1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
//===-- X86InstrFoldTables.cpp - X86 Instruction Folding Tables -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 memory folding tables.
//
//===----------------------------------------------------------------------===//
#include "X86InstrFoldTables.h"
#include "X86InstrInfo.h"
#include "llvm/ADT/STLExtras.h"
#include <atomic>
#include <vector>
using namespace llvm;
// These tables are sorted by their RegOp value allowing them to be binary
// searched at runtime without the need for additional storage. The enum values
// are currently emitted in X86GenInstrInfo.inc in alphabetical order. Which
// makes sorting these tables a simple matter of alphabetizing the table.
#include "X86GenFoldTables.inc"
// Table to map instructions safe to broadcast using a different width from the
// element width.
static const X86FoldTableEntry BroadcastSizeTable2[] = {
{ X86::VANDNPDZ128rr, X86::VANDNPSZ128rmb, TB_BCAST_SS },
{ X86::VANDNPDZ256rr, X86::VANDNPSZ256rmb, TB_BCAST_SS },
{ X86::VANDNPDZrr, X86::VANDNPSZrmb, TB_BCAST_SS },
{ X86::VANDNPSZ128rr, X86::VANDNPDZ128rmb, TB_BCAST_SD },
{ X86::VANDNPSZ256rr, X86::VANDNPDZ256rmb, TB_BCAST_SD },
{ X86::VANDNPSZrr, X86::VANDNPDZrmb, TB_BCAST_SD },
{ X86::VANDPDZ128rr, X86::VANDPSZ128rmb, TB_BCAST_SS },
{ X86::VANDPDZ256rr, X86::VANDPSZ256rmb, TB_BCAST_SS },
{ X86::VANDPDZrr, X86::VANDPSZrmb, TB_BCAST_SS },
{ X86::VANDPSZ128rr, X86::VANDPDZ128rmb, TB_BCAST_SD },
{ X86::VANDPSZ256rr, X86::VANDPDZ256rmb, TB_BCAST_SD },
{ X86::VANDPSZrr, X86::VANDPDZrmb, TB_BCAST_SD },
{ X86::VORPDZ128rr, X86::VORPSZ128rmb, TB_BCAST_SS },
{ X86::VORPDZ256rr, X86::VORPSZ256rmb, TB_BCAST_SS },
{ X86::VORPDZrr, X86::VORPSZrmb, TB_BCAST_SS },
{ X86::VORPSZ128rr, X86::VORPDZ128rmb, TB_BCAST_SD },
{ X86::VORPSZ256rr, X86::VORPDZ256rmb, TB_BCAST_SD },
{ X86::VORPSZrr, X86::VORPDZrmb, TB_BCAST_SD },
{ X86::VPANDDZ128rr, X86::VPANDQZ128rmb, TB_BCAST_Q },
{ X86::VPANDDZ256rr, X86::VPANDQZ256rmb, TB_BCAST_Q },
{ X86::VPANDDZrr, X86::VPANDQZrmb, TB_BCAST_Q },
{ X86::VPANDNDZ128rr, X86::VPANDNQZ128rmb, TB_BCAST_Q },
{ X86::VPANDNDZ256rr, X86::VPANDNQZ256rmb, TB_BCAST_Q },
{ X86::VPANDNDZrr, X86::VPANDNQZrmb, TB_BCAST_Q },
{ X86::VPANDNQZ128rr, X86::VPANDNDZ128rmb, TB_BCAST_D },
{ X86::VPANDNQZ256rr, X86::VPANDNDZ256rmb, TB_BCAST_D },
{ X86::VPANDNQZrr, X86::VPANDNDZrmb, TB_BCAST_D },
{ X86::VPANDQZ128rr, X86::VPANDDZ128rmb, TB_BCAST_D },
{ X86::VPANDQZ256rr, X86::VPANDDZ256rmb, TB_BCAST_D },
{ X86::VPANDQZrr, X86::VPANDDZrmb, TB_BCAST_D },
{ X86::VPORDZ128rr, X86::VPORQZ128rmb, TB_BCAST_Q },
{ X86::VPORDZ256rr, X86::VPORQZ256rmb, TB_BCAST_Q },
{ X86::VPORDZrr, X86::VPORQZrmb, TB_BCAST_Q },
{ X86::VPORQZ128rr, X86::VPORDZ128rmb, TB_BCAST_D },
{ X86::VPORQZ256rr, X86::VPORDZ256rmb, TB_BCAST_D },
{ X86::VPORQZrr, X86::VPORDZrmb, TB_BCAST_D },
{ X86::VPXORDZ128rr, X86::VPXORQZ128rmb, TB_BCAST_Q },
{ X86::VPXORDZ256rr, X86::VPXORQZ256rmb, TB_BCAST_Q },
{ X86::VPXORDZrr, X86::VPXORQZrmb, TB_BCAST_Q },
{ X86::VPXORQZ128rr, X86::VPXORDZ128rmb, TB_BCAST_D },
{ X86::VPXORQZ256rr, X86::VPXORDZ256rmb, TB_BCAST_D },
{ X86::VPXORQZrr, X86::VPXORDZrmb, TB_BCAST_D },
{ X86::VXORPDZ128rr, X86::VXORPSZ128rmb, TB_BCAST_SS },
{ X86::VXORPDZ256rr, X86::VXORPSZ256rmb, TB_BCAST_SS },
{ X86::VXORPDZrr, X86::VXORPSZrmb, TB_BCAST_SS },
{ X86::VXORPSZ128rr, X86::VXORPDZ128rmb, TB_BCAST_SD },
{ X86::VXORPSZ256rr, X86::VXORPDZ256rmb, TB_BCAST_SD },
{ X86::VXORPSZrr, X86::VXORPDZrmb, TB_BCAST_SD },
};
static const X86FoldTableEntry BroadcastSizeTable3[] = {
{ X86::VPTERNLOGDZ128rri, X86::VPTERNLOGQZ128rmbi, TB_BCAST_Q },
{ X86::VPTERNLOGDZ256rri, X86::VPTERNLOGQZ256rmbi, TB_BCAST_Q },
{ X86::VPTERNLOGDZrri, X86::VPTERNLOGQZrmbi, TB_BCAST_Q },
{ X86::VPTERNLOGQZ128rri, X86::VPTERNLOGDZ128rmbi, TB_BCAST_D },
{ X86::VPTERNLOGQZ256rri, X86::VPTERNLOGDZ256rmbi, TB_BCAST_D },
{ X86::VPTERNLOGQZrri, X86::VPTERNLOGDZrmbi, TB_BCAST_D },
};
static const X86FoldTableEntry *
lookupFoldTableImpl(ArrayRef<X86FoldTableEntry> Table, unsigned RegOp) {
#ifndef NDEBUG
#define CHECK_SORTED_UNIQUE(TABLE) \
assert(llvm::is_sorted(TABLE) && #TABLE " is not sorted"); \
assert(std::adjacent_find(std::begin(Table), std::end(Table)) == \
std::end(Table) && \
#TABLE " is not unique");
// Make sure the tables are sorted.
static std::atomic<bool> FoldTablesChecked(false);
if (!FoldTablesChecked.load(std::memory_order_relaxed)) {
CHECK_SORTED_UNIQUE(Table2Addr)
CHECK_SORTED_UNIQUE(Table0)
CHECK_SORTED_UNIQUE(Table1)
CHECK_SORTED_UNIQUE(Table2)
CHECK_SORTED_UNIQUE(Table3)
CHECK_SORTED_UNIQUE(Table4)
CHECK_SORTED_UNIQUE(BroadcastTable1)
CHECK_SORTED_UNIQUE(BroadcastTable2)
CHECK_SORTED_UNIQUE(BroadcastTable3)
CHECK_SORTED_UNIQUE(BroadcastTable4)
CHECK_SORTED_UNIQUE(BroadcastSizeTable2)
CHECK_SORTED_UNIQUE(BroadcastSizeTable3)
FoldTablesChecked.store(true, std::memory_order_relaxed);
}
#endif
const X86FoldTableEntry *Data = llvm::lower_bound(Table, RegOp);
if (Data != Table.end() && Data->KeyOp == RegOp &&
!(Data->Flags & TB_NO_FORWARD))
return Data;
return nullptr;
}
const X86FoldTableEntry *llvm::lookupTwoAddrFoldTable(unsigned RegOp) {
return lookupFoldTableImpl(Table2Addr, RegOp);
}
const X86FoldTableEntry *llvm::lookupFoldTable(unsigned RegOp, unsigned OpNum) {
ArrayRef<X86FoldTableEntry> FoldTable;
if (OpNum == 0)
FoldTable = ArrayRef(Table0);
else if (OpNum == 1)
FoldTable = ArrayRef(Table1);
else if (OpNum == 2)
FoldTable = ArrayRef(Table2);
else if (OpNum == 3)
FoldTable = ArrayRef(Table3);
else if (OpNum == 4)
FoldTable = ArrayRef(Table4);
else
return nullptr;
return lookupFoldTableImpl(FoldTable, RegOp);
}
const X86FoldTableEntry *llvm::lookupBroadcastFoldTable(unsigned RegOp,
unsigned OpNum) {
ArrayRef<X86FoldTableEntry> FoldTable;
if (OpNum == 1)
FoldTable = ArrayRef(BroadcastTable1);
else if (OpNum == 2)
FoldTable = ArrayRef(BroadcastTable2);
else if (OpNum == 3)
FoldTable = ArrayRef(BroadcastTable3);
else if (OpNum == 4)
FoldTable = ArrayRef(BroadcastTable4);
else
return nullptr;
return lookupFoldTableImpl(FoldTable, RegOp);
}
namespace {
// This class stores the memory unfolding tables. It is instantiated as a
// function scope static variable to lazily init the unfolding table.
struct X86MemUnfoldTable {
// Stores memory unfolding tables entries sorted by opcode.
std::vector<X86FoldTableEntry> Table;
X86MemUnfoldTable() {
for (const X86FoldTableEntry &Entry : Table2Addr)
// Index 0, folded load and store, no alignment requirement.
addTableEntry(Entry, TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
for (const X86FoldTableEntry &Entry : Table0)
// Index 0, mix of loads and stores.
addTableEntry(Entry, TB_INDEX_0);
for (const X86FoldTableEntry &Entry : Table1)
// Index 1, folded load
addTableEntry(Entry, TB_INDEX_1 | TB_FOLDED_LOAD);
for (const X86FoldTableEntry &Entry : Table2)
// Index 2, folded load
addTableEntry(Entry, TB_INDEX_2 | TB_FOLDED_LOAD);
for (const X86FoldTableEntry &Entry : Table3)
// Index 3, folded load
addTableEntry(Entry, TB_INDEX_3 | TB_FOLDED_LOAD);
for (const X86FoldTableEntry &Entry : Table4)
// Index 4, folded load
addTableEntry(Entry, TB_INDEX_4 | TB_FOLDED_LOAD);
// Broadcast tables.
for (const X86FoldTableEntry &Entry : BroadcastTable1)
// Index 1, folded broadcast
addTableEntry(Entry, TB_INDEX_1 | TB_FOLDED_LOAD);
for (const X86FoldTableEntry &Entry : BroadcastTable2)
// Index 2, folded broadcast
addTableEntry(Entry, TB_INDEX_2 | TB_FOLDED_LOAD);
for (const X86FoldTableEntry &Entry : BroadcastTable3)
// Index 3, folded broadcast
addTableEntry(Entry, TB_INDEX_3 | TB_FOLDED_LOAD);
for (const X86FoldTableEntry &Entry : BroadcastTable4)
// Index 4, folded broadcast
addTableEntry(Entry, TB_INDEX_4 | TB_FOLDED_LOAD);
// Sort the memory->reg unfold table.
array_pod_sort(Table.begin(), Table.end());
// Now that it's sorted, ensure its unique.
assert(std::adjacent_find(Table.begin(), Table.end()) == Table.end() &&
"Memory unfolding table is not unique!");
}
void addTableEntry(const X86FoldTableEntry &Entry, uint16_t ExtraFlags) {
// NOTE: This swaps the KeyOp and DstOp in the table so we can sort it.
if ((Entry.Flags & TB_NO_REVERSE) == 0)
Table.push_back({Entry.DstOp, Entry.KeyOp,
static_cast<uint16_t>(Entry.Flags | ExtraFlags)});
}
};
} // namespace
const X86FoldTableEntry *llvm::lookupUnfoldTable(unsigned MemOp) {
static X86MemUnfoldTable MemUnfoldTable;
auto &Table = MemUnfoldTable.Table;
auto I = llvm::lower_bound(Table, MemOp);
if (I != Table.end() && I->KeyOp == MemOp)
return &*I;
return nullptr;
}
namespace {
// This class stores the memory -> broadcast folding tables. It is instantiated
// as a function scope static variable to lazily init the folding table.
struct X86BroadcastFoldTable {
// Stores memory broadcast folding tables entries sorted by opcode.
std::vector<X86FoldTableEntry> Table;
X86BroadcastFoldTable() {
// Broadcast tables.
for (const X86FoldTableEntry &Reg2Bcst : BroadcastTable2) {
unsigned RegOp = Reg2Bcst.KeyOp;
unsigned BcstOp = Reg2Bcst.DstOp;
if (const X86FoldTableEntry *Reg2Mem = lookupFoldTable(RegOp, 2)) {
unsigned MemOp = Reg2Mem->DstOp;
uint16_t Flags =
Reg2Mem->Flags | Reg2Bcst.Flags | TB_INDEX_2 | TB_FOLDED_LOAD;
Table.push_back({MemOp, BcstOp, Flags});
}
}
for (const X86FoldTableEntry &Reg2Bcst : BroadcastSizeTable2) {
unsigned RegOp = Reg2Bcst.KeyOp;
unsigned BcstOp = Reg2Bcst.DstOp;
if (const X86FoldTableEntry *Reg2Mem = lookupFoldTable(RegOp, 2)) {
unsigned MemOp = Reg2Mem->DstOp;
uint16_t Flags =
Reg2Mem->Flags | Reg2Bcst.Flags | TB_INDEX_2 | TB_FOLDED_LOAD;
Table.push_back({MemOp, BcstOp, Flags});
}
}
for (const X86FoldTableEntry &Reg2Bcst : BroadcastTable3) {
unsigned RegOp = Reg2Bcst.KeyOp;
unsigned BcstOp = Reg2Bcst.DstOp;
if (const X86FoldTableEntry *Reg2Mem = lookupFoldTable(RegOp, 3)) {
unsigned MemOp = Reg2Mem->DstOp;
uint16_t Flags =
Reg2Mem->Flags | Reg2Bcst.Flags | TB_INDEX_3 | TB_FOLDED_LOAD;
Table.push_back({MemOp, BcstOp, Flags});
}
}
for (const X86FoldTableEntry &Reg2Bcst : BroadcastSizeTable3) {
unsigned RegOp = Reg2Bcst.KeyOp;
unsigned BcstOp = Reg2Bcst.DstOp;
if (const X86FoldTableEntry *Reg2Mem = lookupFoldTable(RegOp, 3)) {
unsigned MemOp = Reg2Mem->DstOp;
uint16_t Flags =
Reg2Mem->Flags | Reg2Bcst.Flags | TB_INDEX_3 | TB_FOLDED_LOAD;
Table.push_back({MemOp, BcstOp, Flags});
}
}
for (const X86FoldTableEntry &Reg2Bcst : BroadcastTable4) {
unsigned RegOp = Reg2Bcst.KeyOp;
unsigned BcstOp = Reg2Bcst.DstOp;
if (const X86FoldTableEntry *Reg2Mem = lookupFoldTable(RegOp, 4)) {
unsigned MemOp = Reg2Mem->DstOp;
uint16_t Flags =
Reg2Mem->Flags | Reg2Bcst.Flags | TB_INDEX_4 | TB_FOLDED_LOAD;
Table.push_back({MemOp, BcstOp, Flags});
}
}
// Sort the memory->broadcast fold table.
array_pod_sort(Table.begin(), Table.end());
}
};
} // namespace
bool llvm::matchBroadcastSize(const X86FoldTableEntry &Entry,
unsigned BroadcastBits) {
switch (Entry.Flags & TB_BCAST_MASK) {
case TB_BCAST_W:
case TB_BCAST_SH:
return BroadcastBits == 16;
case TB_BCAST_D:
case TB_BCAST_SS:
return BroadcastBits == 32;
case TB_BCAST_Q:
case TB_BCAST_SD:
return BroadcastBits == 64;
}
return false;
}
const X86FoldTableEntry *
llvm::lookupBroadcastFoldTableBySize(unsigned MemOp, unsigned BroadcastBits) {
static X86BroadcastFoldTable BroadcastFoldTable;
auto &Table = BroadcastFoldTable.Table;
for (auto I = llvm::lower_bound(Table, MemOp);
I != Table.end() && I->KeyOp == MemOp; ++I) {
if (matchBroadcastSize(*I, BroadcastBits))
return &*I;
}
return nullptr;
}
|