1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
//===--- SPIRVUtils.cpp ---- SPIR-V Utility Functions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//
#include "SPIRVUtils.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVInstrInfo.h"
#include "SPIRVSubtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
namespace llvm {
// The following functions are used to add these string literals as a series of
// 32-bit integer operands with the correct format, and unpack them if necessary
// when making string comparisons in compiler passes.
// SPIR-V requires null-terminated UTF-8 strings padded to 32-bit alignment.
static uint32_t convertCharsToWord(const StringRef &Str, unsigned i) {
uint32_t Word = 0u; // Build up this 32-bit word from 4 8-bit chars.
for (unsigned WordIndex = 0; WordIndex < 4; ++WordIndex) {
unsigned StrIndex = i + WordIndex;
uint8_t CharToAdd = 0; // Initilize char as padding/null.
if (StrIndex < Str.size()) { // If it's within the string, get a real char.
CharToAdd = Str[StrIndex];
}
Word |= (CharToAdd << (WordIndex * 8));
}
return Word;
}
// Get length including padding and null terminator.
static size_t getPaddedLen(const StringRef &Str) {
const size_t Len = Str.size() + 1;
return (Len % 4 == 0) ? Len : Len + (4 - (Len % 4));
}
void addStringImm(const StringRef &Str, MCInst &Inst) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
Inst.addOperand(MCOperand::createImm(convertCharsToWord(Str, i)));
}
}
void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
MIB.addImm(convertCharsToWord(Str, i));
}
}
void addStringImm(const StringRef &Str, IRBuilder<> &B,
std::vector<Value *> &Args) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add a vector element for the 32-bits of chars or padding.
Args.push_back(B.getInt32(convertCharsToWord(Str, i)));
}
}
std::string getStringImm(const MachineInstr &MI, unsigned StartIndex) {
return getSPIRVStringOperand(MI, StartIndex);
}
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB) {
const auto Bitwidth = Imm.getBitWidth();
if (Bitwidth == 1)
return; // Already handled
else if (Bitwidth <= 32) {
MIB.addImm(Imm.getZExtValue());
// Asm Printer needs this info to print floating-type correctly
if (Bitwidth == 16)
MIB.getInstr()->setAsmPrinterFlag(SPIRV::ASM_PRINTER_WIDTH16);
return;
} else if (Bitwidth <= 64) {
uint64_t FullImm = Imm.getZExtValue();
uint32_t LowBits = FullImm & 0xffffffff;
uint32_t HighBits = (FullImm >> 32) & 0xffffffff;
MIB.addImm(LowBits).addImm(HighBits);
return;
}
report_fatal_error("Unsupported constant bitwidth");
}
void buildOpName(Register Target, const StringRef &Name,
MachineIRBuilder &MIRBuilder) {
if (!Name.empty()) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpName).addUse(Target);
addStringImm(Name, MIB);
}
}
static void finishBuildOpDecorate(MachineInstrBuilder &MIB,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm) {
if (!StrImm.empty())
addStringImm(StrImm, MIB);
for (const auto &DecArg : DecArgs)
MIB.addImm(DecArg);
}
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
MachineBasicBlock &MBB = *I.getParent();
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpDecorate))
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder,
const MDNode *GVarMD) {
for (unsigned I = 0, E = GVarMD->getNumOperands(); I != E; ++I) {
auto *OpMD = dyn_cast<MDNode>(GVarMD->getOperand(I));
if (!OpMD)
report_fatal_error("Invalid decoration");
if (OpMD->getNumOperands() == 0)
report_fatal_error("Expect operand(s) of the decoration");
ConstantInt *DecorationId =
mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(0));
if (!DecorationId)
report_fatal_error("Expect SPIR-V <Decoration> operand to be the first "
"element of the decoration");
auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(Reg)
.addImm(static_cast<uint32_t>(DecorationId->getZExtValue()));
for (unsigned OpI = 1, OpE = OpMD->getNumOperands(); OpI != OpE; ++OpI) {
if (ConstantInt *OpV =
mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(OpI)))
MIB.addImm(static_cast<uint32_t>(OpV->getZExtValue()));
else if (MDString *OpV = dyn_cast<MDString>(OpMD->getOperand(OpI)))
addStringImm(OpV->getString(), MIB);
else
report_fatal_error("Unexpected operand of the decoration");
}
}
}
// TODO: maybe the following two functions should be handled in the subtarget
// to allow for different OpenCL vs Vulkan handling.
unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::Function:
return 0;
case SPIRV::StorageClass::CrossWorkgroup:
return 1;
case SPIRV::StorageClass::UniformConstant:
return 2;
case SPIRV::StorageClass::Workgroup:
return 3;
case SPIRV::StorageClass::Generic:
return 4;
case SPIRV::StorageClass::DeviceOnlyINTEL:
return 5;
case SPIRV::StorageClass::HostOnlyINTEL:
return 6;
case SPIRV::StorageClass::Input:
return 7;
default:
report_fatal_error("Unable to get address space id");
}
}
SPIRV::StorageClass::StorageClass
addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI) {
switch (AddrSpace) {
case 0:
return SPIRV::StorageClass::Function;
case 1:
return SPIRV::StorageClass::CrossWorkgroup;
case 2:
return SPIRV::StorageClass::UniformConstant;
case 3:
return SPIRV::StorageClass::Workgroup;
case 4:
return SPIRV::StorageClass::Generic;
case 5:
return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
? SPIRV::StorageClass::DeviceOnlyINTEL
: SPIRV::StorageClass::CrossWorkgroup;
case 6:
return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
? SPIRV::StorageClass::HostOnlyINTEL
: SPIRV::StorageClass::CrossWorkgroup;
case 7:
return SPIRV::StorageClass::Input;
default:
report_fatal_error("Unknown address space");
}
}
SPIRV::MemorySemantics::MemorySemantics
getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::StorageBuffer:
case SPIRV::StorageClass::Uniform:
return SPIRV::MemorySemantics::UniformMemory;
case SPIRV::StorageClass::Workgroup:
return SPIRV::MemorySemantics::WorkgroupMemory;
case SPIRV::StorageClass::CrossWorkgroup:
return SPIRV::MemorySemantics::CrossWorkgroupMemory;
case SPIRV::StorageClass::AtomicCounter:
return SPIRV::MemorySemantics::AtomicCounterMemory;
case SPIRV::StorageClass::Image:
return SPIRV::MemorySemantics::ImageMemory;
default:
return SPIRV::MemorySemantics::None;
}
}
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord) {
switch (Ord) {
case AtomicOrdering::Acquire:
return SPIRV::MemorySemantics::Acquire;
case AtomicOrdering::Release:
return SPIRV::MemorySemantics::Release;
case AtomicOrdering::AcquireRelease:
return SPIRV::MemorySemantics::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return SPIRV::MemorySemantics::SequentiallyConsistent;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::NotAtomic:
return SPIRV::MemorySemantics::None;
}
llvm_unreachable(nullptr);
}
MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
const MachineRegisterInfo *MRI) {
MachineInstr *MI = MRI->getVRegDef(ConstReg);
MachineInstr *ConstInstr =
MI->getOpcode() == SPIRV::G_TRUNC || MI->getOpcode() == SPIRV::G_ZEXT
? MRI->getVRegDef(MI->getOperand(1).getReg())
: MI;
if (auto *GI = dyn_cast<GIntrinsic>(ConstInstr)) {
if (GI->is(Intrinsic::spv_track_constant)) {
ConstReg = ConstInstr->getOperand(2).getReg();
return MRI->getVRegDef(ConstReg);
}
} else if (ConstInstr->getOpcode() == SPIRV::ASSIGN_TYPE) {
ConstReg = ConstInstr->getOperand(1).getReg();
return MRI->getVRegDef(ConstReg);
}
return MRI->getVRegDef(ConstReg);
}
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI) {
const MachineInstr *MI = getDefInstrMaybeConstant(ConstReg, MRI);
assert(MI && MI->getOpcode() == TargetOpcode::G_CONSTANT);
return MI->getOperand(1).getCImm()->getValue().getZExtValue();
}
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID) {
if (const auto *GI = dyn_cast<GIntrinsic>(&MI))
return GI->is(IntrinsicID);
return false;
}
Type *getMDOperandAsType(const MDNode *N, unsigned I) {
Type *ElementTy = cast<ValueAsMetadata>(N->getOperand(I))->getType();
return toTypedPointer(ElementTy);
}
// The set of names is borrowed from the SPIR-V translator.
// TODO: may be implemented in SPIRVBuiltins.td.
static bool isPipeOrAddressSpaceCastBI(const StringRef MangledName) {
return MangledName == "write_pipe_2" || MangledName == "read_pipe_2" ||
MangledName == "write_pipe_2_bl" || MangledName == "read_pipe_2_bl" ||
MangledName == "write_pipe_4" || MangledName == "read_pipe_4" ||
MangledName == "reserve_write_pipe" ||
MangledName == "reserve_read_pipe" ||
MangledName == "commit_write_pipe" ||
MangledName == "commit_read_pipe" ||
MangledName == "work_group_reserve_write_pipe" ||
MangledName == "work_group_reserve_read_pipe" ||
MangledName == "work_group_commit_write_pipe" ||
MangledName == "work_group_commit_read_pipe" ||
MangledName == "get_pipe_num_packets_ro" ||
MangledName == "get_pipe_max_packets_ro" ||
MangledName == "get_pipe_num_packets_wo" ||
MangledName == "get_pipe_max_packets_wo" ||
MangledName == "sub_group_reserve_write_pipe" ||
MangledName == "sub_group_reserve_read_pipe" ||
MangledName == "sub_group_commit_write_pipe" ||
MangledName == "sub_group_commit_read_pipe" ||
MangledName == "to_global" || MangledName == "to_local" ||
MangledName == "to_private";
}
static bool isEnqueueKernelBI(const StringRef MangledName) {
return MangledName == "__enqueue_kernel_basic" ||
MangledName == "__enqueue_kernel_basic_events" ||
MangledName == "__enqueue_kernel_varargs" ||
MangledName == "__enqueue_kernel_events_varargs";
}
static bool isKernelQueryBI(const StringRef MangledName) {
return MangledName == "__get_kernel_work_group_size_impl" ||
MangledName == "__get_kernel_sub_group_count_for_ndrange_impl" ||
MangledName == "__get_kernel_max_sub_group_size_for_ndrange_impl" ||
MangledName == "__get_kernel_preferred_work_group_size_multiple_impl";
}
static bool isNonMangledOCLBuiltin(StringRef Name) {
if (!Name.starts_with("__"))
return false;
return isEnqueueKernelBI(Name) || isKernelQueryBI(Name) ||
isPipeOrAddressSpaceCastBI(Name.drop_front(2)) ||
Name == "__translate_sampler_initializer";
}
std::string getOclOrSpirvBuiltinDemangledName(StringRef Name) {
bool IsNonMangledOCL = isNonMangledOCLBuiltin(Name);
bool IsNonMangledSPIRV = Name.starts_with("__spirv_");
bool IsNonMangledHLSL = Name.starts_with("__hlsl_");
bool IsMangled = Name.starts_with("_Z");
// Otherwise use simple demangling to return the function name.
if (IsNonMangledOCL || IsNonMangledSPIRV || IsNonMangledHLSL || !IsMangled)
return Name.str();
// Try to use the itanium demangler.
if (char *DemangledName = itaniumDemangle(Name.data())) {
std::string Result = DemangledName;
free(DemangledName);
return Result;
}
// Autocheck C++, maybe need to do explicit check of the source language.
// OpenCL C++ built-ins are declared in cl namespace.
// TODO: consider using 'St' abbriviation for cl namespace mangling.
// Similar to ::std:: in C++.
size_t Start, Len = 0;
size_t DemangledNameLenStart = 2;
if (Name.starts_with("_ZN")) {
// Skip CV and ref qualifiers.
size_t NameSpaceStart = Name.find_first_not_of("rVKRO", 3);
// All built-ins are in the ::cl:: namespace.
if (Name.substr(NameSpaceStart, 11) != "2cl7__spirv")
return std::string();
DemangledNameLenStart = NameSpaceStart + 11;
}
Start = Name.find_first_not_of("0123456789", DemangledNameLenStart);
Name.substr(DemangledNameLenStart, Start - DemangledNameLenStart)
.getAsInteger(10, Len);
return Name.substr(Start, Len).str();
}
bool hasBuiltinTypePrefix(StringRef Name) {
if (Name.starts_with("opencl.") || Name.starts_with("ocl_") ||
Name.starts_with("spirv."))
return true;
return false;
}
bool isSpecialOpaqueType(const Type *Ty) {
if (const TargetExtType *EType = dyn_cast<TargetExtType>(Ty))
return hasBuiltinTypePrefix(EType->getName());
return false;
}
bool isEntryPoint(const Function &F) {
// OpenCL handling: any function with the SPIR_KERNEL
// calling convention will be a potential entry point.
if (F.getCallingConv() == CallingConv::SPIR_KERNEL)
return true;
// HLSL handling: special attribute are emitted from the
// front-end.
if (F.getFnAttribute("hlsl.shader").isValid())
return true;
return false;
}
Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx) {
TypeName.consume_front("atomic_");
if (TypeName.consume_front("void"))
return Type::getVoidTy(Ctx);
else if (TypeName.consume_front("bool"))
return Type::getIntNTy(Ctx, 1);
else if (TypeName.consume_front("char") ||
TypeName.consume_front("unsigned char") ||
TypeName.consume_front("uchar"))
return Type::getInt8Ty(Ctx);
else if (TypeName.consume_front("short") ||
TypeName.consume_front("unsigned short") ||
TypeName.consume_front("ushort"))
return Type::getInt16Ty(Ctx);
else if (TypeName.consume_front("int") ||
TypeName.consume_front("unsigned int") ||
TypeName.consume_front("uint"))
return Type::getInt32Ty(Ctx);
else if (TypeName.consume_front("long") ||
TypeName.consume_front("unsigned long") ||
TypeName.consume_front("ulong"))
return Type::getInt64Ty(Ctx);
else if (TypeName.consume_front("half"))
return Type::getHalfTy(Ctx);
else if (TypeName.consume_front("float"))
return Type::getFloatTy(Ctx);
else if (TypeName.consume_front("double"))
return Type::getDoubleTy(Ctx);
// Unable to recognize SPIRV type name
return nullptr;
}
} // namespace llvm
|