1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
//===- X86RegisterBankInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86RegisterBankInfo.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterBank.h"
#include "llvm/CodeGen/RegisterBankInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/IntrinsicsX86.h"
#define GET_TARGET_REGBANK_IMPL
#include "X86GenRegisterBank.inc"
using namespace llvm;
// This file will be TableGen'ed at some point.
#define GET_TARGET_REGBANK_INFO_IMPL
#include "X86GenRegisterBankInfo.def"
X86RegisterBankInfo::X86RegisterBankInfo(const TargetRegisterInfo &TRI) {
// validate RegBank initialization.
const RegisterBank &RBGPR = getRegBank(X86::GPRRegBankID);
(void)RBGPR;
assert(&X86::GPRRegBank == &RBGPR && "Incorrect RegBanks inizalization.");
// The GPR register bank is fully defined by all the registers in
// GR64 + its subclasses.
assert(RBGPR.covers(*TRI.getRegClass(X86::GR64RegClassID)) &&
"Subclass not added?");
assert(getMaximumSize(RBGPR.getID()) == 64 &&
"GPRs should hold up to 64-bit");
}
const RegisterBank &
X86RegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
LLT) const {
if (X86::GR8RegClass.hasSubClassEq(&RC) ||
X86::GR16RegClass.hasSubClassEq(&RC) ||
X86::GR32RegClass.hasSubClassEq(&RC) ||
X86::GR64RegClass.hasSubClassEq(&RC) ||
X86::LOW32_ADDR_ACCESSRegClass.hasSubClassEq(&RC) ||
X86::LOW32_ADDR_ACCESS_RBPRegClass.hasSubClassEq(&RC))
return getRegBank(X86::GPRRegBankID);
if (X86::FR32XRegClass.hasSubClassEq(&RC) ||
X86::FR64XRegClass.hasSubClassEq(&RC) ||
X86::VR128XRegClass.hasSubClassEq(&RC) ||
X86::VR256XRegClass.hasSubClassEq(&RC) ||
X86::VR512RegClass.hasSubClassEq(&RC))
return getRegBank(X86::VECRRegBankID);
if (X86::RFP80RegClass.hasSubClassEq(&RC) ||
X86::RFP32RegClass.hasSubClassEq(&RC) ||
X86::RFP64RegClass.hasSubClassEq(&RC))
return getRegBank(X86::PSRRegBankID);
llvm_unreachable("Unsupported register kind yet.");
}
// \returns true if a given intrinsic only uses and defines FPRs.
static bool isFPIntrinsic(const MachineRegisterInfo &MRI,
const MachineInstr &MI) {
// TODO: Add more intrinsics.
switch (cast<GIntrinsic>(MI).getIntrinsicID()) {
default:
return false;
// SSE1
case Intrinsic::x86_sse_rcp_ss:
case Intrinsic::x86_sse_rcp_ps:
case Intrinsic::x86_sse_rsqrt_ss:
case Intrinsic::x86_sse_rsqrt_ps:
case Intrinsic::x86_sse_min_ss:
case Intrinsic::x86_sse_min_ps:
case Intrinsic::x86_sse_max_ss:
case Intrinsic::x86_sse_max_ps:
return true;
}
return false;
}
bool X86RegisterBankInfo::hasFPConstraints(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI,
unsigned Depth) const {
unsigned Op = MI.getOpcode();
if (Op == TargetOpcode::G_INTRINSIC && isFPIntrinsic(MRI, MI))
return true;
// Do we have an explicit floating point instruction?
if (isPreISelGenericFloatingPointOpcode(Op))
return true;
// No. Check if we have a copy-like instruction. If we do, then we could
// still be fed by floating point instructions.
if (Op != TargetOpcode::COPY && !MI.isPHI() &&
!isPreISelGenericOptimizationHint(Op))
return false;
// Check if we already know the register bank.
auto *RB = getRegBank(MI.getOperand(0).getReg(), MRI, TRI);
if (RB == &getRegBank(X86::PSRRegBankID))
return true;
if (RB == &getRegBank(X86::GPRRegBankID))
return false;
// We don't know anything.
//
// If we have a phi, we may be able to infer that it will be assigned a fp
// type based off of its inputs.
if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
return false;
return any_of(MI.explicit_uses(), [&](const MachineOperand &Op) {
return Op.isReg() &&
onlyDefinesFP(*MRI.getVRegDef(Op.getReg()), MRI, TRI, Depth + 1);
});
}
bool X86RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI,
unsigned Depth) const {
switch (MI.getOpcode()) {
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
case TargetOpcode::G_FCMP:
case TargetOpcode::G_LROUND:
case TargetOpcode::G_LLROUND:
case TargetOpcode::G_INTRINSIC_TRUNC:
case TargetOpcode::G_INTRINSIC_ROUND:
return true;
default:
break;
}
return hasFPConstraints(MI, MRI, TRI, Depth);
}
bool X86RegisterBankInfo::onlyDefinesFP(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI,
unsigned Depth) const {
switch (MI.getOpcode()) {
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP:
return true;
default:
break;
}
return hasFPConstraints(MI, MRI, TRI, Depth);
}
X86GenRegisterBankInfo::PartialMappingIdx
X86GenRegisterBankInfo::getPartialMappingIdx(const MachineInstr &MI,
const LLT &Ty, bool isFP) {
const MachineFunction *MF = MI.getMF();
const X86Subtarget *ST = &MF->getSubtarget<X86Subtarget>();
bool HasSSE1 = ST->hasSSE1();
bool HasSSE2 = ST->hasSSE2();
// 80 bits is only generated for X87 floating points.
if (Ty.getSizeInBits() == 80)
isFP = true;
if ((Ty.isScalar() && !isFP) || Ty.isPointer()) {
switch (Ty.getSizeInBits()) {
case 1:
case 8:
return PMI_GPR8;
case 16:
return PMI_GPR16;
case 32:
return PMI_GPR32;
case 64:
return PMI_GPR64;
case 128:
return PMI_VEC128;
break;
default:
llvm_unreachable("Unsupported register size.");
}
} else if (Ty.isScalar()) {
switch (Ty.getSizeInBits()) {
case 32:
return HasSSE1 ? PMI_FP32 : PMI_PSR32;
case 64:
return HasSSE2 ? PMI_FP64 : PMI_PSR64;
case 128:
return PMI_VEC128;
case 80:
return PMI_PSR80;
default:
llvm_unreachable("Unsupported register size.");
}
} else {
switch (Ty.getSizeInBits()) {
case 128:
return PMI_VEC128;
case 256:
return PMI_VEC256;
case 512:
return PMI_VEC512;
default:
llvm_unreachable("Unsupported register size.");
}
}
return PMI_None;
}
void X86RegisterBankInfo::getInstrPartialMappingIdxs(
const MachineInstr &MI, const MachineRegisterInfo &MRI, const bool isFP,
SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx) {
unsigned NumOperands = MI.getNumOperands();
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
auto &MO = MI.getOperand(Idx);
if (!MO.isReg() || !MO.getReg())
OpRegBankIdx[Idx] = PMI_None;
else
OpRegBankIdx[Idx] =
getPartialMappingIdx(MI, MRI.getType(MO.getReg()), isFP);
}
}
bool X86RegisterBankInfo::getInstrValueMapping(
const MachineInstr &MI,
const SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx,
SmallVectorImpl<const ValueMapping *> &OpdsMapping) {
unsigned NumOperands = MI.getNumOperands();
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
if (!MI.getOperand(Idx).isReg())
continue;
if (!MI.getOperand(Idx).getReg())
continue;
auto Mapping = getValueMapping(OpRegBankIdx[Idx], 1);
if (!Mapping->isValid())
return false;
OpdsMapping[Idx] = Mapping;
}
return true;
}
const RegisterBankInfo::InstructionMapping &
X86RegisterBankInfo::getSameOperandsMapping(const MachineInstr &MI,
bool isFP) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned NumOperands = MI.getNumOperands();
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (NumOperands != 3 || (Ty != MRI.getType(MI.getOperand(1).getReg())) ||
(Ty != MRI.getType(MI.getOperand(2).getReg())))
llvm_unreachable("Unsupported operand mapping yet.");
auto Mapping = getValueMapping(getPartialMappingIdx(MI, Ty, isFP), 3);
return getInstructionMapping(DefaultMappingID, 1, Mapping, NumOperands);
}
const RegisterBankInfo::InstructionMapping &
X86RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned Opc = MI.getOpcode();
// Try the default logic for non-generic instructions that are either
// copies or already have some operands assigned to banks.
if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) {
const InstructionMapping &Mapping = getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
}
switch (Opc) {
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
case TargetOpcode::G_MUL:
return getSameOperandsMapping(MI, false);
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
return getSameOperandsMapping(MI, true);
case TargetOpcode::G_SHL:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR: {
unsigned NumOperands = MI.getNumOperands();
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
auto Mapping = getValueMapping(getPartialMappingIdx(MI, Ty, false), 3);
return getInstructionMapping(DefaultMappingID, 1, Mapping, NumOperands);
}
default:
break;
}
unsigned NumOperands = MI.getNumOperands();
SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
switch (Opc) {
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FCONSTANT:
// Instruction having only floating-point operands (all scalars in
// VECRReg)
getInstrPartialMappingIdxs(MI, MRI, /* isFP= */ true, OpRegBankIdx);
break;
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_FPTOSI: {
// Some of the floating-point instructions have mixed GPR and FP
// operands: fine-tune the computed mapping.
auto &Op0 = MI.getOperand(0);
auto &Op1 = MI.getOperand(1);
const LLT Ty0 = MRI.getType(Op0.getReg());
const LLT Ty1 = MRI.getType(Op1.getReg());
bool FirstArgIsFP = Opc == TargetOpcode::G_SITOFP;
bool SecondArgIsFP = Opc == TargetOpcode::G_FPTOSI;
OpRegBankIdx[0] = getPartialMappingIdx(MI, Ty0, /* isFP= */ FirstArgIsFP);
OpRegBankIdx[1] = getPartialMappingIdx(MI, Ty1, /* isFP= */ SecondArgIsFP);
break;
}
case TargetOpcode::G_FCMP: {
LLT Ty1 = MRI.getType(MI.getOperand(2).getReg());
LLT Ty2 = MRI.getType(MI.getOperand(3).getReg());
(void)Ty2;
assert(Ty1.getSizeInBits() == Ty2.getSizeInBits() &&
"Mismatched operand sizes for G_FCMP");
unsigned Size = Ty1.getSizeInBits();
(void)Size;
assert((Size == 32 || Size == 64) && "Unsupported size for G_FCMP");
auto FpRegBank = getPartialMappingIdx(MI, Ty1, /* isFP= */ true);
OpRegBankIdx = {PMI_GPR8,
/* Predicate */ PMI_None, FpRegBank, FpRegBank};
break;
}
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ANYEXT: {
auto &Op0 = MI.getOperand(0);
auto &Op1 = MI.getOperand(1);
const LLT Ty0 = MRI.getType(Op0.getReg());
const LLT Ty1 = MRI.getType(Op1.getReg());
bool isFPTrunc = (Ty0.getSizeInBits() == 32 || Ty0.getSizeInBits() == 64) &&
Ty1.getSizeInBits() == 128 && Opc == TargetOpcode::G_TRUNC;
bool isFPAnyExt =
Ty0.getSizeInBits() == 128 &&
(Ty1.getSizeInBits() == 32 || Ty1.getSizeInBits() == 64) &&
Opc == TargetOpcode::G_ANYEXT;
getInstrPartialMappingIdxs(MI, MRI, /* isFP= */ isFPTrunc || isFPAnyExt,
OpRegBankIdx);
break;
}
case TargetOpcode::G_LOAD: {
// Check if that load feeds fp instructions.
// In that case, we want the default mapping to be on FPR
// instead of blind map every scalar to GPR.
bool IsFP = any_of(MRI.use_nodbg_instructions(cast<GLoad>(MI).getDstReg()),
[&](const MachineInstr &UseMI) {
// If we have at least one direct use in a FP
// instruction, assume this was a floating point load
// in the IR. If it was not, we would have had a
// bitcast before reaching that instruction.
return onlyUsesFP(UseMI, MRI, TRI);
});
getInstrPartialMappingIdxs(MI, MRI, IsFP, OpRegBankIdx);
break;
}
case TargetOpcode::G_STORE: {
// Check if that store is fed by fp instructions.
Register VReg = cast<GStore>(MI).getValueReg();
if (!VReg)
break;
MachineInstr *DefMI = MRI.getVRegDef(VReg);
bool IsFP = onlyDefinesFP(*DefMI, MRI, TRI);
getInstrPartialMappingIdxs(MI, MRI, IsFP, OpRegBankIdx);
break;
}
default:
// Track the bank of each register, use NotFP mapping (all scalars in
// GPRs)
getInstrPartialMappingIdxs(MI, MRI, /* isFP= */ false, OpRegBankIdx);
break;
}
// Finally construct the computed mapping.
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping))
return getInvalidInstructionMapping();
return getInstructionMapping(DefaultMappingID, /* Cost */ 1,
getOperandsMapping(OpdsMapping), NumOperands);
}
void X86RegisterBankInfo::applyMappingImpl(
MachineIRBuilder &Builder, const OperandsMapper &OpdMapper) const {
return applyDefaultMapping(OpdMapper);
}
RegisterBankInfo::InstructionMappings
X86RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
switch (MI.getOpcode()) {
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
case TargetOpcode::G_IMPLICIT_DEF: {
// we going to try to map 32/64/80 bit to PMI_FP32/PMI_FP64/PMI_FP80
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
if (Size != 32 && Size != 64 && Size != 80)
break;
unsigned NumOperands = MI.getNumOperands();
// Track the bank of each register, use FP mapping (all scalars in VEC)
SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
getInstrPartialMappingIdxs(MI, MRI, /* isFP= */ true, OpRegBankIdx);
// Finally construct the computed mapping.
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping))
break;
const RegisterBankInfo::InstructionMapping &Mapping = getInstructionMapping(
/*ID*/ 1, /*Cost*/ 1, getOperandsMapping(OpdsMapping), NumOperands);
InstructionMappings AltMappings;
AltMappings.push_back(&Mapping);
return AltMappings;
}
default:
break;
}
return RegisterBankInfo::getInstrAlternativeMappings(MI);
}
|