1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
//===- X86CompressEVEX.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
// when possible in order to reduce code size or facilitate HW decoding.
//
// Possible compression:
// a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
// b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
// c. NDD (EVEX) -> non-NDD (legacy)
// d. NF_ND (EVEX) -> NF (EVEX)
// e. NonNF (EVEX) -> NF (EVEX)
//
// Compression a, b and c can always reduce code size, with some exceptions
// such as promoted 16-bit CRC32 which is as long as the legacy version.
//
// legacy:
// crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
// promoted:
// crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
//
// From performance perspective, these should be same (same uops and same EXE
// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
// can execute in more places (broader HW install base). So we will still do
// the compression.
//
// Compression d can help hardware decode (HW may skip reading the NDD
// register) although the instruction length remains unchanged.
//
// Compression e can help hardware skip updating EFLAGS although the instruction
// length remains unchanged.
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86InstComments.h"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include <atomic>
#include <cassert>
#include <cstdint>
using namespace llvm;
#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
#define COMP_EVEX_NAME "x86-compress-evex"
#define DEBUG_TYPE COMP_EVEX_NAME
namespace {
// Including the generated EVEX compression tables.
#define GET_X86_COMPRESS_EVEX_TABLE
#include "X86GenInstrMapping.inc"
class CompressEVEXPass : public MachineFunctionPass {
public:
static char ID;
CompressEVEXPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return COMP_EVEX_DESC; }
bool runOnMachineFunction(MachineFunction &MF) override;
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
};
} // end anonymous namespace
char CompressEVEXPass::ID = 0;
static bool usesExtendedRegister(const MachineInstr &MI) {
auto isHiRegIdx = [](unsigned Reg) {
// Check for XMM register with indexes between 16 - 31.
if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
return true;
// Check for YMM register with indexes between 16 - 31.
if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
return true;
// Check for GPR with indexes between 16 - 31.
if (X86II::isApxExtendedReg(Reg))
return true;
return false;
};
// Check that operands are not ZMM regs or
// XMM/YMM regs with hi indexes between 16 - 31.
for (const MachineOperand &MO : MI.explicit_operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
assert(!X86II::isZMMReg(Reg) &&
"ZMM instructions should not be in the EVEX->VEX tables");
if (isHiRegIdx(Reg))
return true;
}
return false;
}
// Do any custom cleanup needed to finalize the conversion.
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
(void)NewOpc;
unsigned Opc = MI.getOpcode();
switch (Opc) {
case X86::VALIGNDZ128rri:
case X86::VALIGNDZ128rmi:
case X86::VALIGNQZ128rri:
case X86::VALIGNQZ128rmi: {
assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
"Unexpected new opcode!");
unsigned Scale =
(Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
Imm.setImm(Imm.getImm() * Scale);
break;
}
case X86::VSHUFF32X4Z256rmi:
case X86::VSHUFF32X4Z256rri:
case X86::VSHUFF64X2Z256rmi:
case X86::VSHUFF64X2Z256rri:
case X86::VSHUFI32X4Z256rmi:
case X86::VSHUFI32X4Z256rri:
case X86::VSHUFI64X2Z256rmi:
case X86::VSHUFI64X2Z256rri: {
assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
"Unexpected new opcode!");
MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
int64_t ImmVal = Imm.getImm();
// Set bit 5, move bit 1 to bit 4, copy bit 0.
Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
break;
}
case X86::VRNDSCALEPDZ128rri:
case X86::VRNDSCALEPDZ128rmi:
case X86::VRNDSCALEPSZ128rri:
case X86::VRNDSCALEPSZ128rmi:
case X86::VRNDSCALEPDZ256rri:
case X86::VRNDSCALEPDZ256rmi:
case X86::VRNDSCALEPSZ256rri:
case X86::VRNDSCALEPSZ256rmi:
case X86::VRNDSCALESDZr:
case X86::VRNDSCALESDZm:
case X86::VRNDSCALESSZr:
case X86::VRNDSCALESSZm:
case X86::VRNDSCALESDZr_Int:
case X86::VRNDSCALESDZm_Int:
case X86::VRNDSCALESSZr_Int:
case X86::VRNDSCALESSZm_Int:
const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
int64_t ImmVal = Imm.getImm();
// Ensure that only bits 3:0 of the immediate are used.
if ((ImmVal & 0xf) != ImmVal)
return false;
break;
}
return true;
}
static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) {
uint64_t TSFlags = MI.getDesc().TSFlags;
// Check for EVEX instructions only.
if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
return false;
// Instructions with mask or 512-bit vector can't be converted to VEX.
if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
return false;
auto IsRedundantNewDataDest = [&](unsigned &Opc) {
// $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
// ->
// $rbx = ADD64rr $rbx, $rax
const MCInstrDesc &Desc = MI.getDesc();
Register Reg0 = MI.getOperand(0).getReg();
const MachineOperand &Op1 = MI.getOperand(1);
if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
X86::isCFCMOVCC(MI.getOpcode()))
return false;
Register Reg1 = Op1.getReg();
if (Reg1 == Reg0)
return true;
// Op1 and Op2 may be commutable for ND instructions.
if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
!MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
return false;
// Opcode may change after commute, e.g. SHRD -> SHLD
ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
Opc = MI.getOpcode();
return true;
};
// EVEX_B has several meanings.
// AVX512:
// register form: rounding control or SAE
// memory form: broadcast
//
// APX:
// MAP4: NDD
//
// For AVX512 cases, EVEX prefix is needed in order to carry this information
// thus preventing the transformation to VEX encoding.
bool IsND = X86II::hasNewDataDest(TSFlags);
if (TSFlags & X86II::EVEX_B && !IsND)
return false;
unsigned Opc = MI.getOpcode();
// MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;
auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
const auto I = llvm::lower_bound(Table, Opc);
if (I == Table.end() || I->OldOpc != Opc)
return 0;
if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
!performCustomAdjustments(MI, I->NewOpc))
return 0;
return I->NewOpc;
};
// NonNF -> NF only if it's not a compressible NDD instruction and eflags is
// dead.
unsigned NewOpc = IsRedundantNDD
? X86::getNonNDVariant(Opc)
: ((IsNDLike && ST.hasNF() &&
MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
? X86::getNFVariant(Opc)
: GetCompressedOpc(Opc));
if (!NewOpc)
return false;
const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
MI.setDesc(NewDesc);
unsigned AsmComment;
switch (NewDesc.TSFlags & X86II::EncodingMask) {
case X86II::LEGACY:
AsmComment = X86::AC_EVEX_2_LEGACY;
break;
case X86II::VEX:
AsmComment = X86::AC_EVEX_2_VEX;
break;
case X86II::EVEX:
AsmComment = X86::AC_EVEX_2_EVEX;
assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
"Unknown EVEX2EVEX compression");
break;
default:
llvm_unreachable("Unknown EVEX compression");
}
MI.setAsmPrinterFlag(AsmComment);
if (IsRedundantNDD)
MI.tieOperands(0, 1);
return true;
}
bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
#ifndef NDEBUG
// Make sure the tables are sorted.
static std::atomic<bool> TableChecked(false);
if (!TableChecked.load(std::memory_order_relaxed)) {
assert(llvm::is_sorted(X86CompressEVEXTable) &&
"X86CompressEVEXTable is not sorted!");
TableChecked.store(true, std::memory_order_relaxed);
}
#endif
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
return false;
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
// Traverse the basic block.
for (MachineInstr &MI : MBB)
Changed |= CompressEVEXImpl(MI, ST);
}
return Changed;
}
INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
FunctionPass *llvm::createX86CompressEVEXPass() {
return new CompressEVEXPass();
}
|