1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
//===-- TargetMachine.cpp - General Target Information ---------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the general parts of a Target machine.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetMachine.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
using namespace llvm;
//---------------------------------------------------------------------------
// TargetMachine Class
//
TargetMachine::TargetMachine(const Target &T, StringRef DataLayoutString,
const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options)
: TheTarget(T), DL(DataLayoutString), TargetTriple(TT),
TargetCPU(std::string(CPU)), TargetFS(std::string(FS)), AsmInfo(nullptr),
MRI(nullptr), MII(nullptr), STI(nullptr), RequireStructuredCFG(false),
O0WantsFastISel(false), Options(Options) {}
TargetMachine::~TargetMachine() = default;
bool TargetMachine::isLargeGlobalValue(const GlobalValue *GVal) const {
if (getTargetTriple().getArch() != Triple::x86_64)
return false;
// Remaining logic below is ELF-specific. For other object file formats where
// the large code model is mostly used for JIT compilation, just look at the
// code model.
if (!getTargetTriple().isOSBinFormatELF())
return getCodeModel() == CodeModel::Large;
auto *GO = GVal->getAliaseeObject();
// Be conservative if we can't find an underlying GlobalObject.
if (!GO)
return true;
auto *GV = dyn_cast<GlobalVariable>(GO);
auto IsPrefix = [](StringRef Name, StringRef Prefix) {
return Name.consume_front(Prefix) && (Name.empty() || Name[0] == '.');
};
// Functions/GlobalIFuncs are only large under the large code model.
if (!GV) {
// Handle explicit sections as we do for GlobalVariables with an explicit
// section, see comments below.
if (GO->hasSection()) {
StringRef Name = GO->getSection();
return IsPrefix(Name, ".ltext");
}
return getCodeModel() == CodeModel::Large;
}
if (GV->isThreadLocal())
return false;
// For x86-64, we treat an explicit GlobalVariable small code model to mean
// that the global should be placed in a small section, and ditto for large.
if (auto CM = GV->getCodeModel()) {
if (*CM == CodeModel::Small)
return false;
if (*CM == CodeModel::Large)
return true;
}
// Treat all globals in explicit sections as small, except for the standard
// large sections of .lbss, .ldata, .lrodata. This reduces the risk of linking
// together small and large sections, resulting in small references to large
// data sections. The code model attribute overrides this above.
if (GV->hasSection()) {
StringRef Name = GV->getSection();
return IsPrefix(Name, ".lbss") || IsPrefix(Name, ".ldata") ||
IsPrefix(Name, ".lrodata");
}
// Respect large data threshold for medium and large code models.
if (getCodeModel() == CodeModel::Medium ||
getCodeModel() == CodeModel::Large) {
if (!GV->getValueType()->isSized())
return true;
// Linker defined start/stop symbols can point to arbitrary points in the
// binary, so treat them as large.
if (GV->isDeclaration() && (GV->getName() == "__ehdr_start" ||
GV->getName().starts_with("__start_") ||
GV->getName().starts_with("__stop_")))
return true;
const DataLayout &DL = GV->getDataLayout();
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
return Size == 0 || Size > LargeDataThreshold;
}
return false;
}
bool TargetMachine::isPositionIndependent() const {
return getRelocationModel() == Reloc::PIC_;
}
/// Reset the target options based on the function's attributes.
/// setFunctionAttributes should have made the raw attribute value consistent
/// with the command line flag if used.
//
// FIXME: This function needs to go away for a number of reasons:
// a) global state on the TargetMachine is terrible in general,
// b) these target options should be passed only on the function
// and not on the TargetMachine (via TargetOptions) at all.
void TargetMachine::resetTargetOptions(const Function &F) const {
#define RESET_OPTION(X, Y) \
do { \
Options.X = F.getFnAttribute(Y).getValueAsBool(); \
} while (0)
RESET_OPTION(UnsafeFPMath, "unsafe-fp-math");
RESET_OPTION(NoInfsFPMath, "no-infs-fp-math");
RESET_OPTION(NoNaNsFPMath, "no-nans-fp-math");
RESET_OPTION(NoSignedZerosFPMath, "no-signed-zeros-fp-math");
RESET_OPTION(ApproxFuncFPMath, "approx-func-fp-math");
}
/// Returns the code generation relocation model. The choices are static, PIC,
/// and dynamic-no-pic.
Reloc::Model TargetMachine::getRelocationModel() const { return RM; }
uint64_t TargetMachine::getMaxCodeSize() const {
switch (getCodeModel()) {
case CodeModel::Tiny:
return llvm::maxUIntN(10);
case CodeModel::Small:
case CodeModel::Kernel:
case CodeModel::Medium:
return llvm::maxUIntN(31);
case CodeModel::Large:
return llvm::maxUIntN(64);
}
llvm_unreachable("Unhandled CodeModel enum");
}
/// Get the IR-specified TLS model for Var.
static TLSModel::Model getSelectedTLSModel(const GlobalValue *GV) {
switch (GV->getThreadLocalMode()) {
case GlobalVariable::NotThreadLocal:
llvm_unreachable("getSelectedTLSModel for non-TLS variable");
break;
case GlobalVariable::GeneralDynamicTLSModel:
return TLSModel::GeneralDynamic;
case GlobalVariable::LocalDynamicTLSModel:
return TLSModel::LocalDynamic;
case GlobalVariable::InitialExecTLSModel:
return TLSModel::InitialExec;
case GlobalVariable::LocalExecTLSModel:
return TLSModel::LocalExec;
}
llvm_unreachable("invalid TLS model");
}
bool TargetMachine::shouldAssumeDSOLocal(const GlobalValue *GV) const {
const Triple &TT = getTargetTriple();
Reloc::Model RM = getRelocationModel();
// According to the llvm language reference, we should be able to
// just return false in here if we have a GV, as we know it is
// dso_preemptable. At this point in time, the various IR producers
// have not been transitioned to always produce a dso_local when it
// is possible to do so.
//
// As a result we still have some logic in here to improve the quality of the
// generated code.
if (!GV)
return false;
// If the IR producer requested that this GV be treated as dso local, obey.
if (GV->isDSOLocal())
return true;
if (TT.isOSBinFormatCOFF()) {
// DLLImport explicitly marks the GV as external.
if (GV->hasDLLImportStorageClass())
return false;
// On MinGW, variables that haven't been declared with DLLImport may still
// end up automatically imported by the linker. To make this feasible,
// don't assume the variables to be DSO local unless we actually know
// that for sure. This only has to be done for variables; for functions
// the linker can insert thunks for calling functions from another DLL.
if (TT.isWindowsGNUEnvironment() && GV->isDeclarationForLinker() &&
isa<GlobalVariable>(GV))
return false;
// Don't mark 'extern_weak' symbols as DSO local. If these symbols remain
// unresolved in the link, they can be resolved to zero, which is outside
// the current DSO.
if (GV->hasExternalWeakLinkage())
return false;
// Every other GV is local on COFF.
return true;
}
if (TT.isOSBinFormatGOFF())
return true;
if (TT.isOSBinFormatMachO()) {
if (RM == Reloc::Static)
return true;
return GV->isStrongDefinitionForLinker();
}
assert(TT.isOSBinFormatELF() || TT.isOSBinFormatWasm() ||
TT.isOSBinFormatXCOFF());
return false;
}
bool TargetMachine::useEmulatedTLS() const { return Options.EmulatedTLS; }
bool TargetMachine::useTLSDESC() const { return Options.EnableTLSDESC; }
TLSModel::Model TargetMachine::getTLSModel(const GlobalValue *GV) const {
bool IsPIE = GV->getParent()->getPIELevel() != PIELevel::Default;
Reloc::Model RM = getRelocationModel();
bool IsSharedLibrary = RM == Reloc::PIC_ && !IsPIE;
bool IsLocal = shouldAssumeDSOLocal(GV);
TLSModel::Model Model;
if (IsSharedLibrary) {
if (IsLocal)
Model = TLSModel::LocalDynamic;
else
Model = TLSModel::GeneralDynamic;
} else {
if (IsLocal)
Model = TLSModel::LocalExec;
else
Model = TLSModel::InitialExec;
}
// If the user specified a more specific model, use that.
TLSModel::Model SelectedModel = getSelectedTLSModel(GV);
if (SelectedModel > Model)
return SelectedModel;
return Model;
}
/// Returns the optimization level: None, Less, Default, or Aggressive.
CodeGenOptLevel TargetMachine::getOptLevel() const { return OptLevel; }
void TargetMachine::setOptLevel(CodeGenOptLevel Level) { OptLevel = Level; }
TargetTransformInfo
TargetMachine::getTargetTransformInfo(const Function &F) const {
return TargetTransformInfo(F.getDataLayout());
}
void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name,
const GlobalValue *GV, Mangler &Mang,
bool MayAlwaysUsePrivate) const {
if (MayAlwaysUsePrivate || !GV->hasPrivateLinkage()) {
// Simple case: If GV is not private, it is not important to find out if
// private labels are legal in this case or not.
Mang.getNameWithPrefix(Name, GV, false);
return;
}
const TargetLoweringObjectFile *TLOF = getObjFileLowering();
TLOF->getNameWithPrefix(Name, GV, *this);
}
MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV) const {
const TargetLoweringObjectFile *TLOF = getObjFileLowering();
// XCOFF symbols could have special naming convention.
if (MCSymbol *TargetSymbol = TLOF->getTargetSymbol(GV, *this))
return TargetSymbol;
SmallString<128> NameStr;
getNameWithPrefix(NameStr, GV, TLOF->getMangler());
return TLOF->getContext().getOrCreateSymbol(NameStr);
}
TargetIRAnalysis TargetMachine::getTargetIRAnalysis() const {
// Since Analysis can't depend on Target, use a std::function to invert the
// dependency.
return TargetIRAnalysis(
[this](const Function &F) { return this->getTargetTransformInfo(F); });
}
std::pair<int, int> TargetMachine::parseBinutilsVersion(StringRef Version) {
if (Version == "none")
return {INT_MAX, INT_MAX}; // Make binutilsIsAtLeast() return true.
std::pair<int, int> Ret;
if (!Version.consumeInteger(10, Ret.first) && Version.consume_front("."))
Version.consumeInteger(10, Ret.second);
return Ret;
}
|