1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
//===-- SPIRVGlobalRegistry.h - SPIR-V Global Registry ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// SPIRVGlobalRegistry is used to maintain rich type information required for
// SPIR-V even after lowering from LLVM IR to GMIR. It can convert an llvm::Type
// into an OpTypeXXX instruction, and map it to a virtual register. Also it
// builds and supports consistency of constants and global variables.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_SPIRV_SPIRVTYPEMANAGER_H
#define LLVM_LIB_TARGET_SPIRV_SPIRVTYPEMANAGER_H
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRVDuplicatesTracker.h"
#include "SPIRVInstrInfo.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/TypedPointerType.h"
namespace llvm {
class SPIRVSubtarget;
using SPIRVType = const MachineInstr;
class SPIRVGlobalRegistry {
// Registers holding values which have types associated with them.
// Initialized upon VReg definition in IRTranslator.
// Do not confuse this with DuplicatesTracker as DT maps Type* to <MF, Reg>
// where Reg = OpType...
// while VRegToTypeMap tracks SPIR-V type assigned to other regs (i.e. not
// type-declaring ones).
DenseMap<const MachineFunction *, DenseMap<Register, SPIRVType *>>
VRegToTypeMap;
// Map LLVM Type* to <MF, Reg>
SPIRVGeneralDuplicatesTracker DT;
DenseMap<SPIRVType *, const Type *> SPIRVToLLVMType;
// map a Function to its definition (as a machine instruction operand)
DenseMap<const Function *, const MachineOperand *> FunctionToInstr;
DenseMap<const MachineInstr *, const Function *> FunctionToInstrRev;
// map function pointer (as a machine instruction operand) to the used
// Function
DenseMap<const MachineOperand *, const Function *> InstrToFunction;
// Maps Functions to their calls (in a form of the machine instruction,
// OpFunctionCall) that happened before the definition is available
DenseMap<const Function *, SmallPtrSet<MachineInstr *, 8>> ForwardCalls;
// map a Function to its original return type before the clone function was
// created during substitution of aggregate arguments
// (see `SPIRVPrepareFunctions::removeAggregateTypesFromSignature()`)
DenseMap<Value *, Type *> MutatedAggRet;
// Look for an equivalent of the newType in the map. Return the equivalent
// if it's found, otherwise insert newType to the map and return the type.
const MachineInstr *checkSpecialInstr(const SPIRV::SpecialTypeDescriptor &TD,
MachineIRBuilder &MIRBuilder);
SmallPtrSet<const Type *, 4> TypesInProcessing;
DenseMap<const Type *, SPIRVType *> ForwardPointerTypes;
// if a function returns a pointer, this is to map it into TypedPointerType
DenseMap<const Function *, TypedPointerType *> FunResPointerTypes;
// Number of bits pointers and size_t integers require.
const unsigned PointerSize;
// Holds the maximum ID we have in the module.
unsigned Bound;
// Maps values associated with untyped pointers into deduced element types of
// untyped pointers.
DenseMap<Value *, Type *> DeducedElTys;
// Maps composite values to deduced types where untyped pointers are replaced
// with typed ones.
DenseMap<Value *, Type *> DeducedNestedTys;
// Maps values to "assign type" calls, thus being a registry of created
// Intrinsic::spv_assign_ptr_type instructions.
DenseMap<Value *, CallInst *> AssignPtrTypeInstr;
// Add a new OpTypeXXX instruction without checking for duplicates.
SPIRVType *createSPIRVType(const Type *Type, MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AQ =
SPIRV::AccessQualifier::ReadWrite,
bool EmitIR = true);
SPIRVType *findSPIRVType(const Type *Ty, MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier accessQual =
SPIRV::AccessQualifier::ReadWrite,
bool EmitIR = true);
SPIRVType *
restOfCreateSPIRVType(const Type *Type, MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccessQual,
bool EmitIR);
public:
SPIRVGlobalRegistry(unsigned PointerSize);
MachineFunction *CurMF;
void add(const Constant *C, MachineFunction *MF, Register R) {
DT.add(C, MF, R);
}
void add(const GlobalVariable *GV, MachineFunction *MF, Register R) {
DT.add(GV, MF, R);
}
void add(const Function *F, MachineFunction *MF, Register R) {
DT.add(F, MF, R);
}
void add(const Argument *Arg, MachineFunction *MF, Register R) {
DT.add(Arg, MF, R);
}
void add(const MachineInstr *MI, MachineFunction *MF, Register R) {
DT.add(MI, MF, R);
}
Register find(const MachineInstr *MI, MachineFunction *MF) {
return DT.find(MI, MF);
}
Register find(const Constant *C, MachineFunction *MF) {
return DT.find(C, MF);
}
Register find(const GlobalVariable *GV, MachineFunction *MF) {
return DT.find(GV, MF);
}
Register find(const Function *F, MachineFunction *MF) {
return DT.find(F, MF);
}
void buildDepsGraph(std::vector<SPIRV::DTSortableEntry *> &Graph,
MachineModuleInfo *MMI = nullptr) {
DT.buildDepsGraph(Graph, MMI);
}
void setBound(unsigned V) { Bound = V; }
unsigned getBound() { return Bound; }
// Add a record to the map of function return pointer types.
void addReturnType(const Function *ArgF, TypedPointerType *DerivedTy) {
FunResPointerTypes[ArgF] = DerivedTy;
}
// Find a record in the map of function return pointer types.
const TypedPointerType *findReturnType(const Function *ArgF) {
auto It = FunResPointerTypes.find(ArgF);
return It == FunResPointerTypes.end() ? nullptr : It->second;
}
// A registry of "assign type" records:
// - Add a record.
void addAssignPtrTypeInstr(Value *Val, CallInst *AssignPtrTyCI) {
AssignPtrTypeInstr[Val] = AssignPtrTyCI;
}
// - Find a record.
CallInst *findAssignPtrTypeInstr(const Value *Val) {
auto It = AssignPtrTypeInstr.find(Val);
return It == AssignPtrTypeInstr.end() ? nullptr : It->second;
}
// A registry of mutated values
// (see `SPIRVPrepareFunctions::removeAggregateTypesFromSignature()`):
// - Add a record.
void addMutated(Value *Val, Type *Ty) { MutatedAggRet[Val] = Ty; }
// - Find a record.
Type *findMutated(const Value *Val) {
auto It = MutatedAggRet.find(Val);
return It == MutatedAggRet.end() ? nullptr : It->second;
}
// Deduced element types of untyped pointers and composites:
// - Add a record to the map of deduced element types.
void addDeducedElementType(Value *Val, Type *Ty) { DeducedElTys[Val] = Ty; }
// - Find a record in the map of deduced element types.
Type *findDeducedElementType(const Value *Val) {
auto It = DeducedElTys.find(Val);
return It == DeducedElTys.end() ? nullptr : It->second;
}
// - Add a record to the map of deduced composite types.
void addDeducedCompositeType(Value *Val, Type *Ty) {
DeducedNestedTys[Val] = Ty;
}
// - Find a record in the map of deduced composite types.
Type *findDeducedCompositeType(const Value *Val) {
auto It = DeducedNestedTys.find(Val);
return It == DeducedNestedTys.end() ? nullptr : It->second;
}
// - Find a type of the given Global value
Type *getDeducedGlobalValueType(const GlobalValue *Global) {
// we may know element type if it was deduced earlier
Type *ElementTy = findDeducedElementType(Global);
if (!ElementTy) {
// or we may know element type if it's associated with a composite
// value
if (Value *GlobalElem =
Global->getNumOperands() > 0 ? Global->getOperand(0) : nullptr)
ElementTy = findDeducedCompositeType(GlobalElem);
}
return ElementTy ? ElementTy : Global->getValueType();
}
// Map a machine operand that represents a use of a function via function
// pointer to a machine operand that represents the function definition.
// Return either the register or invalid value, because we have no context for
// a good diagnostic message in case of unexpectedly missing references.
const MachineOperand *getFunctionDefinitionByUse(const MachineOperand *Use) {
auto ResF = InstrToFunction.find(Use);
if (ResF == InstrToFunction.end())
return nullptr;
auto ResReg = FunctionToInstr.find(ResF->second);
return ResReg == FunctionToInstr.end() ? nullptr : ResReg->second;
}
// Map a Function to a machine instruction that represents the function
// definition.
const MachineInstr *getFunctionDefinition(const Function *F) {
if (!F)
return nullptr;
auto MOIt = FunctionToInstr.find(F);
return MOIt == FunctionToInstr.end() ? nullptr : MOIt->second->getParent();
}
// Map a Function to a machine instruction that represents the function
// definition.
const Function *getFunctionByDefinition(const MachineInstr *MI) {
if (!MI)
return nullptr;
auto FIt = FunctionToInstrRev.find(MI);
return FIt == FunctionToInstrRev.end() ? nullptr : FIt->second;
}
// map function pointer (as a machine instruction operand) to the used
// Function
void recordFunctionPointer(const MachineOperand *MO, const Function *F) {
InstrToFunction[MO] = F;
}
// map a Function to its definition (as a machine instruction)
void recordFunctionDefinition(const Function *F, const MachineOperand *MO) {
FunctionToInstr[F] = MO;
FunctionToInstrRev[MO->getParent()] = F;
}
// Return true if any OpConstantFunctionPointerINTEL were generated
bool hasConstFunPtr() { return !InstrToFunction.empty(); }
// Add a record about forward function call.
void addForwardCall(const Function *F, MachineInstr *MI) {
auto It = ForwardCalls.find(F);
if (It == ForwardCalls.end())
ForwardCalls[F] = {MI};
else
It->second.insert(MI);
}
// Map a Function to the vector of machine instructions that represents
// forward function calls or to nullptr if not found.
SmallPtrSet<MachineInstr *, 8> *getForwardCalls(const Function *F) {
auto It = ForwardCalls.find(F);
return It == ForwardCalls.end() ? nullptr : &It->second;
}
// Get or create a SPIR-V type corresponding the given LLVM IR type,
// and map it to the given VReg by creating an ASSIGN_TYPE instruction.
SPIRVType *assignTypeToVReg(const Type *Type, Register VReg,
MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AQ =
SPIRV::AccessQualifier::ReadWrite,
bool EmitIR = true);
SPIRVType *assignIntTypeToVReg(unsigned BitWidth, Register VReg,
MachineInstr &I, const SPIRVInstrInfo &TII);
SPIRVType *assignFloatTypeToVReg(unsigned BitWidth, Register VReg,
MachineInstr &I, const SPIRVInstrInfo &TII);
SPIRVType *assignVectTypeToVReg(SPIRVType *BaseType, unsigned NumElements,
Register VReg, MachineInstr &I,
const SPIRVInstrInfo &TII);
// In cases where the SPIR-V type is already known, this function can be
// used to map it to the given VReg via an ASSIGN_TYPE instruction.
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg,
MachineFunction &MF);
// Either generate a new OpTypeXXX instruction or return an existing one
// corresponding to the given LLVM IR type.
// EmitIR controls if we emit GMIR or SPV constants (e.g. for array sizes)
// because this method may be called from InstructionSelector and we don't
// want to emit extra IR instructions there.
SPIRVType *getOrCreateSPIRVType(const Type *Type,
MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AQ =
SPIRV::AccessQualifier::ReadWrite,
bool EmitIR = true);
const Type *getTypeForSPIRVType(const SPIRVType *Ty) const {
auto Res = SPIRVToLLVMType.find(Ty);
assert(Res != SPIRVToLLVMType.end());
return Res->second;
}
// Return a pointee's type, or nullptr otherwise.
SPIRVType *getPointeeType(SPIRVType *PtrType);
// Return a pointee's type op code, or 0 otherwise.
unsigned getPointeeTypeOp(Register PtrReg);
// Either generate a new OpTypeXXX instruction or return an existing one
// corresponding to the given string containing the name of the builtin type.
// Return nullptr if unable to recognize SPIRV type name from `TypeStr`.
SPIRVType *getOrCreateSPIRVTypeByName(
StringRef TypeStr, MachineIRBuilder &MIRBuilder,
SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::Function,
SPIRV::AccessQualifier::AccessQualifier AQ =
SPIRV::AccessQualifier::ReadWrite);
// Return the SPIR-V type instruction corresponding to the given VReg, or
// nullptr if no such type instruction exists. The second argument MF
// allows to search for the association in a context of the machine functions
// than the current one, without switching between different "current" machine
// functions.
SPIRVType *getSPIRVTypeForVReg(Register VReg,
const MachineFunction *MF = nullptr) const;
// Whether the given VReg has a SPIR-V type mapped to it yet.
bool hasSPIRVTypeForVReg(Register VReg) const {
return getSPIRVTypeForVReg(VReg) != nullptr;
}
// Return the VReg holding the result of the given OpTypeXXX instruction.
Register getSPIRVTypeID(const SPIRVType *SpirvType) const;
// Return previous value of the current machine function
MachineFunction *setCurrentFunc(MachineFunction &MF) {
MachineFunction *Ret = CurMF;
CurMF = &MF;
return Ret;
}
// Return true if the type is an aggregate type.
bool isAggregateType(SPIRVType *Type) const {
return Type && (Type->getOpcode() == SPIRV::OpTypeStruct &&
Type->getOpcode() == SPIRV::OpTypeArray);
}
// Whether the given VReg has an OpTypeXXX instruction mapped to it with the
// given opcode (e.g. OpTypeFloat).
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const;
// Return true if the given VReg's assigned SPIR-V type is either a scalar
// matching the given opcode, or a vector with an element type matching that
// opcode (e.g. OpTypeBool, or OpTypeVector %x 4, where %x is OpTypeBool).
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const;
// Return number of elements in a vector if the argument is associated with
// a vector type. Return 1 for a scalar type, and 0 for a missing type.
unsigned getScalarOrVectorComponentCount(Register VReg) const;
unsigned getScalarOrVectorComponentCount(SPIRVType *Type) const;
// For vectors or scalars of booleans, integers and floats, return the scalar
// type's bitwidth. Otherwise calls llvm_unreachable().
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const;
// For vectors or scalars of integers and floats, return total bitwidth of the
// argument. Otherwise returns 0.
unsigned getNumScalarOrVectorTotalBitWidth(const SPIRVType *Type) const;
// Returns either pointer to integer type, that may be a type of vector
// elements or an original type, or nullptr if the argument is niether
// an integer scalar, nor an integer vector
const SPIRVType *retrieveScalarOrVectorIntType(const SPIRVType *Type) const;
// For integer vectors or scalars, return whether the integers are signed.
bool isScalarOrVectorSigned(const SPIRVType *Type) const;
// Gets the storage class of the pointer type assigned to this vreg.
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const;
// Return the number of bits SPIR-V pointers and size_t variables require.
unsigned getPointerSize() const { return PointerSize; }
// Returns true if two types are defined and are compatible in a sense of
// OpBitcast instruction
bool isBitcastCompatible(const SPIRVType *Type1,
const SPIRVType *Type2) const;
private:
SPIRVType *getOpTypeBool(MachineIRBuilder &MIRBuilder);
const Type *adjustIntTypeByWidth(const Type *Ty) const;
unsigned adjustOpTypeIntWidth(unsigned Width) const;
SPIRVType *getOpTypeInt(unsigned Width, MachineIRBuilder &MIRBuilder,
bool IsSigned = false);
SPIRVType *getOpTypeFloat(uint32_t Width, MachineIRBuilder &MIRBuilder);
SPIRVType *getOpTypeVoid(MachineIRBuilder &MIRBuilder);
SPIRVType *getOpTypeVector(uint32_t NumElems, SPIRVType *ElemType,
MachineIRBuilder &MIRBuilder);
SPIRVType *getOpTypeArray(uint32_t NumElems, SPIRVType *ElemType,
MachineIRBuilder &MIRBuilder, bool EmitIR = true);
SPIRVType *getOpTypeOpaque(const StructType *Ty,
MachineIRBuilder &MIRBuilder);
SPIRVType *getOpTypeStruct(const StructType *Ty, MachineIRBuilder &MIRBuilder,
bool EmitIR = true);
SPIRVType *getOpTypePointer(SPIRV::StorageClass::StorageClass SC,
SPIRVType *ElemType, MachineIRBuilder &MIRBuilder,
Register Reg);
SPIRVType *getOpTypeForwardPointer(SPIRV::StorageClass::StorageClass SC,
MachineIRBuilder &MIRBuilder);
SPIRVType *getOpTypeFunction(SPIRVType *RetType,
const SmallVectorImpl<SPIRVType *> &ArgTypes,
MachineIRBuilder &MIRBuilder);
SPIRVType *
getOrCreateSpecialType(const Type *Ty, MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccQual);
std::tuple<Register, ConstantInt *, bool> getOrCreateConstIntReg(
uint64_t Val, SPIRVType *SpvType, MachineIRBuilder *MIRBuilder,
MachineInstr *I = nullptr, const SPIRVInstrInfo *TII = nullptr);
std::tuple<Register, ConstantFP *, bool, unsigned> getOrCreateConstFloatReg(
APFloat Val, SPIRVType *SpvType, MachineIRBuilder *MIRBuilder,
MachineInstr *I = nullptr, const SPIRVInstrInfo *TII = nullptr);
SPIRVType *finishCreatingSPIRVType(const Type *LLVMTy, SPIRVType *SpirvType);
Register getOrCreateBaseRegister(Constant *Val, MachineInstr &I,
SPIRVType *SpvType,
const SPIRVInstrInfo &TII,
unsigned BitWidth);
Register getOrCreateCompositeOrNull(Constant *Val, MachineInstr &I,
SPIRVType *SpvType,
const SPIRVInstrInfo &TII, Constant *CA,
unsigned BitWidth, unsigned ElemCnt,
bool ZeroAsNull = true);
Register getOrCreateIntCompositeOrNull(uint64_t Val,
MachineIRBuilder &MIRBuilder,
SPIRVType *SpvType, bool EmitIR,
Constant *CA, unsigned BitWidth,
unsigned ElemCnt);
public:
Register buildConstantInt(uint64_t Val, MachineIRBuilder &MIRBuilder,
SPIRVType *SpvType = nullptr, bool EmitIR = true);
Register getOrCreateConstInt(uint64_t Val, MachineInstr &I,
SPIRVType *SpvType, const SPIRVInstrInfo &TII,
bool ZeroAsNull = true);
Register getOrCreateConstFP(APFloat Val, MachineInstr &I, SPIRVType *SpvType,
const SPIRVInstrInfo &TII,
bool ZeroAsNull = true);
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder,
SPIRVType *SpvType = nullptr);
Register getOrCreateConstVector(uint64_t Val, MachineInstr &I,
SPIRVType *SpvType, const SPIRVInstrInfo &TII,
bool ZeroAsNull = true);
Register getOrCreateConstVector(APFloat Val, MachineInstr &I,
SPIRVType *SpvType, const SPIRVInstrInfo &TII,
bool ZeroAsNull = true);
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I,
SPIRVType *SpvType,
const SPIRVInstrInfo &TII);
Register getOrCreateConsIntVector(uint64_t Val, MachineIRBuilder &MIRBuilder,
SPIRVType *SpvType, bool EmitIR = true);
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder,
SPIRVType *SpvType);
Register buildConstantSampler(Register Res, unsigned AddrMode, unsigned Param,
unsigned FilerMode,
MachineIRBuilder &MIRBuilder,
SPIRVType *SpvType);
Register getOrCreateUndef(MachineInstr &I, SPIRVType *SpvType,
const SPIRVInstrInfo &TII);
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType,
StringRef Name, const GlobalValue *GV,
SPIRV::StorageClass::StorageClass Storage,
const MachineInstr *Init, bool IsConst,
bool HasLinkageTy,
SPIRV::LinkageType::LinkageType LinkageType,
MachineIRBuilder &MIRBuilder,
bool IsInstSelector);
// Convenient helpers for getting types with check for duplicates.
SPIRVType *getOrCreateSPIRVIntegerType(unsigned BitWidth,
MachineIRBuilder &MIRBuilder);
SPIRVType *getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineInstr &I,
const SPIRVInstrInfo &TII);
SPIRVType *getOrCreateSPIRVType(unsigned BitWidth, MachineInstr &I,
const SPIRVInstrInfo &TII,
unsigned SPIRVOPcode, Type *LLVMTy);
SPIRVType *getOrCreateSPIRVFloatType(unsigned BitWidth, MachineInstr &I,
const SPIRVInstrInfo &TII);
SPIRVType *getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder);
SPIRVType *getOrCreateSPIRVBoolType(MachineInstr &I,
const SPIRVInstrInfo &TII);
SPIRVType *getOrCreateSPIRVVectorType(SPIRVType *BaseType,
unsigned NumElements,
MachineIRBuilder &MIRBuilder);
SPIRVType *getOrCreateSPIRVVectorType(SPIRVType *BaseType,
unsigned NumElements, MachineInstr &I,
const SPIRVInstrInfo &TII);
SPIRVType *getOrCreateSPIRVArrayType(SPIRVType *BaseType,
unsigned NumElements, MachineInstr &I,
const SPIRVInstrInfo &TII);
SPIRVType *getOrCreateSPIRVPointerType(
SPIRVType *BaseType, MachineIRBuilder &MIRBuilder,
SPIRV::StorageClass::StorageClass SClass = SPIRV::StorageClass::Function);
SPIRVType *getOrCreateSPIRVPointerType(
SPIRVType *BaseType, MachineInstr &I, const SPIRVInstrInfo &TII,
SPIRV::StorageClass::StorageClass SClass = SPIRV::StorageClass::Function);
SPIRVType *
getOrCreateOpTypeImage(MachineIRBuilder &MIRBuilder, SPIRVType *SampledType,
SPIRV::Dim::Dim Dim, uint32_t Depth, uint32_t Arrayed,
uint32_t Multisampled, uint32_t Sampled,
SPIRV::ImageFormat::ImageFormat ImageFormat,
SPIRV::AccessQualifier::AccessQualifier AccQual);
SPIRVType *getOrCreateOpTypeSampler(MachineIRBuilder &MIRBuilder);
SPIRVType *getOrCreateOpTypeSampledImage(SPIRVType *ImageType,
MachineIRBuilder &MIRBuilder);
SPIRVType *getOrCreateOpTypeCoopMatr(MachineIRBuilder &MIRBuilder,
const TargetExtType *ExtensionType,
const SPIRVType *ElemType,
uint32_t Scope, uint32_t Rows,
uint32_t Columns, uint32_t Use);
SPIRVType *
getOrCreateOpTypePipe(MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccQual);
SPIRVType *getOrCreateOpTypeDeviceEvent(MachineIRBuilder &MIRBuilder);
SPIRVType *getOrCreateOpTypeFunctionWithArgs(
const Type *Ty, SPIRVType *RetType,
const SmallVectorImpl<SPIRVType *> &ArgTypes,
MachineIRBuilder &MIRBuilder);
SPIRVType *getOrCreateOpTypeByOpcode(const Type *Ty,
MachineIRBuilder &MIRBuilder,
unsigned Opcode);
};
} // end namespace llvm
#endif // LLLVM_LIB_TARGET_SPIRV_SPIRVTYPEMANAGER_H
|