1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
|
//===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis collects instructions that should be output at the module level
// and performs the global register numbering.
//
// The results of this analysis are used in AsmPrinter to rename registers
// globally and to output required instructions at the module level.
//
//===----------------------------------------------------------------------===//
#include "SPIRVModuleAnalysis.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "MCTargetDesc/SPIRVMCTargetDesc.h"
#include "SPIRV.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "TargetInfo/SPIRVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
using namespace llvm;
#define DEBUG_TYPE "spirv-module-analysis"
static cl::opt<bool>
SPVDumpDeps("spv-dump-deps",
cl::desc("Dump MIR with SPIR-V dependencies info"),
cl::Optional, cl::init(false));
static cl::list<SPIRV::Capability::Capability>
AvoidCapabilities("avoid-spirv-capabilities",
cl::desc("SPIR-V capabilities to avoid if there are "
"other options enabling a feature"),
cl::ZeroOrMore, cl::Hidden,
cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader",
"SPIR-V Shader capability")));
// Use sets instead of cl::list to check "if contains" condition
struct AvoidCapabilitiesSet {
SmallSet<SPIRV::Capability::Capability, 4> S;
AvoidCapabilitiesSet() {
for (auto Cap : AvoidCapabilities)
S.insert(Cap);
}
};
char llvm::SPIRVModuleAnalysis::ID = 0;
namespace llvm {
void initializeSPIRVModuleAnalysisPass(PassRegistry &);
} // namespace llvm
INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
true)
// Retrieve an unsigned from an MDNode with a list of them as operands.
static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
unsigned DefaultVal = 0) {
if (MdNode && OpIndex < MdNode->getNumOperands()) {
const auto &Op = MdNode->getOperand(OpIndex);
return mdconst::extract<ConstantInt>(Op)->getZExtValue();
}
return DefaultVal;
}
static SPIRV::Requirements
getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
unsigned i, const SPIRVSubtarget &ST,
SPIRV::RequirementHandler &Reqs) {
static AvoidCapabilitiesSet
AvoidCaps; // contains capabilities to avoid if there is another option
VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i);
VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
VersionTuple SPIRVVersion = ST.getSPIRVVersion();
bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer;
bool MaxVerOK =
ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer;
CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
if (ReqCaps.empty()) {
if (ReqExts.empty()) {
if (MinVerOK && MaxVerOK)
return {true, {}, {}, ReqMinVer, ReqMaxVer};
return {false, {}, {}, VersionTuple(), VersionTuple()};
}
} else if (MinVerOK && MaxVerOK) {
if (ReqCaps.size() == 1) {
auto Cap = ReqCaps[0];
if (Reqs.isCapabilityAvailable(Cap))
return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
} else {
// By SPIR-V specification: "If an instruction, enumerant, or other
// feature specifies multiple enabling capabilities, only one such
// capability needs to be declared to use the feature." However, one
// capability may be preferred over another. We use command line
// argument(s) and AvoidCapabilities to avoid selection of certain
// capabilities if there are other options.
CapabilityList UseCaps;
for (auto Cap : ReqCaps)
if (Reqs.isCapabilityAvailable(Cap))
UseCaps.push_back(Cap);
for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) {
auto Cap = UseCaps[i];
if (i == Sz - 1 || !AvoidCaps.S.contains(Cap))
return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
}
}
}
// If there are no capabilities, or we can't satisfy the version or
// capability requirements, use the list of extensions (if the subtarget
// can handle them all).
if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
return ST.canUseExtension(Ext);
})) {
return {true,
{},
ReqExts,
VersionTuple(),
VersionTuple()}; // TODO: add versions to extensions.
}
return {false, {}, {}, VersionTuple(), VersionTuple()};
}
void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
MAI.MaxID = 0;
for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
MAI.MS[i].clear();
MAI.RegisterAliasTable.clear();
MAI.InstrsToDelete.clear();
MAI.FuncMap.clear();
MAI.GlobalVarList.clear();
MAI.ExtInstSetMap.clear();
MAI.Reqs.clear();
MAI.Reqs.initAvailableCapabilities(*ST);
// TODO: determine memory model and source language from the configuratoin.
if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
auto MemMD = MemModel->getOperand(0);
MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
getMetadataUInt(MemMD, 0));
MAI.Mem =
static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
} else {
// TODO: Add support for VulkanMemoryModel.
MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL
: SPIRV::MemoryModel::GLSL450;
if (MAI.Mem == SPIRV::MemoryModel::OpenCL) {
unsigned PtrSize = ST->getPointerSize();
MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
: PtrSize == 64 ? SPIRV::AddressingModel::Physical64
: SPIRV::AddressingModel::Logical;
} else {
// TODO: Add support for PhysicalStorageBufferAddress.
MAI.Addr = SPIRV::AddressingModel::Logical;
}
}
// Get the OpenCL version number from metadata.
// TODO: support other source languages.
if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
// Construct version literal in accordance with SPIRV-LLVM-Translator.
// TODO: support multiple OCL version metadata.
assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
auto VersionMD = VerNode->getOperand(0);
unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
unsigned MinorNum = getMetadataUInt(VersionMD, 1);
unsigned RevNum = getMetadataUInt(VersionMD, 2);
// Prevent Major part of OpenCL version to be 0
MAI.SrcLangVersion =
(std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum;
} else {
// If there is no information about OpenCL version we are forced to generate
// OpenCL 1.0 by default for the OpenCL environment to avoid puzzling
// run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV
// Translator avoids potential issues with run-times in a similar manner.
if (ST->isOpenCLEnv()) {
MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP;
MAI.SrcLangVersion = 100000;
} else {
MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
MAI.SrcLangVersion = 0;
}
}
if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
MDNode *MD = ExtNode->getOperand(I);
if (!MD || MD->getNumOperands() == 0)
continue;
for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
}
}
// Update required capabilities for this memory model, addressing model and
// source language.
MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
MAI.Mem, *ST);
MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
MAI.SrcLang, *ST);
MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
MAI.Addr, *ST);
if (ST->isOpenCLEnv()) {
// TODO: check if it's required by default.
MAI.ExtInstSetMap[static_cast<unsigned>(
SPIRV::InstructionSet::OpenCL_std)] =
Register::index2VirtReg(MAI.getNextID());
}
}
// Collect MI which defines the register in the given machine function.
static void collectDefInstr(Register Reg, const MachineFunction *MF,
SPIRV::ModuleAnalysisInfo *MAI,
SPIRV::ModuleSectionType MSType,
bool DoInsert = true) {
assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
assert(MI && "There should be an instruction that defines the register");
MAI->setSkipEmission(MI);
if (DoInsert)
MAI->MS[MSType].push_back(MI);
}
void SPIRVModuleAnalysis::collectGlobalEntities(
const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
SPIRV::ModuleSectionType MSType,
std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
bool UsePreOrder = false) {
DenseSet<const SPIRV::DTSortableEntry *> Visited;
for (const auto *E : DepsGraph) {
std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
// NOTE: here we prefer recursive approach over iterative because
// we don't expect depchains long enough to cause SO.
RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
&RecHoistUtil](const SPIRV::DTSortableEntry *E) {
if (Visited.count(E) || !Pred(E))
return;
Visited.insert(E);
// Traversing deps graph in post-order allows us to get rid of
// register aliases preprocessing.
// But pre-order is required for correct processing of function
// declaration and arguments processing.
if (!UsePreOrder)
for (auto *S : E->getDeps())
RecHoistUtil(S);
Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
bool IsFirst = true;
for (auto &U : *E) {
const MachineFunction *MF = U.first;
Register Reg = U.second;
MAI.setRegisterAlias(MF, Reg, GlobalReg);
if (!MF->getRegInfo().getUniqueVRegDef(Reg))
continue;
collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
IsFirst = false;
if (E->getIsGV())
MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
}
if (UsePreOrder)
for (auto *S : E->getDeps())
RecHoistUtil(S);
};
RecHoistUtil(E);
}
}
// The function initializes global register alias table for types, consts,
// global vars and func decls and collects these instruction for output
// at module level. Also it collects explicit OpExtension/OpCapability
// instructions.
void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
std::vector<SPIRV::DTSortableEntry *> DepsGraph;
GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);
collectGlobalEntities(
DepsGraph, SPIRV::MB_TypeConstVars,
[](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
MachineFunction *MF = MMI->getMachineFunction(*F);
if (!MF)
continue;
// Iterate through and collect OpExtension/OpCapability instructions.
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() == SPIRV::OpExtension) {
// Here, OpExtension just has a single enum operand, not a string.
auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm());
MAI.Reqs.addExtension(Ext);
MAI.setSkipEmission(&MI);
} else if (MI.getOpcode() == SPIRV::OpCapability) {
auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm());
MAI.Reqs.addCapability(Cap);
MAI.setSkipEmission(&MI);
}
}
}
}
collectGlobalEntities(
DepsGraph, SPIRV::MB_ExtFuncDecls,
[](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
}
// Look for IDs declared with Import linkage, and map the corresponding function
// to the register defining that variable (which will usually be the result of
// an OpFunction). This lets us call externally imported functions using
// the correct ID registers.
void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
const Function *F) {
if (MI.getOpcode() == SPIRV::OpDecorate) {
// If it's got Import linkage.
auto Dec = MI.getOperand(1).getImm();
if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
// Map imported function name to function ID register.
const Function *ImportedFunc =
F->getParent()->getFunction(getStringImm(MI, 2));
Register Target = MI.getOperand(0).getReg();
MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
}
}
} else if (MI.getOpcode() == SPIRV::OpFunction) {
// Record all internal OpFunction declarations.
Register Reg = MI.defs().begin()->getReg();
Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
assert(GlobalReg.isValid());
MAI.FuncMap[F] = GlobalReg;
}
}
// References to a function via function pointers generate virtual
// registers without a definition. We are able to resolve this
// reference using Globar Register info into an OpFunction instruction
// and replace dummy operands by the corresponding global register references.
void SPIRVModuleAnalysis::collectFuncPtrs() {
for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars])
if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL)
collectFuncPtrs(MI);
}
void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) {
const MachineOperand *FunUse = &MI->getOperand(2);
if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) {
const MachineInstr *FunDefMI = FunDef->getParent();
assert(FunDefMI->getOpcode() == SPIRV::OpFunction &&
"Constant function pointer must refer to function definition");
Register FunDefReg = FunDef->getReg();
Register GlobalFunDefReg =
MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg);
assert(GlobalFunDefReg.isValid() &&
"Function definition must refer to a global register");
Register FunPtrReg = FunUse->getReg();
MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg);
}
}
using InstrSignature = SmallVector<size_t>;
using InstrTraces = std::set<InstrSignature>;
// Returns a representation of an instruction as a vector of MachineOperand
// hash values, see llvm::hash_value(const MachineOperand &MO) for details.
// This creates a signature of the instruction with the same content
// that MachineOperand::isIdenticalTo uses for comparison.
static InstrSignature instrToSignature(MachineInstr &MI,
SPIRV::ModuleAnalysisInfo &MAI) {
InstrSignature Signature;
for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
const MachineOperand &MO = MI.getOperand(i);
size_t h;
if (MO.isReg()) {
Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg());
// mimic llvm::hash_value(const MachineOperand &MO)
h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(),
MO.isDef());
} else {
h = hash_value(MO);
}
Signature.push_back(h);
}
return Signature;
}
// Collect the given instruction in the specified MS. We assume global register
// numbering has already occurred by this point. We can directly compare reg
// arguments when detecting duplicates.
static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
SPIRV::ModuleSectionType MSType, InstrTraces &IS,
bool Append = true) {
MAI.setSkipEmission(&MI);
InstrSignature MISign = instrToSignature(MI, MAI);
auto FoundMI = IS.insert(MISign);
if (!FoundMI.second)
return; // insert failed, so we found a duplicate; don't add it to MAI.MS
// No duplicates, so add it.
if (Append)
MAI.MS[MSType].push_back(&MI);
else
MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
}
// Some global instructions make reference to function-local ID regs, so cannot
// be correctly collected until these registers are globally numbered.
void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
InstrTraces IS;
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
for (MachineBasicBlock &MBB : *MF)
for (MachineInstr &MI : MBB) {
if (MAI.getSkipEmission(&MI))
continue;
const unsigned OpCode = MI.getOpcode();
if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS);
} else if (OpCode == SPIRV::OpEntryPoint) {
collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS);
} else if (TII->isDecorationInstr(MI)) {
collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS);
collectFuncNames(MI, &*F);
} else if (TII->isConstantInstr(MI)) {
// Now OpSpecConstant*s are not in DT,
// but they need to be collected anyway.
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS);
} else if (OpCode == SPIRV::OpFunction) {
collectFuncNames(MI, &*F);
} else if (OpCode == SPIRV::OpTypeForwardPointer) {
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false);
}
}
}
}
// Number registers in all functions globally from 0 onwards and store
// the result in global register alias table. Some registers are already
// numbered in collectGlobalEntities.
void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
for (MachineOperand &Op : MI.operands()) {
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
if (MAI.hasRegisterAlias(MF, Reg))
continue;
Register NewReg = Register::index2VirtReg(MAI.getNextID());
MAI.setRegisterAlias(MF, Reg, NewReg);
}
if (MI.getOpcode() != SPIRV::OpExtInst)
continue;
auto Set = MI.getOperand(2).getImm();
if (!MAI.ExtInstSetMap.contains(Set))
MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
}
}
}
}
// RequirementHandler implementations.
void SPIRV::RequirementHandler::getAndAddRequirements(
SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
const SPIRVSubtarget &ST) {
addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
}
void SPIRV::RequirementHandler::recursiveAddCapabilities(
const CapabilityList &ToPrune) {
for (const auto &Cap : ToPrune) {
AllCaps.insert(Cap);
CapabilityList ImplicitDecls =
getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
recursiveAddCapabilities(ImplicitDecls);
}
}
void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
for (const auto &Cap : ToAdd) {
bool IsNewlyInserted = AllCaps.insert(Cap).second;
if (!IsNewlyInserted) // Don't re-add if it's already been declared.
continue;
CapabilityList ImplicitDecls =
getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
recursiveAddCapabilities(ImplicitDecls);
MinimalCaps.push_back(Cap);
}
}
void SPIRV::RequirementHandler::addRequirements(
const SPIRV::Requirements &Req) {
if (!Req.IsSatisfiable)
report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");
if (Req.Cap.has_value())
addCapabilities({Req.Cap.value()});
addExtensions(Req.Exts);
if (!Req.MinVer.empty()) {
if (!MaxVersion.empty() && Req.MinVer > MaxVersion) {
LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
<< " and <= " << MaxVersion << "\n");
report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
}
if (MinVersion.empty() || Req.MinVer > MinVersion)
MinVersion = Req.MinVer;
}
if (!Req.MaxVer.empty()) {
if (!MinVersion.empty() && Req.MaxVer < MinVersion) {
LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
<< " and >= " << MinVersion << "\n");
report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
}
if (MaxVersion.empty() || Req.MaxVer < MaxVersion)
MaxVersion = Req.MaxVer;
}
}
void SPIRV::RequirementHandler::checkSatisfiable(
const SPIRVSubtarget &ST) const {
// Report as many errors as possible before aborting the compilation.
bool IsSatisfiable = true;
auto TargetVer = ST.getSPIRVVersion();
if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) {
LLVM_DEBUG(
dbgs() << "Target SPIR-V version too high for required features\n"
<< "Required max version: " << MaxVersion << " target version "
<< TargetVer << "\n");
IsSatisfiable = false;
}
if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) {
LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
<< "Required min version: " << MinVersion
<< " target version " << TargetVer << "\n");
IsSatisfiable = false;
}
if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) {
LLVM_DEBUG(
dbgs()
<< "Version is too low for some features and too high for others.\n"
<< "Required SPIR-V min version: " << MinVersion
<< " required SPIR-V max version " << MaxVersion << "\n");
IsSatisfiable = false;
}
for (auto Cap : MinimalCaps) {
if (AvailableCaps.contains(Cap))
continue;
LLVM_DEBUG(dbgs() << "Capability not supported: "
<< getSymbolicOperandMnemonic(
OperandCategory::CapabilityOperand, Cap)
<< "\n");
IsSatisfiable = false;
}
for (auto Ext : AllExtensions) {
if (ST.canUseExtension(Ext))
continue;
LLVM_DEBUG(dbgs() << "Extension not supported: "
<< getSymbolicOperandMnemonic(
OperandCategory::ExtensionOperand, Ext)
<< "\n");
IsSatisfiable = false;
}
if (!IsSatisfiable)
report_fatal_error("Unable to meet SPIR-V requirements for this target.");
}
// Add the given capabilities and all their implicitly defined capabilities too.
void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
for (const auto Cap : ToAdd)
if (AvailableCaps.insert(Cap).second)
addAvailableCaps(getSymbolicOperandCapabilities(
SPIRV::OperandCategory::CapabilityOperand, Cap));
}
void SPIRV::RequirementHandler::removeCapabilityIf(
const Capability::Capability ToRemove,
const Capability::Capability IfPresent) {
if (AllCaps.contains(IfPresent))
AllCaps.erase(ToRemove);
}
namespace llvm {
namespace SPIRV {
void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
if (ST.isOpenCLEnv()) {
initAvailableCapabilitiesForOpenCL(ST);
return;
}
if (ST.isVulkanEnv()) {
initAvailableCapabilitiesForVulkan(ST);
return;
}
report_fatal_error("Unimplemented environment for SPIR-V generation.");
}
void RequirementHandler::initAvailableCapabilitiesForOpenCL(
const SPIRVSubtarget &ST) {
// Add the min requirements for different OpenCL and SPIR-V versions.
addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
Capability::Int16, Capability::Int8, Capability::Kernel,
Capability::Linkage, Capability::Vector16,
Capability::Groups, Capability::GenericPointer,
Capability::Shader});
if (ST.hasOpenCLFullProfile())
addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
if (ST.hasOpenCLImageSupport()) {
addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
Capability::Image1D, Capability::SampledBuffer,
Capability::ImageBuffer});
if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0)))
addAvailableCaps({Capability::ImageReadWrite});
}
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) &&
ST.isAtLeastOpenCLVer(VersionTuple(2, 2)))
addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3)))
addAvailableCaps({Capability::GroupNonUniform,
Capability::GroupNonUniformVote,
Capability::GroupNonUniformArithmetic,
Capability::GroupNonUniformBallot,
Capability::GroupNonUniformClustered,
Capability::GroupNonUniformShuffle,
Capability::GroupNonUniformShuffleRelative});
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4)))
addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
Capability::SignedZeroInfNanPreserve,
Capability::RoundingModeRTE,
Capability::RoundingModeRTZ});
// TODO: verify if this needs some checks.
addAvailableCaps({Capability::Float16, Capability::Float64});
// Add capabilities enabled by extensions.
for (auto Extension : ST.getAllAvailableExtensions()) {
CapabilityList EnabledCapabilities =
getCapabilitiesEnabledByExtension(Extension);
addAvailableCaps(EnabledCapabilities);
}
// TODO: add OpenCL extensions.
}
void RequirementHandler::initAvailableCapabilitiesForVulkan(
const SPIRVSubtarget &ST) {
addAvailableCaps({Capability::Shader, Capability::Linkage});
// Provided by all supported Vulkan versions.
addAvailableCaps({Capability::Int16, Capability::Int64, Capability::Float16,
Capability::Float64, Capability::GroupNonUniform});
}
} // namespace SPIRV
} // namespace llvm
// Add the required capabilities from a decoration instruction (including
// BuiltIns).
static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
SPIRV::RequirementHandler &Reqs,
const SPIRVSubtarget &ST) {
int64_t DecOp = MI.getOperand(DecIndex).getImm();
auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
Reqs.addRequirements(getSymbolicOperandRequirements(
SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));
if (Dec == SPIRV::Decoration::BuiltIn) {
int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
Reqs.addRequirements(getSymbolicOperandRequirements(
SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
} else if (Dec == SPIRV::Decoration::LinkageAttributes) {
int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm();
SPIRV::LinkageType::LinkageType LnkType =
static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp);
if (LnkType == SPIRV::LinkageType::LinkOnceODR)
Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr);
} else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL ||
Dec == SPIRV::Decoration::CacheControlStoreINTEL) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls);
} else if (Dec == SPIRV::Decoration::HostAccessINTEL) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access);
} else if (Dec == SPIRV::Decoration::InitModeINTEL ||
Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) {
Reqs.addExtension(
SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations);
}
}
// Add requirements for image handling.
static void addOpTypeImageReqs(const MachineInstr &MI,
SPIRV::RequirementHandler &Reqs,
const SPIRVSubtarget &ST) {
assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
// The operand indices used here are based on the OpTypeImage layout, which
// the MachineInstr follows as well.
int64_t ImgFormatOp = MI.getOperand(7).getImm();
auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
ImgFormat, ST);
bool IsArrayed = MI.getOperand(4).getImm() == 1;
bool IsMultisampled = MI.getOperand(5).getImm() == 1;
bool NoSampler = MI.getOperand(6).getImm() == 2;
// Add dimension requirements.
assert(MI.getOperand(2).isImm());
switch (MI.getOperand(2).getImm()) {
case SPIRV::Dim::DIM_1D:
Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
: SPIRV::Capability::Sampled1D);
break;
case SPIRV::Dim::DIM_2D:
if (IsMultisampled && NoSampler)
Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
break;
case SPIRV::Dim::DIM_Cube:
Reqs.addRequirements(SPIRV::Capability::Shader);
if (IsArrayed)
Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
: SPIRV::Capability::SampledCubeArray);
break;
case SPIRV::Dim::DIM_Rect:
Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
: SPIRV::Capability::SampledRect);
break;
case SPIRV::Dim::DIM_Buffer:
Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
: SPIRV::Capability::SampledBuffer);
break;
case SPIRV::Dim::DIM_SubpassData:
Reqs.addRequirements(SPIRV::Capability::InputAttachment);
break;
}
// Has optional access qualifier.
// TODO: check if it's OpenCL's kernel.
if (MI.getNumOperands() > 8 &&
MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
else
Reqs.addRequirements(SPIRV::Capability::ImageBasic);
}
// Add requirements for handling atomic float instructions
#define ATOM_FLT_REQ_EXT_MSG(ExtName) \
"The atomic float instruction requires the following SPIR-V " \
"extension: SPV_EXT_shader_atomic_float" ExtName
static void AddAtomicFloatRequirements(const MachineInstr &MI,
SPIRV::RequirementHandler &Reqs,
const SPIRVSubtarget &ST) {
assert(MI.getOperand(1).isReg() &&
"Expect register operand in atomic float instruction");
Register TypeReg = MI.getOperand(1).getReg();
SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg);
if (TypeDef->getOpcode() != SPIRV::OpTypeFloat)
report_fatal_error("Result type of an atomic float instruction must be a "
"floating-point type scalar");
unsigned BitWidth = TypeDef->getOperand(1).getImm();
unsigned Op = MI.getOpcode();
if (Op == SPIRV::OpAtomicFAddEXT) {
if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add))
report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false);
Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add);
switch (BitWidth) {
case 16:
if (!ST.canUseExtension(
SPIRV::Extension::SPV_EXT_shader_atomic_float16_add))
report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false);
Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add);
Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT);
break;
case 32:
Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT);
break;
case 64:
Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT);
break;
default:
report_fatal_error(
"Unexpected floating-point type width in atomic float instruction");
}
} else {
if (!ST.canUseExtension(
SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max))
report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false);
Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max);
switch (BitWidth) {
case 16:
Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT);
break;
case 32:
Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT);
break;
case 64:
Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT);
break;
default:
report_fatal_error(
"Unexpected floating-point type width in atomic float instruction");
}
}
}
void addInstrRequirements(const MachineInstr &MI,
SPIRV::RequirementHandler &Reqs,
const SPIRVSubtarget &ST) {
switch (MI.getOpcode()) {
case SPIRV::OpMemoryModel: {
int64_t Addr = MI.getOperand(0).getImm();
Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
Addr, ST);
int64_t Mem = MI.getOperand(1).getImm();
Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
ST);
break;
}
case SPIRV::OpEntryPoint: {
int64_t Exe = MI.getOperand(0).getImm();
Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
Exe, ST);
break;
}
case SPIRV::OpExecutionMode:
case SPIRV::OpExecutionModeId: {
int64_t Exe = MI.getOperand(1).getImm();
Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
Exe, ST);
break;
}
case SPIRV::OpTypeMatrix:
Reqs.addCapability(SPIRV::Capability::Matrix);
break;
case SPIRV::OpTypeInt: {
unsigned BitWidth = MI.getOperand(1).getImm();
if (BitWidth == 64)
Reqs.addCapability(SPIRV::Capability::Int64);
else if (BitWidth == 16)
Reqs.addCapability(SPIRV::Capability::Int16);
else if (BitWidth == 8)
Reqs.addCapability(SPIRV::Capability::Int8);
break;
}
case SPIRV::OpTypeFloat: {
unsigned BitWidth = MI.getOperand(1).getImm();
if (BitWidth == 64)
Reqs.addCapability(SPIRV::Capability::Float64);
else if (BitWidth == 16)
Reqs.addCapability(SPIRV::Capability::Float16);
break;
}
case SPIRV::OpTypeVector: {
unsigned NumComponents = MI.getOperand(2).getImm();
if (NumComponents == 8 || NumComponents == 16)
Reqs.addCapability(SPIRV::Capability::Vector16);
break;
}
case SPIRV::OpTypePointer: {
auto SC = MI.getOperand(1).getImm();
Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
ST);
// If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer
// capability.
if (!ST.isOpenCLEnv())
break;
assert(MI.getOperand(2).isReg());
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
TypeDef->getOperand(1).getImm() == 16)
Reqs.addCapability(SPIRV::Capability::Float16Buffer);
break;
}
case SPIRV::OpBitReverse:
case SPIRV::OpBitFieldInsert:
case SPIRV::OpBitFieldSExtract:
case SPIRV::OpBitFieldUExtract:
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) {
Reqs.addCapability(SPIRV::Capability::Shader);
break;
}
Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions);
Reqs.addCapability(SPIRV::Capability::BitInstructions);
break;
case SPIRV::OpTypeRuntimeArray:
Reqs.addCapability(SPIRV::Capability::Shader);
break;
case SPIRV::OpTypeOpaque:
case SPIRV::OpTypeEvent:
Reqs.addCapability(SPIRV::Capability::Kernel);
break;
case SPIRV::OpTypePipe:
case SPIRV::OpTypeReserveId:
Reqs.addCapability(SPIRV::Capability::Pipes);
break;
case SPIRV::OpTypeDeviceEvent:
case SPIRV::OpTypeQueue:
case SPIRV::OpBuildNDRange:
Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
break;
case SPIRV::OpDecorate:
case SPIRV::OpDecorateId:
case SPIRV::OpDecorateString:
addOpDecorateReqs(MI, 1, Reqs, ST);
break;
case SPIRV::OpMemberDecorate:
case SPIRV::OpMemberDecorateString:
addOpDecorateReqs(MI, 2, Reqs, ST);
break;
case SPIRV::OpInBoundsPtrAccessChain:
Reqs.addCapability(SPIRV::Capability::Addresses);
break;
case SPIRV::OpConstantSampler:
Reqs.addCapability(SPIRV::Capability::LiteralSampler);
break;
case SPIRV::OpTypeImage:
addOpTypeImageReqs(MI, Reqs, ST);
break;
case SPIRV::OpTypeSampler:
Reqs.addCapability(SPIRV::Capability::ImageBasic);
break;
case SPIRV::OpTypeForwardPointer:
// TODO: check if it's OpenCL's kernel.
Reqs.addCapability(SPIRV::Capability::Addresses);
break;
case SPIRV::OpAtomicFlagTestAndSet:
case SPIRV::OpAtomicLoad:
case SPIRV::OpAtomicStore:
case SPIRV::OpAtomicExchange:
case SPIRV::OpAtomicCompareExchange:
case SPIRV::OpAtomicIIncrement:
case SPIRV::OpAtomicIDecrement:
case SPIRV::OpAtomicIAdd:
case SPIRV::OpAtomicISub:
case SPIRV::OpAtomicUMin:
case SPIRV::OpAtomicUMax:
case SPIRV::OpAtomicSMin:
case SPIRV::OpAtomicSMax:
case SPIRV::OpAtomicAnd:
case SPIRV::OpAtomicOr:
case SPIRV::OpAtomicXor: {
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
const MachineInstr *InstrPtr = &MI;
if (MI.getOpcode() == SPIRV::OpAtomicStore) {
assert(MI.getOperand(3).isReg());
InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
}
assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
Register TypeReg = InstrPtr->getOperand(1).getReg();
SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
unsigned BitWidth = TypeDef->getOperand(1).getImm();
if (BitWidth == 64)
Reqs.addCapability(SPIRV::Capability::Int64Atomics);
}
break;
}
case SPIRV::OpGroupNonUniformIAdd:
case SPIRV::OpGroupNonUniformFAdd:
case SPIRV::OpGroupNonUniformIMul:
case SPIRV::OpGroupNonUniformFMul:
case SPIRV::OpGroupNonUniformSMin:
case SPIRV::OpGroupNonUniformUMin:
case SPIRV::OpGroupNonUniformFMin:
case SPIRV::OpGroupNonUniformSMax:
case SPIRV::OpGroupNonUniformUMax:
case SPIRV::OpGroupNonUniformFMax:
case SPIRV::OpGroupNonUniformBitwiseAnd:
case SPIRV::OpGroupNonUniformBitwiseOr:
case SPIRV::OpGroupNonUniformBitwiseXor:
case SPIRV::OpGroupNonUniformLogicalAnd:
case SPIRV::OpGroupNonUniformLogicalOr:
case SPIRV::OpGroupNonUniformLogicalXor: {
assert(MI.getOperand(3).isImm());
int64_t GroupOp = MI.getOperand(3).getImm();
switch (GroupOp) {
case SPIRV::GroupOperation::Reduce:
case SPIRV::GroupOperation::InclusiveScan:
case SPIRV::GroupOperation::ExclusiveScan:
Reqs.addCapability(SPIRV::Capability::Kernel);
Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
break;
case SPIRV::GroupOperation::ClusteredReduce:
Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
break;
case SPIRV::GroupOperation::PartitionedReduceNV:
case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
break;
}
break;
}
case SPIRV::OpGroupNonUniformShuffle:
case SPIRV::OpGroupNonUniformShuffleXor:
Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
break;
case SPIRV::OpGroupNonUniformShuffleUp:
case SPIRV::OpGroupNonUniformShuffleDown:
Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
break;
case SPIRV::OpGroupAll:
case SPIRV::OpGroupAny:
case SPIRV::OpGroupBroadcast:
case SPIRV::OpGroupIAdd:
case SPIRV::OpGroupFAdd:
case SPIRV::OpGroupFMin:
case SPIRV::OpGroupUMin:
case SPIRV::OpGroupSMin:
case SPIRV::OpGroupFMax:
case SPIRV::OpGroupUMax:
case SPIRV::OpGroupSMax:
Reqs.addCapability(SPIRV::Capability::Groups);
break;
case SPIRV::OpGroupNonUniformElect:
Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
break;
case SPIRV::OpGroupNonUniformAll:
case SPIRV::OpGroupNonUniformAny:
case SPIRV::OpGroupNonUniformAllEqual:
Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
break;
case SPIRV::OpGroupNonUniformBroadcast:
case SPIRV::OpGroupNonUniformBroadcastFirst:
case SPIRV::OpGroupNonUniformBallot:
case SPIRV::OpGroupNonUniformInverseBallot:
case SPIRV::OpGroupNonUniformBallotBitExtract:
case SPIRV::OpGroupNonUniformBallotBitCount:
case SPIRV::OpGroupNonUniformBallotFindLSB:
case SPIRV::OpGroupNonUniformBallotFindMSB:
Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
break;
case SPIRV::OpSubgroupShuffleINTEL:
case SPIRV::OpSubgroupShuffleDownINTEL:
case SPIRV::OpSubgroupShuffleUpINTEL:
case SPIRV::OpSubgroupShuffleXorINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL);
}
break;
case SPIRV::OpSubgroupBlockReadINTEL:
case SPIRV::OpSubgroupBlockWriteINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL);
}
break;
case SPIRV::OpSubgroupImageBlockReadINTEL:
case SPIRV::OpSubgroupImageBlockWriteINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL);
}
break;
case SPIRV::OpAssumeTrueKHR:
case SPIRV::OpExpectKHR:
if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) {
Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume);
Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR);
}
break;
case SPIRV::OpPtrCastToCrossWorkgroupINTEL:
case SPIRV::OpCrossWorkgroupCastToPtrINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes);
Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL);
}
break;
case SPIRV::OpConstantFunctionPointerINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
}
break;
case SPIRV::OpGroupNonUniformRotateKHR:
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate))
report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the "
"following SPIR-V extension: SPV_KHR_subgroup_rotate",
false);
Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate);
Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR);
Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
break;
case SPIRV::OpGroupIMulKHR:
case SPIRV::OpGroupFMulKHR:
case SPIRV::OpGroupBitwiseAndKHR:
case SPIRV::OpGroupBitwiseOrKHR:
case SPIRV::OpGroupBitwiseXorKHR:
case SPIRV::OpGroupLogicalAndKHR:
case SPIRV::OpGroupLogicalOrKHR:
case SPIRV::OpGroupLogicalXorKHR:
if (ST.canUseExtension(
SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions);
Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR);
}
break;
case SPIRV::OpReadClockKHR:
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock))
report_fatal_error("OpReadClockKHR instruction requires the "
"following SPIR-V extension: SPV_KHR_shader_clock",
false);
Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock);
Reqs.addCapability(SPIRV::Capability::ShaderClockKHR);
break;
case SPIRV::OpFunctionPointerCallINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
}
break;
case SPIRV::OpAtomicFAddEXT:
case SPIRV::OpAtomicFMinEXT:
case SPIRV::OpAtomicFMaxEXT:
AddAtomicFloatRequirements(MI, Reqs, ST);
break;
case SPIRV::OpConvertBF16ToFINTEL:
case SPIRV::OpConvertFToBF16INTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion);
Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL);
}
break;
case SPIRV::OpVariableLengthArrayINTEL:
case SPIRV::OpSaveMemoryINTEL:
case SPIRV::OpRestoreMemoryINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array);
Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL);
}
break;
case SPIRV::OpAsmTargetINTEL:
case SPIRV::OpAsmINTEL:
case SPIRV::OpAsmCallINTEL:
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) {
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly);
Reqs.addCapability(SPIRV::Capability::AsmINTEL);
}
break;
case SPIRV::OpTypeCooperativeMatrixKHR:
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix))
report_fatal_error(
"OpTypeCooperativeMatrixKHR type requires the "
"following SPIR-V extension: SPV_KHR_cooperative_matrix",
false);
Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix);
Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR);
break;
default:
break;
}
// If we require capability Shader, then we can remove the requirement for
// the BitInstructions capability, since Shader is a superset capability
// of BitInstructions.
Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions,
SPIRV::Capability::Shader);
}
static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
// Collect requirements for existing instructions.
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
MachineFunction *MF = MMI->getMachineFunction(*F);
if (!MF)
continue;
for (const MachineBasicBlock &MBB : *MF)
for (const MachineInstr &MI : MBB)
addInstrRequirements(MI, MAI.Reqs, ST);
}
// Collect requirements for OpExecutionMode instructions.
auto Node = M.getNamedMetadata("spirv.ExecutionMode");
if (Node) {
// SPV_KHR_float_controls is not available until v1.4
bool RequireFloatControls = false,
VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4));
for (unsigned i = 0; i < Node->getNumOperands(); i++) {
MDNode *MDN = cast<MDNode>(Node->getOperand(i));
const MDOperand &MDOp = MDN->getOperand(1);
if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
Constant *C = CMeta->getValue();
if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
auto EM = Const->getZExtValue();
MAI.Reqs.getAndAddRequirements(
SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
// add SPV_KHR_float_controls if the version is too low
switch (EM) {
case SPIRV::ExecutionMode::DenormPreserve:
case SPIRV::ExecutionMode::DenormFlushToZero:
case SPIRV::ExecutionMode::SignedZeroInfNanPreserve:
case SPIRV::ExecutionMode::RoundingModeRTE:
case SPIRV::ExecutionMode::RoundingModeRTZ:
RequireFloatControls = VerLower14;
break;
}
}
}
}
if (RequireFloatControls &&
ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls))
MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls);
}
for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
const Function &F = *FI;
if (F.isDeclaration())
continue;
if (F.getMetadata("reqd_work_group_size"))
MAI.Reqs.getAndAddRequirements(
SPIRV::OperandCategory::ExecutionModeOperand,
SPIRV::ExecutionMode::LocalSize, ST);
if (F.getFnAttribute("hlsl.numthreads").isValid()) {
MAI.Reqs.getAndAddRequirements(
SPIRV::OperandCategory::ExecutionModeOperand,
SPIRV::ExecutionMode::LocalSize, ST);
}
if (F.getMetadata("work_group_size_hint"))
MAI.Reqs.getAndAddRequirements(
SPIRV::OperandCategory::ExecutionModeOperand,
SPIRV::ExecutionMode::LocalSizeHint, ST);
if (F.getMetadata("intel_reqd_sub_group_size"))
MAI.Reqs.getAndAddRequirements(
SPIRV::OperandCategory::ExecutionModeOperand,
SPIRV::ExecutionMode::SubgroupSize, ST);
if (F.getMetadata("vec_type_hint"))
MAI.Reqs.getAndAddRequirements(
SPIRV::OperandCategory::ExecutionModeOperand,
SPIRV::ExecutionMode::VecTypeHint, ST);
if (F.hasOptNone() &&
ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) {
// Output OpCapability OptNoneINTEL.
MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone);
MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL);
}
}
}
static unsigned getFastMathFlags(const MachineInstr &I) {
unsigned Flags = SPIRV::FPFastMathMode::None;
if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
Flags |= SPIRV::FPFastMathMode::NotNaN;
if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
Flags |= SPIRV::FPFastMathMode::NotInf;
if (I.getFlag(MachineInstr::MIFlag::FmNsz))
Flags |= SPIRV::FPFastMathMode::NSZ;
if (I.getFlag(MachineInstr::MIFlag::FmArcp))
Flags |= SPIRV::FPFastMathMode::AllowRecip;
if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
Flags |= SPIRV::FPFastMathMode::Fast;
return Flags;
}
static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
const SPIRVInstrInfo &TII,
SPIRV::RequirementHandler &Reqs) {
if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
SPIRV::Decoration::NoSignedWrap, ST, Reqs)
.IsSatisfiable) {
buildOpDecorate(I.getOperand(0).getReg(), I, TII,
SPIRV::Decoration::NoSignedWrap, {});
}
if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
SPIRV::Decoration::NoUnsignedWrap, ST,
Reqs)
.IsSatisfiable) {
buildOpDecorate(I.getOperand(0).getReg(), I, TII,
SPIRV::Decoration::NoUnsignedWrap, {});
}
if (!TII.canUseFastMathFlags(I))
return;
unsigned FMFlags = getFastMathFlags(I);
if (FMFlags == SPIRV::FPFastMathMode::None)
return;
Register DstReg = I.getOperand(0).getReg();
buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
}
// Walk all functions and add decorations related to MI flags.
static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
SPIRV::ModuleAnalysisInfo &MAI) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
MachineFunction *MF = MMI->getMachineFunction(*F);
if (!MF)
continue;
for (auto &MBB : *MF)
for (auto &MI : MBB)
handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
}
}
struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.addRequired<MachineModuleInfoWrapperPass>();
}
bool SPIRVModuleAnalysis::runOnModule(Module &M) {
SPIRVTargetMachine &TM =
getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
ST = TM.getSubtargetImpl();
GR = ST->getSPIRVGlobalRegistry();
TII = ST->getInstrInfo();
MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
setBaseInfo(M);
addDecorations(M, *TII, MMI, *ST, MAI);
collectReqs(M, MAI, MMI, *ST);
// Process type/const/global var/func decl instructions, number their
// destination registers from 0 to N, collect Extensions and Capabilities.
processDefInstrs(M);
// Number rest of registers from N+1 onwards.
numberRegistersGlobally(M);
// Update references to OpFunction instructions to use Global Registers
if (GR->hasConstFunPtr())
collectFuncPtrs();
// Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
processOtherInstrs(M);
// If there are no entry points, we need the Linkage capability.
if (MAI.MS[SPIRV::MB_EntryPoints].empty())
MAI.Reqs.addCapability(SPIRV::Capability::Linkage);
// Set maximum ID used.
GR->setBound(MAI.MaxID);
return false;
}
|