1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
//===-- VVPISelLowering.cpp - VE DAG Lowering Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the lowering and legalization of vector instructions to
// VVP_*layer SDNodes.
//
//===----------------------------------------------------------------------===//
#include "VECustomDAG.h"
#include "VEISelLowering.h"
using namespace llvm;
#define DEBUG_TYPE "ve-lower"
SDValue VETargetLowering::splitMaskArithmetic(SDValue Op,
SelectionDAG &DAG) const {
VECustomDAG CDAG(DAG, Op);
SDValue AVL =
CDAG.getConstant(Op.getValueType().getVectorNumElements(), MVT::i32);
SDValue A = Op->getOperand(0);
SDValue B = Op->getOperand(1);
SDValue LoA = CDAG.getUnpack(MVT::v256i1, A, PackElem::Lo, AVL);
SDValue HiA = CDAG.getUnpack(MVT::v256i1, A, PackElem::Hi, AVL);
SDValue LoB = CDAG.getUnpack(MVT::v256i1, B, PackElem::Lo, AVL);
SDValue HiB = CDAG.getUnpack(MVT::v256i1, B, PackElem::Hi, AVL);
unsigned Opc = Op.getOpcode();
auto LoRes = CDAG.getNode(Opc, MVT::v256i1, {LoA, LoB});
auto HiRes = CDAG.getNode(Opc, MVT::v256i1, {HiA, HiB});
return CDAG.getPack(MVT::v512i1, LoRes, HiRes, AVL);
}
SDValue VETargetLowering::lowerToVVP(SDValue Op, SelectionDAG &DAG) const {
// Can we represent this as a VVP node.
const unsigned Opcode = Op->getOpcode();
auto VVPOpcodeOpt = getVVPOpcode(Opcode);
if (!VVPOpcodeOpt)
return SDValue();
unsigned VVPOpcode = *VVPOpcodeOpt;
const bool FromVP = ISD::isVPOpcode(Opcode);
// The representative and legalized vector type of this operation.
VECustomDAG CDAG(DAG, Op);
// Dispatch to complex lowering functions.
switch (VVPOpcode) {
case VEISD::VVP_LOAD:
case VEISD::VVP_STORE:
return lowerVVP_LOAD_STORE(Op, CDAG);
case VEISD::VVP_GATHER:
case VEISD::VVP_SCATTER:
return lowerVVP_GATHER_SCATTER(Op, CDAG);
}
EVT OpVecVT = *getIdiomaticVectorType(Op.getNode());
EVT LegalVecVT = getTypeToTransformTo(*DAG.getContext(), OpVecVT);
auto Packing = getTypePacking(LegalVecVT.getSimpleVT());
SDValue AVL;
SDValue Mask;
if (FromVP) {
// All upstream VP SDNodes always have a mask and avl.
auto MaskIdx = ISD::getVPMaskIdx(Opcode);
auto AVLIdx = ISD::getVPExplicitVectorLengthIdx(Opcode);
if (MaskIdx)
Mask = Op->getOperand(*MaskIdx);
if (AVLIdx)
AVL = Op->getOperand(*AVLIdx);
}
// Materialize default mask and avl.
if (!AVL)
AVL = CDAG.getConstant(OpVecVT.getVectorNumElements(), MVT::i32);
if (!Mask)
Mask = CDAG.getConstantMask(Packing, true);
assert(LegalVecVT.isSimple());
if (isVVPUnaryOp(VVPOpcode))
return CDAG.getNode(VVPOpcode, LegalVecVT, {Op->getOperand(0), Mask, AVL});
if (isVVPBinaryOp(VVPOpcode))
return CDAG.getNode(VVPOpcode, LegalVecVT,
{Op->getOperand(0), Op->getOperand(1), Mask, AVL});
if (isVVPReductionOp(VVPOpcode)) {
auto SrcHasStart = hasReductionStartParam(Op->getOpcode());
SDValue StartV = SrcHasStart ? Op->getOperand(0) : SDValue();
SDValue VectorV = Op->getOperand(SrcHasStart ? 1 : 0);
return CDAG.getLegalReductionOpVVP(VVPOpcode, Op.getValueType(), StartV,
VectorV, Mask, AVL, Op->getFlags());
}
switch (VVPOpcode) {
default:
llvm_unreachable("lowerToVVP called for unexpected SDNode.");
case VEISD::VVP_FFMA: {
// VE has a swizzled operand order in FMA (compared to LLVM IR and
// SDNodes).
auto X = Op->getOperand(2);
auto Y = Op->getOperand(0);
auto Z = Op->getOperand(1);
return CDAG.getNode(VVPOpcode, LegalVecVT, {X, Y, Z, Mask, AVL});
}
case VEISD::VVP_SELECT: {
auto Mask = Op->getOperand(0);
auto OnTrue = Op->getOperand(1);
auto OnFalse = Op->getOperand(2);
return CDAG.getNode(VVPOpcode, LegalVecVT, {OnTrue, OnFalse, Mask, AVL});
}
case VEISD::VVP_SETCC: {
EVT LegalResVT = getTypeToTransformTo(*DAG.getContext(), Op.getValueType());
auto LHS = Op->getOperand(0);
auto RHS = Op->getOperand(1);
auto Pred = Op->getOperand(2);
return CDAG.getNode(VVPOpcode, LegalResVT, {LHS, RHS, Pred, Mask, AVL});
}
}
}
SDValue VETargetLowering::lowerVVP_LOAD_STORE(SDValue Op,
VECustomDAG &CDAG) const {
auto VVPOpc = *getVVPOpcode(Op->getOpcode());
const bool IsLoad = (VVPOpc == VEISD::VVP_LOAD);
// Shares.
SDValue BasePtr = getMemoryPtr(Op);
SDValue Mask = getNodeMask(Op);
SDValue Chain = getNodeChain(Op);
SDValue AVL = getNodeAVL(Op);
// Store specific.
SDValue Data = getStoredValue(Op);
// Load specific.
SDValue PassThru = getNodePassthru(Op);
SDValue StrideV = getLoadStoreStride(Op, CDAG);
auto DataVT = *getIdiomaticVectorType(Op.getNode());
auto Packing = getTypePacking(DataVT);
// TODO: Infer lower AVL from mask.
if (!AVL)
AVL = CDAG.getConstant(DataVT.getVectorNumElements(), MVT::i32);
// Default to the all-true mask.
if (!Mask)
Mask = CDAG.getConstantMask(Packing, true);
if (IsLoad) {
MVT LegalDataVT = getLegalVectorType(
Packing, DataVT.getVectorElementType().getSimpleVT());
auto NewLoadV = CDAG.getNode(VEISD::VVP_LOAD, {LegalDataVT, MVT::Other},
{Chain, BasePtr, StrideV, Mask, AVL});
if (!PassThru || PassThru->isUndef())
return NewLoadV;
// Convert passthru to an explicit select node.
SDValue DataV = CDAG.getNode(VEISD::VVP_SELECT, DataVT,
{NewLoadV, PassThru, Mask, AVL});
SDValue NewLoadChainV = SDValue(NewLoadV.getNode(), 1);
// Merge them back into one node.
return CDAG.getMergeValues({DataV, NewLoadChainV});
}
// VVP_STORE
assert(VVPOpc == VEISD::VVP_STORE);
if (getTypeAction(*CDAG.getDAG()->getContext(), Data.getValueType()) !=
TargetLowering::TypeLegal)
// Doesn't lower store instruction if an operand is not lowered yet.
// If it isn't, return SDValue(). In this way, LLVM will try to lower
// store instruction again after lowering all operands.
return SDValue();
return CDAG.getNode(VEISD::VVP_STORE, Op.getNode()->getVTList(),
{Chain, Data, BasePtr, StrideV, Mask, AVL});
}
SDValue VETargetLowering::splitPackedLoadStore(SDValue Op,
VECustomDAG &CDAG) const {
auto VVPOC = *getVVPOpcode(Op.getOpcode());
assert((VVPOC == VEISD::VVP_LOAD) || (VVPOC == VEISD::VVP_STORE));
MVT DataVT = getIdiomaticVectorType(Op.getNode())->getSimpleVT();
assert(getTypePacking(DataVT) == Packing::Dense &&
"Can only split packed load/store");
MVT SplitDataVT = splitVectorType(DataVT);
assert(!getNodePassthru(Op) &&
"Should have been folded in lowering to VVP layer");
// Analyze the operation
SDValue PackedMask = getNodeMask(Op);
SDValue PackedAVL = getAnnotatedNodeAVL(Op).first;
SDValue PackPtr = getMemoryPtr(Op);
SDValue PackData = getStoredValue(Op);
SDValue PackStride = getLoadStoreStride(Op, CDAG);
unsigned ChainResIdx = PackData ? 0 : 1;
SDValue PartOps[2];
SDValue UpperPartAVL; // we will use this for packing things back together
for (PackElem Part : {PackElem::Hi, PackElem::Lo}) {
// VP ops already have an explicit mask and AVL. When expanding from non-VP
// attach those additional inputs here.
auto SplitTM = CDAG.getTargetSplitMask(PackedMask, PackedAVL, Part);
// Keep track of the (higher) lvl.
if (Part == PackElem::Hi)
UpperPartAVL = SplitTM.AVL;
// Attach non-predicating value operands
SmallVector<SDValue, 4> OpVec;
// Chain
OpVec.push_back(getNodeChain(Op));
// Data
if (PackData) {
SDValue PartData =
CDAG.getUnpack(SplitDataVT, PackData, Part, SplitTM.AVL);
OpVec.push_back(PartData);
}
// Ptr & Stride
// Push (ptr + ElemBytes * <Part>, 2 * ElemBytes)
// Stride info
// EVT DataVT = LegalizeVectorType(getMemoryDataVT(Op), Op, DAG, Mode);
OpVec.push_back(CDAG.getSplitPtrOffset(PackPtr, PackStride, Part));
OpVec.push_back(CDAG.getSplitPtrStride(PackStride));
// Add predicating args and generate part node
OpVec.push_back(SplitTM.Mask);
OpVec.push_back(SplitTM.AVL);
if (PackData) {
// Store
PartOps[(int)Part] = CDAG.getNode(VVPOC, MVT::Other, OpVec);
} else {
// Load
PartOps[(int)Part] =
CDAG.getNode(VVPOC, {SplitDataVT, MVT::Other}, OpVec);
}
}
// Merge the chains
SDValue LowChain = SDValue(PartOps[(int)PackElem::Lo].getNode(), ChainResIdx);
SDValue HiChain = SDValue(PartOps[(int)PackElem::Hi].getNode(), ChainResIdx);
SDValue FusedChains =
CDAG.getNode(ISD::TokenFactor, MVT::Other, {LowChain, HiChain});
// Chain only [store]
if (PackData)
return FusedChains;
// Re-pack into full packed vector result
MVT PackedVT =
getLegalVectorType(Packing::Dense, DataVT.getVectorElementType());
SDValue PackedVals = CDAG.getPack(PackedVT, PartOps[(int)PackElem::Lo],
PartOps[(int)PackElem::Hi], UpperPartAVL);
return CDAG.getMergeValues({PackedVals, FusedChains});
}
SDValue VETargetLowering::lowerVVP_GATHER_SCATTER(SDValue Op,
VECustomDAG &CDAG) const {
EVT DataVT = *getIdiomaticVectorType(Op.getNode());
auto Packing = getTypePacking(DataVT);
MVT LegalDataVT =
getLegalVectorType(Packing, DataVT.getVectorElementType().getSimpleVT());
SDValue AVL = getAnnotatedNodeAVL(Op).first;
SDValue Index = getGatherScatterIndex(Op);
SDValue BasePtr = getMemoryPtr(Op);
SDValue Mask = getNodeMask(Op);
SDValue Chain = getNodeChain(Op);
SDValue Scale = getGatherScatterScale(Op);
SDValue PassThru = getNodePassthru(Op);
SDValue StoredValue = getStoredValue(Op);
if (PassThru && PassThru->isUndef())
PassThru = SDValue();
bool IsScatter = (bool)StoredValue;
// TODO: Infer lower AVL from mask.
if (!AVL)
AVL = CDAG.getConstant(DataVT.getVectorNumElements(), MVT::i32);
// Default to the all-true mask.
if (!Mask)
Mask = CDAG.getConstantMask(Packing, true);
SDValue AddressVec =
CDAG.getGatherScatterAddress(BasePtr, Scale, Index, Mask, AVL);
if (IsScatter)
return CDAG.getNode(VEISD::VVP_SCATTER, MVT::Other,
{Chain, StoredValue, AddressVec, Mask, AVL});
// Gather.
SDValue NewLoadV = CDAG.getNode(VEISD::VVP_GATHER, {LegalDataVT, MVT::Other},
{Chain, AddressVec, Mask, AVL});
if (!PassThru)
return NewLoadV;
// TODO: Use vvp_select
SDValue DataV = CDAG.getNode(VEISD::VVP_SELECT, LegalDataVT,
{NewLoadV, PassThru, Mask, AVL});
SDValue NewLoadChainV = SDValue(NewLoadV.getNode(), 1);
return CDAG.getMergeValues({DataV, NewLoadChainV});
}
SDValue VETargetLowering::legalizeInternalLoadStoreOp(SDValue Op,
VECustomDAG &CDAG) const {
LLVM_DEBUG(dbgs() << "::legalizeInternalLoadStoreOp\n";);
MVT DataVT = getIdiomaticVectorType(Op.getNode())->getSimpleVT();
// TODO: Recognize packable load,store.
if (isPackedVectorType(DataVT))
return splitPackedLoadStore(Op, CDAG);
return legalizePackedAVL(Op, CDAG);
}
SDValue VETargetLowering::legalizeInternalVectorOp(SDValue Op,
SelectionDAG &DAG) const {
LLVM_DEBUG(dbgs() << "::legalizeInternalVectorOp\n";);
VECustomDAG CDAG(DAG, Op);
// Dispatch to specialized legalization functions.
switch (Op->getOpcode()) {
case VEISD::VVP_LOAD:
case VEISD::VVP_STORE:
return legalizeInternalLoadStoreOp(Op, CDAG);
}
EVT IdiomVT = Op.getValueType();
if (isPackedVectorType(IdiomVT) &&
!supportsPackedMode(Op.getOpcode(), IdiomVT))
return splitVectorOp(Op, CDAG);
// TODO: Implement odd/even splitting.
return legalizePackedAVL(Op, CDAG);
}
SDValue VETargetLowering::splitVectorOp(SDValue Op, VECustomDAG &CDAG) const {
MVT ResVT = splitVectorType(Op.getValue(0).getSimpleValueType());
auto AVLPos = getAVLPos(Op->getOpcode());
auto MaskPos = getMaskPos(Op->getOpcode());
SDValue PackedMask = getNodeMask(Op);
auto AVLPair = getAnnotatedNodeAVL(Op);
SDValue PackedAVL = AVLPair.first;
assert(!AVLPair.second && "Expecting non pack-legalized oepration");
// request the parts
SDValue PartOps[2];
SDValue UpperPartAVL; // we will use this for packing things back together
for (PackElem Part : {PackElem::Hi, PackElem::Lo}) {
// VP ops already have an explicit mask and AVL. When expanding from non-VP
// attach those additional inputs here.
auto SplitTM = CDAG.getTargetSplitMask(PackedMask, PackedAVL, Part);
if (Part == PackElem::Hi)
UpperPartAVL = SplitTM.AVL;
// Attach non-predicating value operands
SmallVector<SDValue, 4> OpVec;
for (unsigned i = 0; i < Op.getNumOperands(); ++i) {
if (AVLPos && ((int)i) == *AVLPos)
continue;
if (MaskPos && ((int)i) == *MaskPos)
continue;
// Value operand
auto PackedOperand = Op.getOperand(i);
auto UnpackedOpVT = splitVectorType(PackedOperand.getSimpleValueType());
SDValue PartV =
CDAG.getUnpack(UnpackedOpVT, PackedOperand, Part, SplitTM.AVL);
OpVec.push_back(PartV);
}
// Add predicating args and generate part node.
OpVec.push_back(SplitTM.Mask);
OpVec.push_back(SplitTM.AVL);
// Emit legal VVP nodes.
PartOps[(int)Part] =
CDAG.getNode(Op.getOpcode(), ResVT, OpVec, Op->getFlags());
}
// Re-package vectors.
return CDAG.getPack(Op.getValueType(), PartOps[(int)PackElem::Lo],
PartOps[(int)PackElem::Hi], UpperPartAVL);
}
SDValue VETargetLowering::legalizePackedAVL(SDValue Op,
VECustomDAG &CDAG) const {
LLVM_DEBUG(dbgs() << "::legalizePackedAVL\n";);
// Only required for VEC and VVP ops.
if (!isVVPOrVEC(Op->getOpcode()))
return Op;
// Operation already has a legal AVL.
auto AVL = getNodeAVL(Op);
if (isLegalAVL(AVL))
return Op;
// Half and round up EVL for 32bit element types.
SDValue LegalAVL = AVL;
MVT IdiomVT = getIdiomaticVectorType(Op.getNode())->getSimpleVT();
if (isPackedVectorType(IdiomVT)) {
assert(maySafelyIgnoreMask(Op) &&
"TODO Shift predication from EVL into Mask");
if (auto *ConstAVL = dyn_cast<ConstantSDNode>(AVL)) {
LegalAVL = CDAG.getConstant((ConstAVL->getZExtValue() + 1) / 2, MVT::i32);
} else {
auto ConstOne = CDAG.getConstant(1, MVT::i32);
auto PlusOne = CDAG.getNode(ISD::ADD, MVT::i32, {AVL, ConstOne});
LegalAVL = CDAG.getNode(ISD::SRL, MVT::i32, {PlusOne, ConstOne});
}
}
SDValue AnnotatedLegalAVL = CDAG.annotateLegalAVL(LegalAVL);
// Copy the operand list.
int NumOp = Op->getNumOperands();
auto AVLPos = getAVLPos(Op->getOpcode());
std::vector<SDValue> FixedOperands;
for (int i = 0; i < NumOp; ++i) {
if (AVLPos && (i == *AVLPos)) {
FixedOperands.push_back(AnnotatedLegalAVL);
continue;
}
FixedOperands.push_back(Op->getOperand(i));
}
// Clone the operation with fixed operands.
auto Flags = Op->getFlags();
SDValue NewN =
CDAG.getNode(Op->getOpcode(), Op->getVTList(), FixedOperands, Flags);
return NewN;
}
|