoAlias);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::ByVal)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::ByVal);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
std::vector<SPIRV::Decoration::Decoration> ArgTypeQualDecs =
getKernelArgTypeQual(F, i);
for (SPIRV::Decoration::Decoration Decoration : ArgTypeQualDecs)
buildOpDecorate(VRegs[i][0], MIRBuilder, Decoration, {});
}
MDNode *Node = F.getMetadata("spirv.ParameterDecorations");
if (Node && i < Node->getNumOperands() &&
isa<MDNode>(Node->getOperand(i))) {
MDNode *MD = cast<MDNode>(Node->getOperand(i));
for (const MDOperand &MDOp : MD->operands()) {
MDNode *MD2 = dyn_cast<MDNode>(MDOp);
assert(MD2 && "Metadata operand is expected");
ConstantInt *Const = getConstInt(MD2, 0);
assert(Const && "MDOperand should be ConstantInt");
auto Dec =
static_cast<SPIRV::Decoration::Decoration>(Const->getZExtValue());
std::vector<uint32_t> DecVec;
for (unsigned j = 1; j < MD2->getNumOperands(); j++) {
ConstantInt *Const = getConstInt(MD2, j);
assert(Const && "MDOperand should be ConstantInt");
DecVec.push_back(static_cast<uint32_t>(Const->getZExtValue()));
}
buildOpDecorate(VRegs[i][0], MIRBuilder, Dec, DecVec);
}
}
++i;
}
}
auto MRI = MIRBuilder.getMRI();
Register FuncVReg = MRI->createGenericVirtualRegister(LLT::scalar(32));
MRI->setRegClass(FuncVReg, &SPIRV::IDRegClass);
if (F.isDeclaration())
GR->add(&F, &MIRBuilder.getMF(), FuncVReg);
FunctionType *FTy = getOriginalFunctionType(F);
Type *FRetTy = FTy->getReturnType();
if (isUntypedPointerTy(FRetTy)) {
if (Type *FRetElemTy = GR->findDeducedElementType(&F)) {
TypedPointerType *DerivedTy = TypedPointerType::get(
toTypedPointer(FRetElemTy), getPointerAddressSpace(FRetTy));
GR->addReturnType(&F, DerivedTy);
FRetTy = DerivedTy;
}
}
SPIRVType *RetTy = GR->getOrCreateSPIRVType(FRetTy, MIRBuilder);
FTy = fixFunctionTypeIfPtrArgs(GR, F, FTy, RetTy, ArgTypeVRegs);
SPIRVType *FuncTy = GR->getOrCreateOpTypeFunctionWithArgs(
FTy, RetTy, ArgTypeVRegs, MIRBuilder);
uint32_t FuncControl = getFunctionControl(F);
// Add OpFunction instruction
MachineInstrBuilder MB = MIRBuilder.buildInstr(SPIRV::OpFunction)
.addDef(FuncVReg)
.addUse(GR->getSPIRVTypeID(RetTy))
.addImm(FuncControl)
.addUse(GR->getSPIRVTypeID(FuncTy));
GR->recordFunctionDefinition(&F, &MB.getInstr()->getOperand(0));
// Add OpFunctionParameter instructions
int i = 0;
for (const auto &Arg : F.args()) {
assert(VRegs[i].size() == 1 && "Formal arg has multiple vregs");
MRI->setRegClass(VRegs[i][0], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpFunctionParameter)
.addDef(VRegs[i][0])
.addUse(GR->getSPIRVTypeID(ArgTypeVRegs[i]));
if (F.isDeclaration())
GR->add(&Arg, &MIRBuilder.getMF(), VRegs[i][0]);
i++;
}
// Name the function.
if (F.hasName())
buildOpName(FuncVReg, F.getName(), MIRBuilder);
// Handle entry points and function linkage.
if (isEntryPoint(F)) {
const auto &STI = MIRBuilder.getMF().getSubtarget<SPIRVSubtarget>();
auto executionModel = getExecutionModel(STI, F);
auto MIB = MIRBuilder.buildInstr(SPIRV::OpEntryPoint)
.addImm(static_cast<uint32_t>(executionModel))
.addUse(FuncVReg);
addStringImm(F.getName(), MIB);
} else if (F.getLinkage() != GlobalValue::InternalLinkage &&
F.getLinkage() != GlobalValue::PrivateLinkage) {
SPIRV::LinkageType::LinkageType LnkTy =
F.isDeclaration()
? SPIRV::LinkageType::Import
: (F.getLinkage() == GlobalValue::LinkOnceODRLinkage &&
ST->canUseExtension(
SPIRV::Extension::SPV_KHR_linkonce_odr)
? SPIRV::LinkageType::LinkOnceODR
: SPIRV::LinkageType::Export);
buildOpDecorate(FuncVReg, MIRBuilder, SPIRV::Decoration::LinkageAttributes,
{static_cast<uint32_t>(LnkTy)}, F.getGlobalIdentifier());
}
// Handle function pointers decoration
bool hasFunctionPointers =
ST->canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
if (hasFunctionPointers) {
if (F.hasFnAttribute("referenced-indirectly")) {
assert((F.getCallingConv() != CallingConv::SPIR_KERNEL) &&
"Unexpected 'referenced-indirectly' attribute of the kernel "
"function");
buildOpDecorate(FuncVReg, MIRBuilder,
SPIRV::Decoration::ReferencedIndirectlyINTEL, {});
}
}
return true;
}
// Used to postpone producing of indirect function pointer types after all
// indirect calls info is collected
// TODO:
// - add a topological sort of IndirectCalls to ensure the best types knowledge
// - we may need to fix function formal parameter types if they are opaque
// pointers used as function pointers in these indirect calls
void SPIRVCallLowering::produceIndirectPtrTypes(
MachineIRBuilder &MIRBuilder) const {
// Create indirect call data types if any
MachineFunction &MF = MIRBuilder.getMF();
for (auto const &IC : IndirectCalls) {
SPIRVType *SpirvRetTy = GR->getOrCreateSPIRVType(IC.RetTy, MIRBuilder);
SmallVector<SPIRVType *, 4> SpirvArgTypes;
for (size_t i = 0; i < IC.ArgTys.size(); ++i) {
SPIRVType *SPIRVTy = GR->getOrCreateSPIRVType(IC.ArgTys[i], MIRBuilder);
SpirvArgTypes.push_back(SPIRVTy);
if (!GR->getSPIRVTypeForVReg(IC.ArgRegs[i]))
GR->assignSPIRVTypeToVReg(SPIRVTy, IC.ArgRegs[i], MF);
}
// SPIR-V function type:
FunctionType *FTy =
FunctionType::get(const_cast<Type *>(IC.RetTy), IC.ArgTys, false);
SPIRVType *SpirvFuncTy = GR->getOrCreateOpTypeFunctionWithArgs(
FTy, SpirvRetTy, SpirvArgTypes, MIRBuilder);
// SPIR-V pointer to function type:
SPIRVType *IndirectFuncPtrTy = GR->getOrCreateSPIRVPointerType(
SpirvFuncTy, MIRBuilder, SPIRV::StorageClass::Function);
// Correct the Callee type
GR->assignSPIRVTypeToVReg(IndirectFuncPtrTy, IC.Callee, MF);
}
}
bool SPIRVCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
CallLoweringInfo &Info) const {
// Currently call returns should have single vregs.
// TODO: handle the case of multiple registers.
if (Info.OrigRet.Regs.size() > 1)
return false;
MachineFunction &MF = MIRBuilder.getMF();
GR->setCurrentFunc(MF);
const Function *CF = nullptr;
std::string DemangledName;
const Type *OrigRetTy = Info.OrigRet.Ty;
// Emit a regular OpFunctionCall. If it's an externally declared function,
// be sure to emit its type and function declaration here. It will be hoisted
// globally later.
if (Info.Callee.isGlobal()) {
std::string FuncName = Info.Callee.getGlobal()->getName().str();
DemangledName = getOclOrSpirvBuiltinDemangledName(FuncName);
CF = dyn_cast_or_null<const Function>(Info.Callee.getGlobal());
// TODO: support constexpr casts and indirect calls.
if (CF == nullptr)
return false;
if (FunctionType *FTy = getOriginalFunctionType(*CF)) {
OrigRetTy = FTy->getReturnType();
if (isUntypedPointerTy(OrigRetTy)) {
if (auto *DerivedRetTy = GR->findReturnType(CF))
OrigRetTy = DerivedRetTy;
}
}
}
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register ResVReg =
Info.OrigRet.Regs.empty() ? Register(0) : Info.OrigRet.Regs[0];
const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
bool isFunctionDecl = CF && CF->isDeclaration();
bool canUseOpenCL = ST->canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std);
bool canUseGLSL = ST->canUseExtInstSet(SPIRV::InstructionSet::GLSL_std_450);
assert(canUseGLSL != canUseOpenCL &&
"Scenario where both sets are enabled is not supported.");
if (isFunctionDecl && !DemangledName.empty() &&
(canUseGLSL || canUseOpenCL)) {
SmallVector<Register, 8> ArgVRegs;
for (auto Arg : Info.OrigArgs) {
assert(Arg.Regs.size() == 1 && "Call arg has multiple VRegs");
ArgVRegs.push_back(Arg.Regs[0]);
SPIRVType *SPIRVTy = GR->getOrCreateSPIRVType(Arg.Ty, MIRBuilder);
if (!GR->getSPIRVTypeForVReg(Arg.Regs[0]))
GR->assignSPIRVTypeToVReg(SPIRVTy, Arg.Regs[0], MF);
}
auto instructionSet = canUseOpenCL ? SPIRV::InstructionSet::OpenCL_std
: SPIRV::InstructionSet::GLSL_std_450;
if (auto Res =
SPIRV::lowerBuiltin(DemangledName, instructionSet, MIRBuilder,
ResVReg, OrigRetTy, ArgVRegs, GR))
return *Res;
}
if (isFunctionDecl && !GR->find(CF, &MF).isValid()) {
// Emit the type info and forward function declaration to the first MBB
// to ensure VReg definition dependencies are valid across all MBBs.
MachineIRBuilder FirstBlockBuilder;
FirstBlockBuilder.setMF(MF);
FirstBlockBuilder.setMBB(*MF.getBlockNumbered(0));
SmallVector<ArrayRef<Register>, 8> VRegArgs;
SmallVector<SmallVector<Register, 1>, 8> ToInsert;
for (const Argument &Arg : CF->args()) {
if (MIRBuilder.getDataLayout().getTypeStoreSize(Arg.getType()).isZero())
continue; // Don't handle zero sized types.
Register Reg = MRI->createGenericVirtualRegister(LLT::scalar(32));
MRI->setRegClass(Reg, &SPIRV::IDRegClass);
ToInsert.push_back({Reg});
VRegArgs.push_back(ToInsert.back());
}
// TODO: Reuse FunctionLoweringInfo
FunctionLoweringInfo FuncInfo;
lowerFormalArguments(FirstBlockBuilder, *CF, VRegArgs, FuncInfo);
}
unsigned CallOp;
if (Info.CB->isIndirectCall()) {
if (!ST->canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers))
report_fatal_error("An indirect call is encountered but SPIR-V without "
"extensions does not support it",
false);
// Set instruction operation according to SPV_INTEL_function_pointers
CallOp = SPIRV::OpFunctionPointerCallINTEL;
// Collect information about the indirect call to support possible
// specification of opaque ptr types of parent function's parameters
Register CalleeReg = Info.Callee.getReg();
if (CalleeReg.isValid()) {
SPIRVCallLowering::SPIRVIndirectCall IndirectCall;
IndirectCall.Callee = CalleeReg;
IndirectCall.RetTy = OrigRetTy;
for (const auto &Arg : Info.OrigArgs) {
assert(Arg.Regs.size() == 1 && "Call arg has multiple VRegs");
IndirectCall.ArgTys.push_back(Arg.Ty);
IndirectCall.ArgRegs.push_back(Arg.Regs[0]);
}
IndirectCalls.push_back(IndirectCall);
}
} else {
// Emit a regular OpFunctionCall
CallOp = SPIRV::OpFunctionCall;
}
// Make sure there's a valid return reg, even for functions returning void.
if (!ResVReg.isValid())
ResVReg = MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
SPIRVType *RetType = GR->assignTypeToVReg(OrigRetTy, ResVReg, MIRBuilder);
// Emit the call instruction and its args.
auto MIB = MIRBuilder.buildInstr(CallOp)
.addDef(ResVReg)
.addUse(GR->getSPIRVTypeID(RetType))
.add(Info.Callee);
for (const auto &Arg : Info.OrigArgs) {
// Currently call args should have single vregs.
if (Arg.Regs.size() > 1)
return false;
MIB.addUse(Arg.Regs[0]);
}
return MIB.constrainAllUses(MIRBuilder.getTII(), *ST->getRegisterInfo(),
*ST->getRegBankInfo());
}
|