File: X86CompressEVEX.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (307 lines) | stat: -rw-r--r-- 10,287 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
//===- X86CompressEVEX.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
// when possible in order to reduce code size or facilitate HW decoding.
//
// Possible compression:
//   a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
//   b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
//   c. NDD (EVEX) -> non-NDD (legacy)
//   d. NF_ND (EVEX) -> NF (EVEX)
//   e. NonNF (EVEX) -> NF (EVEX)
//
// Compression a, b and c can always reduce code size, with some exceptions
// such as promoted 16-bit CRC32 which is as long as the legacy version.
//
// legacy:
//   crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
// promoted:
//   crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
//
// From performance perspective, these should be same (same uops and same EXE
// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
// can execute in more places (broader HW install base). So we will still do
// the compression.
//
// Compression d can help hardware decode (HW may skip reading the NDD
// register) although the instruction length remains unchanged.
//
// Compression e can help hardware skip updating EFLAGS although the instruction
// length remains unchanged.
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86InstComments.h"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include <atomic>
#include <cassert>
#include <cstdint>

using namespace llvm;

#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
#define COMP_EVEX_NAME "x86-compress-evex"

#define DEBUG_TYPE COMP_EVEX_NAME

namespace {
// Including the generated EVEX compression tables.
#define GET_X86_COMPRESS_EVEX_TABLE
#include "X86GenInstrMapping.inc"

class CompressEVEXPass : public MachineFunctionPass {
public:
  static char ID;
  CompressEVEXPass() : MachineFunctionPass(ID) {}
  StringRef getPassName() const override { return COMP_EVEX_DESC; }

  bool runOnMachineFunction(MachineFunction &MF) override;

  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
};

} // end anonymous namespace

char CompressEVEXPass::ID = 0;

static bool usesExtendedRegister(const MachineInstr &MI) {
  auto isHiRegIdx = [](unsigned Reg) {
    // Check for XMM register with indexes between 16 - 31.
    if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
      return true;
    // Check for YMM register with indexes between 16 - 31.
    if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
      return true;
    // Check for GPR with indexes between 16 - 31.
    if (X86II::isApxExtendedReg(Reg))
      return true;
    return false;
  };

  // Check that operands are not ZMM regs or
  // XMM/YMM regs with hi indexes between 16 - 31.
  for (const MachineOperand &MO : MI.explicit_operands()) {
    if (!MO.isReg())
      continue;

    Register Reg = MO.getReg();
    assert(!X86II::isZMMReg(Reg) &&
           "ZMM instructions should not be in the EVEX->VEX tables");
    if (isHiRegIdx(Reg))
      return true;
  }

  return false;
}

// Do any custom cleanup needed to finalize the conversion.
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
  (void)NewOpc;
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
  case X86::VALIGNDZ128rri:
  case X86::VALIGNDZ128rmi:
  case X86::VALIGNQZ128rri:
  case X86::VALIGNQZ128rmi: {
    assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
           "Unexpected new opcode!");
    unsigned Scale =
        (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
    MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
    Imm.setImm(Imm.getImm() * Scale);
    break;
  }
  case X86::VSHUFF32X4Z256rmi:
  case X86::VSHUFF32X4Z256rri:
  case X86::VSHUFF64X2Z256rmi:
  case X86::VSHUFF64X2Z256rri:
  case X86::VSHUFI32X4Z256rmi:
  case X86::VSHUFI32X4Z256rri:
  case X86::VSHUFI64X2Z256rmi:
  case X86::VSHUFI64X2Z256rri: {
    assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
            NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
           "Unexpected new opcode!");
    MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
    int64_t ImmVal = Imm.getImm();
    // Set bit 5, move bit 1 to bit 4, copy bit 0.
    Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
    break;
  }
  case X86::VRNDSCALEPDZ128rri:
  case X86::VRNDSCALEPDZ128rmi:
  case X86::VRNDSCALEPSZ128rri:
  case X86::VRNDSCALEPSZ128rmi:
  case X86::VRNDSCALEPDZ256rri:
  case X86::VRNDSCALEPDZ256rmi:
  case X86::VRNDSCALEPSZ256rri:
  case X86::VRNDSCALEPSZ256rmi:
  case X86::VRNDSCALESDZr:
  case X86::VRNDSCALESDZm:
  case X86::VRNDSCALESSZr:
  case X86::VRNDSCALESSZm:
  case X86::VRNDSCALESDZr_Int:
  case X86::VRNDSCALESDZm_Int:
  case X86::VRNDSCALESSZr_Int:
  case X86::VRNDSCALESSZm_Int:
    const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
    int64_t ImmVal = Imm.getImm();
    // Ensure that only bits 3:0 of the immediate are used.
    if ((ImmVal & 0xf) != ImmVal)
      return false;
    break;
  }

  return true;
}

static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) {
  uint64_t TSFlags = MI.getDesc().TSFlags;

  // Check for EVEX instructions only.
  if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
    return false;

  // Instructions with mask or 512-bit vector can't be converted to VEX.
  if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
    return false;

  auto IsRedundantNewDataDest = [&](unsigned &Opc) {
    // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
    //   ->
    // $rbx = ADD64rr $rbx, $rax
    const MCInstrDesc &Desc = MI.getDesc();
    Register Reg0 = MI.getOperand(0).getReg();
    const MachineOperand &Op1 = MI.getOperand(1);
    if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
        X86::isCFCMOVCC(MI.getOpcode()))
      return false;
    Register Reg1 = Op1.getReg();
    if (Reg1 == Reg0)
      return true;

    // Op1 and Op2 may be commutable for ND instructions.
    if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
        !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
      return false;
    // Opcode may change after commute, e.g. SHRD -> SHLD
    ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
    Opc = MI.getOpcode();
    return true;
  };

  // EVEX_B has several meanings.
  // AVX512:
  //  register form: rounding control or SAE
  //  memory form: broadcast
  //
  // APX:
  //  MAP4: NDD
  //
  // For AVX512 cases, EVEX prefix is needed in order to carry this information
  // thus preventing the transformation to VEX encoding.
  bool IsND = X86II::hasNewDataDest(TSFlags);
  if (TSFlags & X86II::EVEX_B && !IsND)
    return false;
  unsigned Opc = MI.getOpcode();
  // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
  bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
  bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;

  auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
    ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
    const auto I = llvm::lower_bound(Table, Opc);
    if (I == Table.end() || I->OldOpc != Opc)
      return 0;

    if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
        !performCustomAdjustments(MI, I->NewOpc))
      return 0;
    return I->NewOpc;
  };
  // NonNF -> NF only if it's not a compressible NDD instruction and eflags is
  // dead.
  unsigned NewOpc = IsRedundantNDD
                        ? X86::getNonNDVariant(Opc)
                        : ((IsNDLike && ST.hasNF() &&
                            MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
                               ? X86::getNFVariant(Opc)
                               : GetCompressedOpc(Opc));

  if (!NewOpc)
    return false;

  const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
  MI.setDesc(NewDesc);
  unsigned AsmComment;
  switch (NewDesc.TSFlags & X86II::EncodingMask) {
  case X86II::LEGACY:
    AsmComment = X86::AC_EVEX_2_LEGACY;
    break;
  case X86II::VEX:
    AsmComment = X86::AC_EVEX_2_VEX;
    break;
  case X86II::EVEX:
    AsmComment = X86::AC_EVEX_2_EVEX;
    assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
           "Unknown EVEX2EVEX compression");
    break;
  default:
    llvm_unreachable("Unknown EVEX compression");
  }
  MI.setAsmPrinterFlag(AsmComment);
  if (IsRedundantNDD)
    MI.tieOperands(0, 1);

  return true;
}

bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
#ifndef NDEBUG
  // Make sure the tables are sorted.
  static std::atomic<bool> TableChecked(false);
  if (!TableChecked.load(std::memory_order_relaxed)) {
    assert(llvm::is_sorted(X86CompressEVEXTable) &&
           "X86CompressEVEXTable is not sorted!");
    TableChecked.store(true, std::memory_order_relaxed);
  }
#endif
  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
  if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
    return false;

  bool Changed = false;

  for (MachineBasicBlock &MBB : MF) {
    // Traverse the basic block.
    for (MachineInstr &MI : MBB)
      Changed |= CompressEVEXImpl(MI, ST);
  }

  return Changed;
}

INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)

FunctionPass *llvm::createX86CompressEVEXPass() {
  return new CompressEVEXPass();
}