1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
//===-- SPIRVPrepareFunctions.cpp - modify function signatures --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass modifies function signatures containing aggregate arguments
// and/or return value before IRTranslator. Information about the original
// signatures is stored in metadata. It is used during call lowering to
// restore correct SPIR-V types of function arguments and return values.
// This pass also substitutes some llvm intrinsic calls with calls to newly
// generated functions (as the Khronos LLVM/SPIR-V Translator does).
//
// NOTE: this pass is a module-level one due to the necessity to modify
// GVs/functions.
//
//===----------------------------------------------------------------------===//
#include "SPIRV.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include <charconv>
#include <regex>
using namespace llvm;
namespace llvm {
void initializeSPIRVPrepareFunctionsPass(PassRegistry &);
}
namespace {
class SPIRVPrepareFunctions : public ModulePass {
const SPIRVTargetMachine &TM;
bool substituteIntrinsicCalls(Function *F);
Function *removeAggregateTypesFromSignature(Function *F);
public:
static char ID;
SPIRVPrepareFunctions(const SPIRVTargetMachine &TM) : ModulePass(ID), TM(TM) {
initializeSPIRVPrepareFunctionsPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
StringRef getPassName() const override { return "SPIRV prepare functions"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
ModulePass::getAnalysisUsage(AU);
}
};
} // namespace
char SPIRVPrepareFunctions::ID = 0;
INITIALIZE_PASS(SPIRVPrepareFunctions, "prepare-functions",
"SPIRV prepare functions", false, false)
std::string lowerLLVMIntrinsicName(IntrinsicInst *II) {
Function *IntrinsicFunc = II->getCalledFunction();
assert(IntrinsicFunc && "Missing function");
std::string FuncName = IntrinsicFunc->getName().str();
std::replace(FuncName.begin(), FuncName.end(), '.', '_');
FuncName = "spirv." + FuncName;
return FuncName;
}
static Function *getOrCreateFunction(Module *M, Type *RetTy,
ArrayRef<Type *> ArgTypes,
StringRef Name) {
FunctionType *FT = FunctionType::get(RetTy, ArgTypes, false);
Function *F = M->getFunction(Name);
if (F && F->getFunctionType() == FT)
return F;
Function *NewF = Function::Create(FT, GlobalValue::ExternalLinkage, Name, M);
if (F)
NewF->setDSOLocal(F->isDSOLocal());
NewF->setCallingConv(CallingConv::SPIR_FUNC);
return NewF;
}
static bool lowerIntrinsicToFunction(IntrinsicInst *Intrinsic) {
// For @llvm.memset.* intrinsic cases with constant value and length arguments
// are emulated via "storing" a constant array to the destination. For other
// cases we wrap the intrinsic in @spirv.llvm_memset_* function and expand the
// intrinsic to a loop via expandMemSetAsLoop().
if (auto *MSI = dyn_cast<MemSetInst>(Intrinsic))
if (isa<Constant>(MSI->getValue()) && isa<ConstantInt>(MSI->getLength()))
return false; // It is handled later using OpCopyMemorySized.
Module *M = Intrinsic->getModule();
std::string FuncName = lowerLLVMIntrinsicName(Intrinsic);
if (Intrinsic->isVolatile())
FuncName += ".volatile";
// Redirect @llvm.intrinsic.* call to @spirv.llvm_intrinsic_*
Function *F = M->getFunction(FuncName);
if (F) {
Intrinsic->setCalledFunction(F);
return true;
}
// TODO copy arguments attributes: nocapture writeonly.
FunctionCallee FC =
M->getOrInsertFunction(FuncName, Intrinsic->getFunctionType());
auto IntrinsicID = Intrinsic->getIntrinsicID();
Intrinsic->setCalledFunction(FC);
F = dyn_cast<Function>(FC.getCallee());
assert(F && "Callee must be a function");
switch (IntrinsicID) {
case Intrinsic::memset: {
auto *MSI = static_cast<MemSetInst *>(Intrinsic);
Argument *Dest = F->getArg(0);
Argument *Val = F->getArg(1);
Argument *Len = F->getArg(2);
Argument *IsVolatile = F->getArg(3);
Dest->setName("dest");
Val->setName("val");
Len->setName("len");
IsVolatile->setName("isvolatile");
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> IRB(EntryBB);
auto *MemSet = IRB.CreateMemSet(Dest, Val, Len, MSI->getDestAlign(),
MSI->isVolatile());
IRB.CreateRetVoid();
expandMemSetAsLoop(cast<MemSetInst>(MemSet));
MemSet->eraseFromParent();
break;
}
case Intrinsic::bswap: {
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> IRB(EntryBB);
auto *BSwap = IRB.CreateIntrinsic(Intrinsic::bswap, Intrinsic->getType(),
F->getArg(0));
IRB.CreateRet(BSwap);
IntrinsicLowering IL(M->getDataLayout());
IL.LowerIntrinsicCall(BSwap);
break;
}
default:
break;
}
return true;
}
static std::string getAnnotation(Value *AnnoVal, Value *OptAnnoVal) {
if (auto *Ref = dyn_cast_or_null<GetElementPtrInst>(AnnoVal))
AnnoVal = Ref->getOperand(0);
if (auto *Ref = dyn_cast_or_null<BitCastInst>(OptAnnoVal))
OptAnnoVal = Ref->getOperand(0);
std::string Anno;
if (auto *C = dyn_cast_or_null<Constant>(AnnoVal)) {
StringRef Str;
if (getConstantStringInfo(C, Str))
Anno = Str;
}
// handle optional annotation parameter in a way that Khronos Translator do
// (collect integers wrapped in a struct)
if (auto *C = dyn_cast_or_null<Constant>(OptAnnoVal);
C && C->getNumOperands()) {
Value *MaybeStruct = C->getOperand(0);
if (auto *Struct = dyn_cast<ConstantStruct>(MaybeStruct)) {
for (unsigned I = 0, E = Struct->getNumOperands(); I != E; ++I) {
if (auto *CInt = dyn_cast<ConstantInt>(Struct->getOperand(I)))
Anno += (I == 0 ? ": " : ", ") +
std::to_string(CInt->getType()->getIntegerBitWidth() == 1
? CInt->getZExtValue()
: CInt->getSExtValue());
}
} else if (auto *Struct = dyn_cast<ConstantAggregateZero>(MaybeStruct)) {
// { i32 i32 ... } zeroinitializer
for (unsigned I = 0, E = Struct->getType()->getStructNumElements();
I != E; ++I)
Anno += I == 0 ? ": 0" : ", 0";
}
}
return Anno;
}
static SmallVector<Metadata *> parseAnnotation(Value *I,
const std::string &Anno,
LLVMContext &Ctx,
Type *Int32Ty) {
// Try to parse the annotation string according to the following rules:
// annotation := ({kind} | {kind:value,value,...})+
// kind := number
// value := number | string
static const std::regex R(
"\\{(\\d+)(?:[:,](\\d+|\"[^\"]*\")(?:,(\\d+|\"[^\"]*\"))*)?\\}");
SmallVector<Metadata *> MDs;
int Pos = 0;
for (std::sregex_iterator
It = std::sregex_iterator(Anno.begin(), Anno.end(), R),
ItEnd = std::sregex_iterator();
It != ItEnd; ++It) {
if (It->position() != Pos)
return SmallVector<Metadata *>{};
Pos = It->position() + It->length();
std::smatch Match = *It;
SmallVector<Metadata *> MDsItem;
for (std::size_t i = 1; i < Match.size(); ++i) {
std::ssub_match SMatch = Match[i];
std::string Item = SMatch.str();
if (Item.length() == 0)
break;
if (Item[0] == '"') {
Item = Item.substr(1, Item.length() - 2);
// Acceptable format of the string snippet is:
static const std::regex RStr("^(\\d+)(?:,(\\d+))*$");
if (std::smatch MatchStr; std::regex_match(Item, MatchStr, RStr)) {
for (std::size_t SubIdx = 1; SubIdx < MatchStr.size(); ++SubIdx)
if (std::string SubStr = MatchStr[SubIdx].str(); SubStr.length())
MDsItem.push_back(ConstantAsMetadata::get(
ConstantInt::get(Int32Ty, std::stoi(SubStr))));
} else {
MDsItem.push_back(MDString::get(Ctx, Item));
}
} else if (int32_t Num;
std::from_chars(Item.data(), Item.data() + Item.size(), Num)
.ec == std::errc{}) {
MDsItem.push_back(
ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Num)));
} else {
MDsItem.push_back(MDString::get(Ctx, Item));
}
}
if (MDsItem.size() == 0)
return SmallVector<Metadata *>{};
MDs.push_back(MDNode::get(Ctx, MDsItem));
}
return Pos == static_cast<int>(Anno.length()) ? MDs
: SmallVector<Metadata *>{};
}
static void lowerPtrAnnotation(IntrinsicInst *II) {
LLVMContext &Ctx = II->getContext();
Type *Int32Ty = Type::getInt32Ty(Ctx);
// Retrieve an annotation string from arguments.
Value *PtrArg = nullptr;
if (auto *BI = dyn_cast<BitCastInst>(II->getArgOperand(0)))
PtrArg = BI->getOperand(0);
else
PtrArg = II->getOperand(0);
std::string Anno =
getAnnotation(II->getArgOperand(1),
4 < II->arg_size() ? II->getArgOperand(4) : nullptr);
// Parse the annotation.
SmallVector<Metadata *> MDs = parseAnnotation(II, Anno, Ctx, Int32Ty);
// If the annotation string is not parsed successfully we don't know the
// format used and output it as a general UserSemantic decoration.
// Otherwise MDs is a Metadata tuple (a decoration list) in the format
// expected by `spirv.Decorations`.
if (MDs.size() == 0) {
auto UserSemantic = ConstantAsMetadata::get(ConstantInt::get(
Int32Ty, static_cast<uint32_t>(SPIRV::Decoration::UserSemantic)));
MDs.push_back(MDNode::get(Ctx, {UserSemantic, MDString::get(Ctx, Anno)}));
}
// Build the internal intrinsic function.
IRBuilder<> IRB(II->getParent());
IRB.SetInsertPoint(II);
IRB.CreateIntrinsic(
Intrinsic::spv_assign_decoration, {PtrArg->getType()},
{PtrArg, MetadataAsValue::get(Ctx, MDNode::get(Ctx, MDs))});
II->replaceAllUsesWith(II->getOperand(0));
}
static void lowerFunnelShifts(IntrinsicInst *FSHIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
// Generate LLVM IR for i* @spirv.llvm_fsh?_i* (i* %a, i* %b, i* %c)
Module *M = FSHIntrinsic->getModule();
FunctionType *FSHFuncTy = FSHIntrinsic->getFunctionType();
Type *FSHRetTy = FSHFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(FSHIntrinsic);
Function *FSHFunc =
getOrCreateFunction(M, FSHRetTy, FSHFuncTy->params(), FuncName);
if (!FSHFunc->empty()) {
FSHIntrinsic->setCalledFunction(FSHFunc);
return;
}
BasicBlock *RotateBB = BasicBlock::Create(M->getContext(), "rotate", FSHFunc);
IRBuilder<> IRB(RotateBB);
Type *Ty = FSHFunc->getReturnType();
// Build the actual funnel shift rotate logic.
// In the comments, "int" is used interchangeably with "vector of int
// elements".
FixedVectorType *VectorTy = dyn_cast<FixedVectorType>(Ty);
Type *IntTy = VectorTy ? VectorTy->getElementType() : Ty;
unsigned BitWidth = IntTy->getIntegerBitWidth();
ConstantInt *BitWidthConstant = IRB.getInt({BitWidth, BitWidth});
Value *BitWidthForInsts =
VectorTy
? IRB.CreateVectorSplat(VectorTy->getNumElements(), BitWidthConstant)
: BitWidthConstant;
Value *RotateModVal =
IRB.CreateURem(/*Rotate*/ FSHFunc->getArg(2), BitWidthForInsts);
Value *FirstShift = nullptr, *SecShift = nullptr;
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) {
// Shift the less significant number right, the "rotate" number of bits
// will be 0-filled on the left as a result of this regular shift.
FirstShift = IRB.CreateLShr(FSHFunc->getArg(1), RotateModVal);
} else {
// Shift the more significant number left, the "rotate" number of bits
// will be 0-filled on the right as a result of this regular shift.
FirstShift = IRB.CreateShl(FSHFunc->getArg(0), RotateModVal);
}
// We want the "rotate" number of the more significant int's LSBs (MSBs) to
// occupy the leftmost (rightmost) "0 space" left by the previous operation.
// Therefore, subtract the "rotate" number from the integer bitsize...
Value *SubRotateVal = IRB.CreateSub(BitWidthForInsts, RotateModVal);
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) {
// ...and left-shift the more significant int by this number, zero-filling
// the LSBs.
SecShift = IRB.CreateShl(FSHFunc->getArg(0), SubRotateVal);
} else {
// ...and right-shift the less significant int by this number, zero-filling
// the MSBs.
SecShift = IRB.CreateLShr(FSHFunc->getArg(1), SubRotateVal);
}
// A simple binary addition of the shifted ints yields the final result.
IRB.CreateRet(IRB.CreateOr(FirstShift, SecShift));
FSHIntrinsic->setCalledFunction(FSHFunc);
}
static void buildUMulWithOverflowFunc(Function *UMulFunc) {
// The function body is already created.
if (!UMulFunc->empty())
return;
BasicBlock *EntryBB = BasicBlock::Create(UMulFunc->getParent()->getContext(),
"entry", UMulFunc);
IRBuilder<> IRB(EntryBB);
// Build the actual unsigned multiplication logic with the overflow
// indication. Do unsigned multiplication Mul = A * B. Then check
// if unsigned division Div = Mul / A is not equal to B. If so,
// then overflow has happened.
Value *Mul = IRB.CreateNUWMul(UMulFunc->getArg(0), UMulFunc->getArg(1));
Value *Div = IRB.CreateUDiv(Mul, UMulFunc->getArg(0));
Value *Overflow = IRB.CreateICmpNE(UMulFunc->getArg(0), Div);
// umul.with.overflow intrinsic return a structure, where the first element
// is the multiplication result, and the second is an overflow bit.
Type *StructTy = UMulFunc->getReturnType();
Value *Agg = IRB.CreateInsertValue(PoisonValue::get(StructTy), Mul, {0});
Value *Res = IRB.CreateInsertValue(Agg, Overflow, {1});
IRB.CreateRet(Res);
}
static void lowerExpectAssume(IntrinsicInst *II) {
// If we cannot use the SPV_KHR_expect_assume extension, then we need to
// ignore the intrinsic and move on. It should be removed later on by LLVM.
// Otherwise we should lower the intrinsic to the corresponding SPIR-V
// instruction.
// For @llvm.assume we have OpAssumeTrueKHR.
// For @llvm.expect we have OpExpectKHR.
//
// We need to lower this into a builtin and then the builtin into a SPIR-V
// instruction.
if (II->getIntrinsicID() == Intrinsic::assume) {
Function *F = Intrinsic::getDeclaration(
II->getModule(), Intrinsic::SPVIntrinsics::spv_assume);
II->setCalledFunction(F);
} else if (II->getIntrinsicID() == Intrinsic::expect) {
Function *F = Intrinsic::getDeclaration(
II->getModule(), Intrinsic::SPVIntrinsics::spv_expect,
{II->getOperand(0)->getType()});
II->setCalledFunction(F);
} else {
llvm_unreachable("Unknown intrinsic");
}
return;
}
static bool toSpvOverloadedIntrinsic(IntrinsicInst *II, Intrinsic::ID NewID,
ArrayRef<unsigned> OpNos) {
Function *F = nullptr;
if (OpNos.empty()) {
F = Intrinsic::getDeclaration(II->getModule(), NewID);
} else {
SmallVector<Type *, 4> Tys;
for (unsigned OpNo : OpNos)
Tys.push_back(II->getOperand(OpNo)->getType());
F = Intrinsic::getDeclaration(II->getModule(), NewID, Tys);
}
II->setCalledFunction(F);
return true;
}
static void lowerUMulWithOverflow(IntrinsicInst *UMulIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
Module *M = UMulIntrinsic->getModule();
FunctionType *UMulFuncTy = UMulIntrinsic->getFunctionType();
Type *FSHLRetTy = UMulFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(UMulIntrinsic);
Function *UMulFunc =
getOrCreateFunction(M, FSHLRetTy, UMulFuncTy->params(), FuncName);
buildUMulWithOverflowFunc(UMulFunc);
UMulIntrinsic->setCalledFunction(UMulFunc);
}
// Substitutes calls to LLVM intrinsics with either calls to SPIR-V intrinsics
// or calls to proper generated functions. Returns True if F was modified.
bool SPIRVPrepareFunctions::substituteIntrinsicCalls(Function *F) {
bool Changed = false;
for (BasicBlock &BB : *F) {
for (Instruction &I : BB) {
auto Call = dyn_cast<CallInst>(&I);
if (!Call)
continue;
Function *CF = Call->getCalledFunction();
if (!CF || !CF->isIntrinsic())
continue;
auto *II = cast<IntrinsicInst>(Call);
switch (II->getIntrinsicID()) {
case Intrinsic::memset:
case Intrinsic::bswap:
Changed |= lowerIntrinsicToFunction(II);
break;
case Intrinsic::fshl:
case Intrinsic::fshr:
lowerFunnelShifts(II);
Changed = true;
break;
case Intrinsic::umul_with_overflow:
lowerUMulWithOverflow(II);
Changed = true;
break;
case Intrinsic::assume:
case Intrinsic::expect: {
const SPIRVSubtarget &STI = TM.getSubtarget<SPIRVSubtarget>(*F);
if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
lowerExpectAssume(II);
Changed = true;
} break;
case Intrinsic::lifetime_start:
Changed |= toSpvOverloadedIntrinsic(
II, Intrinsic::SPVIntrinsics::spv_lifetime_start, {1});
break;
case Intrinsic::lifetime_end:
Changed |= toSpvOverloadedIntrinsic(
II, Intrinsic::SPVIntrinsics::spv_lifetime_end, {1});
break;
case Intrinsic::ptr_annotation:
lowerPtrAnnotation(II);
Changed = true;
break;
}
}
}
return Changed;
}
// Returns F if aggregate argument/return types are not present or cloned F
// function with the types replaced by i32 types. The change in types is
// noted in 'spv.cloned_funcs' metadata for later restoration.
Function *
SPIRVPrepareFunctions::removeAggregateTypesFromSignature(Function *F) {
IRBuilder<> B(F->getContext());
bool IsRetAggr = F->getReturnType()->isAggregateType();
bool HasAggrArg =
std::any_of(F->arg_begin(), F->arg_end(), [](Argument &Arg) {
return Arg.getType()->isAggregateType();
});
bool DoClone = IsRetAggr || HasAggrArg;
if (!DoClone)
return F;
SmallVector<std::pair<int, Type *>, 4> ChangedTypes;
Type *RetType = IsRetAggr ? B.getInt32Ty() : F->getReturnType();
if (IsRetAggr)
ChangedTypes.push_back(std::pair<int, Type *>(-1, F->getReturnType()));
SmallVector<Type *, 4> ArgTypes;
for (const auto &Arg : F->args()) {
if (Arg.getType()->isAggregateType()) {
ArgTypes.push_back(B.getInt32Ty());
ChangedTypes.push_back(
std::pair<int, Type *>(Arg.getArgNo(), Arg.getType()));
} else
ArgTypes.push_back(Arg.getType());
}
FunctionType *NewFTy =
FunctionType::get(RetType, ArgTypes, F->getFunctionType()->isVarArg());
Function *NewF =
Function::Create(NewFTy, F->getLinkage(), F->getName(), *F->getParent());
ValueToValueMapTy VMap;
auto NewFArgIt = NewF->arg_begin();
for (auto &Arg : F->args()) {
StringRef ArgName = Arg.getName();
NewFArgIt->setName(ArgName);
VMap[&Arg] = &(*NewFArgIt++);
}
SmallVector<ReturnInst *, 8> Returns;
CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
Returns);
NewF->takeName(F);
NamedMDNode *FuncMD =
F->getParent()->getOrInsertNamedMetadata("spv.cloned_funcs");
SmallVector<Metadata *, 2> MDArgs;
MDArgs.push_back(MDString::get(B.getContext(), NewF->getName()));
for (auto &ChangedTyP : ChangedTypes)
MDArgs.push_back(MDNode::get(
B.getContext(),
{ConstantAsMetadata::get(B.getInt32(ChangedTyP.first)),
ValueAsMetadata::get(Constant::getNullValue(ChangedTyP.second))}));
MDNode *ThisFuncMD = MDNode::get(B.getContext(), MDArgs);
FuncMD->addOperand(ThisFuncMD);
for (auto *U : make_early_inc_range(F->users())) {
if (auto *CI = dyn_cast<CallInst>(U))
CI->mutateFunctionType(NewF->getFunctionType());
U->replaceUsesOfWith(F, NewF);
}
// register the mutation
if (RetType != F->getReturnType())
TM.getSubtarget<SPIRVSubtarget>(*F).getSPIRVGlobalRegistry()->addMutated(
NewF, F->getReturnType());
return NewF;
}
bool SPIRVPrepareFunctions::runOnModule(Module &M) {
bool Changed = false;
for (Function &F : M)
Changed |= substituteIntrinsicCalls(&F);
std::vector<Function *> FuncsWorklist;
for (auto &F : M)
FuncsWorklist.push_back(&F);
for (auto *F : FuncsWorklist) {
Function *NewF = removeAggregateTypesFromSignature(F);
if (NewF != F) {
F->eraseFromParent();
Changed = true;
}
}
return Changed;
}
ModulePass *
llvm::createSPIRVPrepareFunctionsPass(const SPIRVTargetMachine &TM) {
return new SPIRVPrepareFunctions(TM);
}
|