1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
//===-- X86InstrShiftRotate.td - Shift and Rotate Instrs ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the shift and rotate instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Shift/Rotate instructions
//===----------------------------------------------------------------------===//
multiclass ShiftRotate<string m, Format RegMRM, Format MemMRM, SDPatternOperator node,
SchedReadWrite rCL, SchedReadWrite ri, SchedReadWrite mCL,
SchedReadWrite mi, list<Register> uses = []> {
let Uses = uses in {
let isConvertibleToThreeAddress = !if(!eq(m, "shl"), 1, 0) in {
let Predicates = [NoNDD] in {
def 8ri : BinOpRI8U_R<m, RegMRM, Xi8, node>, Sched<[ri]>, DefEFLAGS;
def 16ri : BinOpRI8U_R<m, RegMRM, Xi16, node>, Sched<[ri]>, DefEFLAGS, OpSize16;
def 32ri : BinOpRI8U_R<m, RegMRM, Xi32, node>, Sched<[ri]>, DefEFLAGS, OpSize32;
def 64ri : BinOpRI8U_R<m, RegMRM, Xi64, node>, Sched<[ri]>, DefEFLAGS;
}
let Predicates = [HasNDD, In64BitMode] in {
def 8ri_ND : BinOpRI8U_R<m, RegMRM, Xi8, node, 1>, Sched<[ri]>, DefEFLAGS;
def 16ri_ND : BinOpRI8U_R<m, RegMRM, Xi16, node, 1>, Sched<[ri]>, DefEFLAGS, PD;
def 32ri_ND : BinOpRI8U_R<m, RegMRM, Xi32, node, 1>, Sched<[ri]>, DefEFLAGS;
def 64ri_ND : BinOpRI8U_R<m, RegMRM, Xi64, node, 1>, Sched<[ri]>, DefEFLAGS;
}
let Predicates = [In64BitMode] in {
def 8ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi8>, Sched<[ri]>, DefEFLAGS, PL;
def 16ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi16>, Sched<[ri]>, DefEFLAGS, PL, PD;
def 32ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi32>, Sched<[ri]>, DefEFLAGS, PL;
def 64ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi64>, Sched<[ri]>, DefEFLAGS, PL;
}
}
def 8mi : BinOpMI8U_M<m, MemMRM, Xi8, node>, Sched<[mi, WriteRMW]>, DefEFLAGS;
def 16mi : BinOpMI8U_M<m, MemMRM, Xi16, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, OpSize16;
def 32mi : BinOpMI8U_M<m, MemMRM, Xi32, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, OpSize32;
def 64mi : BinOpMI8U_M<m, MemMRM, Xi64, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, Requires<[In64BitMode]>;
let Predicates = [HasNDD, In64BitMode] in {
def 8mi_ND : BinOpMI8U_R<m, MemMRM, Xi8, node>, Sched<[mi, ri]>, DefEFLAGS;
def 16mi_ND : BinOpMI8U_R<m, MemMRM, Xi16, node>, Sched<[mi, ri]>, DefEFLAGS, PD;
def 32mi_ND : BinOpMI8U_R<m, MemMRM, Xi32, node>, Sched<[mi, ri]>, DefEFLAGS;
def 64mi_ND : BinOpMI8U_R<m, MemMRM, Xi64, node>, Sched<[mi, ri]>, DefEFLAGS;
}
let Predicates = [In64BitMode] in {
def 8mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi8>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
def 16mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi16>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL, PD;
def 32mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi32>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
def 64mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi64>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
}
let SchedRW = [ri] in {
def 8r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi8>;
def 16r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi16>, OpSize16;
def 32r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi32>, OpSize32;
def 64r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi64>;
// FIXME: Assembler can't tell whether it's 8r1_ND or 8rCL when the source register is cl, e.g.
//
// shlb %cl, %al
//
// GNU binutils distinguish them by adding an explicit $1 to asm string of 8r1_ND. But we haven't support
// constant immediate in asm string for X86 in TD. So we add DisassembleOnly for 8r1_ND for the time being.
let Predicates = [In64BitMode] in {
def 8r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi8, null_frag, 1>, DisassembleOnly;
def 16r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi16, null_frag, 1>, PD;
def 32r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi32, null_frag, 1>;
def 64r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi64, null_frag, 1>;
def 8r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi8>, PL;
def 16r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi16>, PL, PD;
def 32r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi32>, PL;
def 64r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi64>, PL;
}
}
let SchedRW = [mi, WriteRMW] in {
def 8m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi8>;
def 16m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi16>, OpSize16;
def 32m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi32>, OpSize32;
def 64m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi64>, Requires<[In64BitMode]>;
let Predicates = [In64BitMode] in {
def 8m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi8>, PL;
def 16m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi16>, PL, PD;
def 32m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi32>, PL;
def 64m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi64>, PL;
}
}
let SchedRW = [mi, ri], Predicates = [In64BitMode] in {
def 8m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi8>;
def 16m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi16>, PD;
def 32m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi32>;
def 64m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi64>;
}
}
let Uses = !listconcat([CL], uses), Defs = [EFLAGS] in {
let Predicates = [NoNDD] in {
def 8rCL : BinOpRC_R<m, RegMRM, Xi8, node>, Sched<[rCL]>;
def 16rCL : BinOpRC_R<m, RegMRM, Xi16, node>, Sched<[rCL]>, OpSize16;
def 32rCL : BinOpRC_R<m, RegMRM, Xi32, node>, Sched<[rCL]>, OpSize32;
def 64rCL : BinOpRC_R<m, RegMRM, Xi64, node>, Sched<[rCL]>;
}
let Predicates = [HasNDD, In64BitMode] in {
def 8rCL_ND : BinOpRC_R<m, RegMRM, Xi8, node, 1>, Sched<[rCL]>;
def 16rCL_ND : BinOpRC_R<m, RegMRM, Xi16, node, 1>, Sched<[rCL]>, PD;
def 32rCL_ND : BinOpRC_R<m, RegMRM, Xi32, node, 1>, Sched<[rCL]>;
def 64rCL_ND : BinOpRC_R<m, RegMRM, Xi64, node, 1>, Sched<[rCL]>;
}
let Predicates = [In64BitMode] in {
def 8rCL_EVEX : BinOpRC_R<m, RegMRM, Xi8>, Sched<[rCL]>, PL;
def 16rCL_EVEX : BinOpRC_R<m, RegMRM, Xi16>, Sched<[rCL]>, PL, PD;
def 32rCL_EVEX : BinOpRC_R<m, RegMRM, Xi32>, Sched<[rCL]>, PL;
def 64rCL_EVEX : BinOpRC_R<m, RegMRM, Xi64>, Sched<[rCL]>, PL;
}
def 8mCL : BinOpMC_M<m, MemMRM, Xi8, node>, Sched<[mCL, WriteRMW]>;
def 16mCL : BinOpMC_M<m, MemMRM, Xi16, node>, Sched<[mCL, WriteRMW]>, OpSize16;
def 32mCL : BinOpMC_M<m, MemMRM, Xi32, node>, Sched<[mCL, WriteRMW]>, OpSize32;
def 64mCL : BinOpMC_M<m, MemMRM, Xi64, node>, Sched<[mCL, WriteRMW]>, Requires<[In64BitMode]>;
let Predicates = [HasNDD, In64BitMode] in {
def 8mCL_ND : BinOpMC_R<m, MemMRM, Xi8, node>, Sched<[mCL, rCL]>;
def 16mCL_ND : BinOpMC_R<m, MemMRM, Xi16, node>, Sched<[mCL, rCL]>, PD;
def 32mCL_ND : BinOpMC_R<m, MemMRM, Xi32, node>, Sched<[mCL, rCL]>;
def 64mCL_ND : BinOpMC_R<m, MemMRM, Xi64, node>, Sched<[mCL, rCL]>;
}
let Predicates = [In64BitMode] in {
def 8mCL_EVEX : BinOpMC_M<m, MemMRM, Xi8>, Sched<[mCL, WriteRMW]>, PL;
def 16mCL_EVEX : BinOpMC_M<m, MemMRM, Xi16>, Sched<[mCL, WriteRMW]>, PL, PD;
def 32mCL_EVEX : BinOpMC_M<m, MemMRM, Xi32>, Sched<[mCL, WriteRMW]>, PL;
def 64mCL_EVEX : BinOpMC_M<m, MemMRM, Xi64>, Sched<[mCL, WriteRMW]>, PL;
}
}
}
multiclass ShiftRotate_NF<string m, Format RegMRM, Format MemMRM, SchedReadWrite rCL,
SchedReadWrite ri, SchedReadWrite mCL, SchedReadWrite mi> {
let Predicates = [In64BitMode] in {
let isConvertibleToThreeAddress = !if(!eq(m, "shl"), 1, 0) in {
def 8ri_NF : BinOpRI8U_R<m, RegMRM, Xi8>, Sched<[ri]>, NF;
def 16ri_NF : BinOpRI8U_R<m, RegMRM, Xi16>, Sched<[ri]>, NF, PD;
def 32ri_NF : BinOpRI8U_R<m, RegMRM, Xi32>, Sched<[ri]>, NF;
def 64ri_NF : BinOpRI8U_R<m, RegMRM, Xi64>, Sched<[ri]>, NF;
def 8ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi8, null_frag, 1>, Sched<[ri]>, EVEX_NF;
def 16ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi16, null_frag, 1>, Sched<[ri]>, EVEX_NF, PD;
def 32ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi32, null_frag, 1>, Sched<[ri]>, EVEX_NF;
def 64ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi64, null_frag, 1>, Sched<[ri]>, EVEX_NF;
}
def 8mi_NF : BinOpMI8U_M<m, MemMRM, Xi8>, Sched<[mi, WriteRMW]>, NF;
def 16mi_NF : BinOpMI8U_M<m, MemMRM, Xi16>, Sched<[mi, WriteRMW]>, NF, PD;
def 32mi_NF : BinOpMI8U_M<m, MemMRM, Xi32>, Sched<[mi, WriteRMW]>, NF;
def 64mi_NF : BinOpMI8U_M<m, MemMRM, Xi64>, Sched<[mi, WriteRMW]>, NF;
def 8mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi8>, Sched<[mi, ri]>, EVEX_NF;
def 16mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi16>, Sched<[mi, ri]>, EVEX_NF, PD;
def 32mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi32>, Sched<[mi, ri]>, EVEX_NF;
def 64mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi64>, Sched<[mi, ri]>, EVEX_NF;
let SchedRW = [ri] in {
// FIXME: Assembler can't tell whether it's 8r1_NF_ND or 8rCL_NF when the source register is cl, e.g.
//
// {nf} shlb %cl, %al
//
// GNU binutils distinguish them by adding an explicit $1 to asm string of 8r1_NF_ND. But we haven't support
// constant immediate in asm string for X86 in TD. So we add DisassembleOnly for 8r1_NF_ND for the time being.
def 8r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi8>, NF;
def 16r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi16>, NF, PD;
def 32r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi32>, NF;
def 64r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi64>, NF;
def 8r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi8, null_frag, 1>, EVEX_NF, DisassembleOnly;
def 16r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi16, null_frag, 1>, EVEX_NF, PD;
def 32r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi32, null_frag, 1>, EVEX_NF;
def 64r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi64, null_frag, 1>, EVEX_NF;
}
let SchedRW = [mi, WriteRMW] in {
def 8m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi8>, NF;
def 16m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi16>, NF, PD;
def 32m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi32>, NF;
def 64m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi64>, NF;
}
let SchedRW = [mi, ri] in {
def 8m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi8>, EVEX_NF;
def 16m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi16>, EVEX_NF, PD;
def 32m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi32>, EVEX_NF;
def 64m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi64>, EVEX_NF;
}
let Uses = [CL] in {
def 8rCL_NF : BinOpRC_R<m, RegMRM, Xi8>, Sched<[rCL]>, NF;
def 16rCL_NF : BinOpRC_R<m, RegMRM, Xi16>, Sched<[rCL]>, NF, PD;
def 32rCL_NF : BinOpRC_R<m, RegMRM, Xi32>, Sched<[rCL]>, NF;
def 64rCL_NF : BinOpRC_R<m, RegMRM, Xi64>, Sched<[rCL]>, NF;
def 8rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi8, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
def 16rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi16, null_frag, 1>, Sched<[rCL]>, EVEX_NF, PD;
def 32rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi32, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
def 64rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi64, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
def 8mCL_NF : BinOpMC_M<m, MemMRM, Xi8>, Sched<[mCL, WriteRMW]>, NF;
def 16mCL_NF : BinOpMC_M<m, MemMRM, Xi16>, Sched<[mCL, WriteRMW]>, NF, PD;
def 32mCL_NF : BinOpMC_M<m, MemMRM, Xi32>, Sched<[mCL, WriteRMW]>, NF;
def 64mCL_NF : BinOpMC_M<m, MemMRM, Xi64>, Sched<[mCL, WriteRMW]>, NF;
def 8mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi8>, Sched<[mCL, rCL]>, EVEX_NF;
def 16mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi16>, Sched<[mCL, rCL]>, EVEX_NF, PD;
def 32mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi32>, Sched<[mCL, rCL]>, EVEX_NF;
def 64mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi64>, Sched<[mCL, rCL]>, EVEX_NF;
}
}
}
defm SHL: ShiftRotate<"shl", MRM4r, MRM4m, shl, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SHR: ShiftRotate<"shr", MRM5r, MRM5m, srl, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SAR: ShiftRotate<"sar", MRM7r, MRM7m, sra, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm ROL: ShiftRotate<"rol", MRM0r, MRM0m, rotl, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm ROR: ShiftRotate<"ror", MRM1r, MRM1m, rotr, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm RCL: ShiftRotate<"rcl", MRM2r, MRM2m, null_frag, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd, [EFLAGS]>;
defm RCR: ShiftRotate<"rcr", MRM3r, MRM3m, null_frag, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd, [EFLAGS]>;
defm SHL: ShiftRotate_NF<"shl", MRM4r, MRM4m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SHR: ShiftRotate_NF<"shr", MRM5r, MRM5m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SAR: ShiftRotate_NF<"sar", MRM7r, MRM7m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm ROL: ShiftRotate_NF<"rol", MRM0r, MRM0m, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm ROR: ShiftRotate_NF<"ror", MRM1r, MRM1m, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
// Use the opposite rotate if allows us to use the rotate by 1 instruction.
let Predicates = [NoNDD] in {
def : Pat<(rotl GR8:$src1, (i8 7)), (ROR8r1 GR8:$src1)>;
def : Pat<(rotl GR16:$src1, (i8 15)), (ROR16r1 GR16:$src1)>;
def : Pat<(rotl GR32:$src1, (i8 31)), (ROR32r1 GR32:$src1)>;
def : Pat<(rotl GR64:$src1, (i8 63)), (ROR64r1 GR64:$src1)>;
def : Pat<(rotr GR8:$src1, (i8 7)), (ROL8r1 GR8:$src1)>;
def : Pat<(rotr GR16:$src1, (i8 15)), (ROL16r1 GR16:$src1)>;
def : Pat<(rotr GR32:$src1, (i8 31)), (ROL32r1 GR32:$src1)>;
def : Pat<(rotr GR64:$src1, (i8 63)), (ROL64r1 GR64:$src1)>;
}
let Predicates = [HasNDD] in {
def : Pat<(rotl GR8:$src1, (i8 7)), (ROR8r1_ND GR8:$src1)>;
def : Pat<(rotl GR16:$src1, (i8 15)), (ROR16r1_ND GR16:$src1)>;
def : Pat<(rotl GR32:$src1, (i8 31)), (ROR32r1_ND GR32:$src1)>;
def : Pat<(rotl GR64:$src1, (i8 63)), (ROR64r1_ND GR64:$src1)>;
def : Pat<(rotr GR8:$src1, (i8 7)), (ROL8r1_ND GR8:$src1)>;
def : Pat<(rotr GR16:$src1, (i8 15)), (ROL16r1_ND GR16:$src1)>;
def : Pat<(rotr GR32:$src1, (i8 31)), (ROL32r1_ND GR32:$src1)>;
def : Pat<(rotr GR64:$src1, (i8 63)), (ROL64r1_ND GR64:$src1)>;
}
def : Pat<(store (rotl (loadi8 addr:$dst), (i8 7)), addr:$dst),
(ROR8m1 addr:$dst)>;
def : Pat<(store (rotl (loadi16 addr:$dst), (i8 15)), addr:$dst),
(ROR16m1 addr:$dst)>;
def : Pat<(store (rotl (loadi32 addr:$dst), (i8 31)), addr:$dst),
(ROR32m1 addr:$dst)>;
def : Pat<(store (rotl (loadi64 addr:$dst), (i8 63)), addr:$dst),
(ROR64m1 addr:$dst)>, Requires<[In64BitMode]>;
def : Pat<(store (rotr (loadi8 addr:$dst), (i8 7)), addr:$dst),
(ROL8m1 addr:$dst)>;
def : Pat<(store (rotr (loadi16 addr:$dst), (i8 15)), addr:$dst),
(ROL16m1 addr:$dst)>;
def : Pat<(store (rotr (loadi32 addr:$dst), (i8 31)), addr:$dst),
(ROL32m1 addr:$dst)>;
def : Pat<(store (rotr (loadi64 addr:$dst), (i8 63)), addr:$dst),
(ROL64m1 addr:$dst)>, Requires<[In64BitMode]>;
let Predicates = [HasNDD] in {
def : Pat<(rotl (loadi8 addr:$src), (i8 7)),
(ROR8m1_ND addr:$src)>;
def : Pat<(rotl (loadi16 addr:$src), (i8 15)),
(ROR16m1_ND addr:$src)>;
def : Pat<(rotl (loadi32 addr:$src), (i8 31)),
(ROR32m1_ND addr:$src)>;
def : Pat<(rotl (loadi64 addr:$src), (i8 63)),
(ROR64m1_ND addr:$src)>;
def : Pat<(rotr (loadi8 addr:$src), (i8 7)),
(ROL8m1_ND addr:$src)>;
def : Pat<(rotr (loadi16 addr:$src), (i8 15)),
(ROL16m1_ND addr:$src)>;
def : Pat<(rotr (loadi32 addr:$src), (i8 31)),
(ROL32m1_ND addr:$src)>;
def : Pat<(rotr (loadi64 addr:$src), (i8 63)),
(ROL64m1_ND addr:$src)>;
}
// Patterns for rotate with relocImm for the immediate field.
let Predicates = [NoNDD] in {
def : Pat<(rotl GR8:$src1, (i8 relocImm:$src2)),
(ROL8ri GR8:$src1, relocImm:$src2)>;
def : Pat<(rotl GR16:$src1, (i8 relocImm:$src2)),
(ROL16ri GR16:$src1, relocImm:$src2)>;
def : Pat<(rotl GR32:$src1, (i8 relocImm:$src2)),
(ROL32ri GR32:$src1, relocImm:$src2)>;
def : Pat<(rotl GR64:$src1, (i8 relocImm:$src2)),
(ROL64ri GR64:$src1, relocImm:$src2)>;
def : Pat<(rotr GR8:$src1, (i8 relocImm:$src2)),
(ROR8ri GR8:$src1, relocImm:$src2)>;
def : Pat<(rotr GR16:$src1, (i8 relocImm:$src2)),
(ROR16ri GR16:$src1, relocImm:$src2)>;
def : Pat<(rotr GR32:$src1, (i8 relocImm:$src2)),
(ROR32ri GR32:$src1, relocImm:$src2)>;
def : Pat<(rotr GR64:$src1, (i8 relocImm:$src2)),
(ROR64ri GR64:$src1, relocImm:$src2)>;
}
let Predicates = [HasNDD] in {
def : Pat<(rotl GR8:$src1, (i8 relocImm:$src2)),
(ROL8ri_ND GR8:$src1, relocImm:$src2)>;
def : Pat<(rotl GR16:$src1, (i8 relocImm:$src2)),
(ROL16ri_ND GR16:$src1, relocImm:$src2)>;
def : Pat<(rotl GR32:$src1, (i8 relocImm:$src2)),
(ROL32ri_ND GR32:$src1, relocImm:$src2)>;
def : Pat<(rotl GR64:$src1, (i8 relocImm:$src2)),
(ROL64ri_ND GR64:$src1, relocImm:$src2)>;
def : Pat<(rotr GR8:$src1, (i8 relocImm:$src2)),
(ROR8ri_ND GR8:$src1, relocImm:$src2)>;
def : Pat<(rotr GR16:$src1, (i8 relocImm:$src2)),
(ROR16ri_ND GR16:$src1, relocImm:$src2)>;
def : Pat<(rotr GR32:$src1, (i8 relocImm:$src2)),
(ROR32ri_ND GR32:$src1, relocImm:$src2)>;
def : Pat<(rotr GR64:$src1, (i8 relocImm:$src2)),
(ROR64ri_ND GR64:$src1, relocImm:$src2)>;
}
//===----------------------------------------------------------------------===//
// Double precision shift instructions (generalizations of rotate)
//===----------------------------------------------------------------------===//
class ShlrdOpRRI8U_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
: ITy<o, MRMDestReg, t, (outs t.RegClass:$dst),
(ins t.RegClass:$src1, t.RegClass:$src2, u8imm:$src3), m, !if(!eq(ndd, 0), triop_args, triop_ndd_args),
[]>, NDD<ndd> {
let isCommutable = 1;
let ImmT = Imm8;
let SchedRW = [WriteSHDrri];
let Pattern = !if(!eq(m, "shld"),
[(set t.RegClass:$dst, (node t.RegClass:$src1, t.RegClass:$src2, (i8 imm:$src3)))],
[(set t.RegClass:$dst, (node t.RegClass:$src2, t.RegClass:$src1, (i8 imm:$src3)))]);
}
class ShlrdOpRRC_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
: BinOpRR<o, m, !if(!eq(ndd, 0), triop_cl_args, triop_cl_ndd_args), t, (outs t.RegClass:$dst), []>, NDD<ndd> {
let Uses = [CL];
let SchedRW = [WriteSHDrrcl];
let Pattern = !if(!eq(m, "shld"),
[(set t.RegClass:$dst, (node t.RegClass:$src1, t.RegClass:$src2, CL))],
[(set t.RegClass:$dst, (node t.RegClass:$src2, t.RegClass:$src1, CL))]);
}
class ShlrdOpMRI8U_M<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
: ITy<o, MRMDestMem, t, (outs), (ins t.MemOperand:$src1, t.RegClass:$src2, u8imm:$src3),
m, triop_args, []>, TB {
let ImmT = Imm8;
let SchedRW = [WriteSHDmri];
let mayLoad = 1;
let mayStore = 1;
let Pattern = !if(!eq(m, "shld"),
[(store (node (t.LoadNode addr:$src1), t.RegClass:$src2, (i8 imm:$src3)), addr:$src1)],
[(store (node t.RegClass:$src2, (t.LoadNode addr:$src1), (i8 imm:$src3)), addr:$src1)]);
}
class ShlrdOpMRC_M<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
: BinOpMR<o, m, triop_cl_args, t, (outs), []>, TB {
let Uses = [CL];
let SchedRW = [WriteSHDmrcl];
let mayStore = 1;
let Pattern = !if(!eq(m, "shld"),
[(store (node (t.LoadNode addr:$src1), t.RegClass:$src2, CL), addr:$src1)],
[(store (node t.RegClass:$src2, (t.LoadNode addr:$src1), CL), addr:$src1)]);
}
class ShlrdOpMRI8U_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
: ITy<o, MRMDestMem, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, t.RegClass:$src2, u8imm:$src3),
m, triop_ndd_args, []>, NDD<1> {
let ImmT = Imm8;
let SchedRW = [WriteSHDmri];
let mayLoad = 1;
let Pattern = !if(!eq(m, "shld"),
[(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), t.RegClass:$src2, (i8 imm:$src3)))],
[(set t.RegClass:$dst, (node t.RegClass:$src2, (t.LoadNode addr:$src1), (i8 imm:$src3)))]);
}
class ShlrdOpMRC_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
: BinOpMR<o, m, triop_cl_ndd_args, t, (outs t.RegClass:$dst), []>, NDD<1> {
let Uses = [CL];
let SchedRW = [WriteSHDmrcl];
let Pattern = !if(!eq(m, "shld"),
[(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), t.RegClass:$src2, CL))],
[(set t.RegClass:$dst, (node t.RegClass:$src2, (t.LoadNode addr:$src1), CL))]);
}
multiclass Shlrd<bits<8> o1, bits<8> o2, bits<8> o3, string m, SDPatternOperator node, SDPatternOperator t_node> {
let Predicates = [NoNDD] in {
def 16rri8 : ShlrdOpRRI8U_R<o1, m, Xi16, t_node>, TB, DefEFLAGS, OpSize16;
def 32rri8 : ShlrdOpRRI8U_R<o1, m, Xi32, node>, TB, DefEFLAGS, OpSize32;
def 64rri8 : ShlrdOpRRI8U_R<o1, m, Xi64, node>, TB, DefEFLAGS;
def 16rrCL : ShlrdOpRRC_R<o2, m, Xi16, t_node>, TB, DefEFLAGS, OpSize16;
def 32rrCL : ShlrdOpRRC_R<o2, m, Xi32, node>, TB, DefEFLAGS, OpSize32;
def 64rrCL : ShlrdOpRRC_R<o2, m, Xi64, node>, TB, DefEFLAGS;
}
let Predicates = [HasNDD, In64BitMode] in {
def 16rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi16, t_node, 1>, DefEFLAGS, PD;
def 32rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi32, node, 1>, DefEFLAGS;
def 64rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi64, node, 1>, DefEFLAGS;
def 16rrCL_ND : ShlrdOpRRC_R<o2, m, Xi16, t_node, 1>, DefEFLAGS, PD;
def 32rrCL_ND : ShlrdOpRRC_R<o2, m, Xi32, node, 1>, DefEFLAGS;
def 64rrCL_ND : ShlrdOpRRC_R<o2, m, Xi64, node, 1>, DefEFLAGS;
}
let Predicates = [In64BitMode] in {
def 16rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi16>, NF, PD;
def 32rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi32>, NF;
def 64rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi64>, NF;
def 16rrCL_NF : ShlrdOpRRC_R<o2, m, Xi16>, NF, PD;
def 32rrCL_NF : ShlrdOpRRC_R<o2, m, Xi32>, NF;
def 64rrCL_NF : ShlrdOpRRC_R<o2, m, Xi64>, NF;
def 16rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi16, null_frag, 1>, EVEX_NF, PD;
def 32rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi32, null_frag, 1>, EVEX_NF;
def 64rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi64, null_frag, 1>, EVEX_NF;
def 16rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi16, null_frag, 1>, EVEX_NF, PD;
def 32rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi32, null_frag, 1>, EVEX_NF;
def 64rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi64, null_frag, 1>, EVEX_NF;
def 16rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi16>, DefEFLAGS, PL, PD;
def 32rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi32>, DefEFLAGS, PL;
def 64rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi64>, DefEFLAGS, PL;
def 16rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi16>, DefEFLAGS, PL, PD;
def 32rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi32>, DefEFLAGS, PL;
def 64rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi64>, DefEFLAGS, PL;
}
def 16mri8 : ShlrdOpMRI8U_M<o1, m, Xi16, t_node>, DefEFLAGS, OpSize16;
def 32mri8 : ShlrdOpMRI8U_M<o1, m, Xi32, node>, DefEFLAGS, OpSize32;
def 64mri8 : ShlrdOpMRI8U_M<o1, m, Xi64, node>, DefEFLAGS;
def 16mrCL : ShlrdOpMRC_M<o2, m, Xi16, t_node>, DefEFLAGS, OpSize16;
def 32mrCL : ShlrdOpMRC_M<o2, m, Xi32, node>, DefEFLAGS, OpSize32;
def 64mrCL : ShlrdOpMRC_M<o2, m, Xi64, node>, DefEFLAGS;
let Predicates = [HasNDD, In64BitMode] in {
def 16mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi16, t_node>, DefEFLAGS, PD;
def 32mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi32, node>, DefEFLAGS;
def 64mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi64, node>, DefEFLAGS;
def 16mrCL_ND : ShlrdOpMRC_R<o2, m, Xi16, t_node>, DefEFLAGS, PD;
def 32mrCL_ND : ShlrdOpMRC_R<o2, m, Xi32, node>, DefEFLAGS;
def 64mrCL_ND : ShlrdOpMRC_R<o2, m, Xi64, node>, DefEFLAGS;
}
let Predicates = [In64BitMode] in {
def 16mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi16>, NF, PD;
def 32mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi32>, NF;
def 64mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi64>, NF;
def 16mrCL_NF : ShlrdOpMRC_M<o2, m, Xi16>, NF, PD;
def 32mrCL_NF : ShlrdOpMRC_M<o2, m, Xi32>, NF;
def 64mrCL_NF : ShlrdOpMRC_M<o2, m, Xi64>, NF;
def 16mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi16>, EVEX_NF, PD;
def 32mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi32>, EVEX_NF;
def 64mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi64>, EVEX_NF;
def 16mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi16>, EVEX_NF, PD;
def 32mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi32>, EVEX_NF;
def 64mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi64>, EVEX_NF;
def 16mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi16>, DefEFLAGS, PL, PD;
def 32mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi32>, DefEFLAGS, PL;
def 64mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi64>, DefEFLAGS, PL;
def 16mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi16>, DefEFLAGS, PL, PD;
def 32mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi32>, DefEFLAGS, PL;
def 64mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi64>, DefEFLAGS, PL;
}
}
defm SHLD : Shlrd<0xA4, 0xA5, 0x24, "shld", fshl, X86fshl>;
defm SHRD : Shlrd<0xAC, 0xAD, 0x2C, "shrd", fshr, X86fshr>;
// Sandy Bridge and newer Intel processors support faster rotates using
// SHLD to avoid a partial flag update on the normal rotate instructions.
// Use a pseudo so that TwoInstructionPass and register allocation will see
// this as unary instruction.
let Predicates = [HasFastSHLDRotate], AddedComplexity = 5,
Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteSHDrri],
Constraints = "$src1 = $dst" in {
def SHLDROT32ri : I<0, Pseudo, (outs GR32:$dst),
(ins GR32:$src1, u8imm:$shamt), "",
[(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$shamt)))]>;
def SHLDROT64ri : I<0, Pseudo, (outs GR64:$dst),
(ins GR64:$src1, u8imm:$shamt), "",
[(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$shamt)))]>;
def SHRDROT32ri : I<0, Pseudo, (outs GR32:$dst),
(ins GR32:$src1, u8imm:$shamt), "",
[(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$shamt)))]>;
def SHRDROT64ri : I<0, Pseudo, (outs GR64:$dst),
(ins GR64:$src1, u8imm:$shamt), "",
[(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$shamt)))]>;
}
//===----------------------------------------------------------------------===//
// BMI Shift/Rotate instructions
//===----------------------------------------------------------------------===//
def ROT32L2R_imm8 : SDNodeXForm<imm, [{
// Convert a ROTL shamt to a ROTR shamt on 32-bit integer.
return getI8Imm(32 - N->getZExtValue(), SDLoc(N));
}]>;
def ROT64L2R_imm8 : SDNodeXForm<imm, [{
// Convert a ROTL shamt to a ROTR shamt on 64-bit integer.
return getI8Imm(64 - N->getZExtValue(), SDLoc(N));
}]>;
// NOTE: We use WriteShift for these rotates as they avoid the stalls
// of many of the older x86 rotate instructions.
class RorXri<X86TypeInfo t>
: ITy<0xF0, MRMSrcReg, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1, u8imm:$src2),
"rorx", binop_ndd_args, []>, TA, XD, Sched<[WriteShift]> {
let ImmT = Imm8;
}
class RorXmi<X86TypeInfo t>
: ITy<0xF0, MRMSrcMem, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, u8imm:$src2),
"rorx", binop_ndd_args, []>, TA, XD, Sched<[WriteShiftLd]> {
let ImmT = Imm8;
let mayLoad = 1;
}
multiclass RorX<X86TypeInfo t> {
let Predicates = [HasBMI2, NoEGPR] in {
def ri : RorXri<t>, VEX;
def mi : RorXmi<t>, VEX;
}
let Predicates = [HasBMI2, HasEGPR, In64BitMode] in {
def ri_EVEX : RorXri<t>, EVEX;
def mi_EVEX : RorXmi<t>, EVEX;
}
}
defm RORX32: RorX<Xi32>;
defm RORX64: RorX<Xi64>;
class ShiftXrr<string m, X86TypeInfo t>
: ITy<0xF7, MRMSrcReg4VOp3, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1, t.RegClass:$src2),
m, binop_ndd_args, []>, T8, Sched<[WriteShift]>;
class ShiftXrm<string m, X86TypeInfo t>
: ITy<0xF7, MRMSrcMem4VOp3, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, t.RegClass:$src2),
m, binop_ndd_args, []>, T8,
Sched<[WriteShift.Folded,
// x86memop:$src1
ReadDefault, ReadDefault, ReadDefault, ReadDefault,
ReadDefault,
// RC:$src2
WriteShift.ReadAfterFold]> {
let mayLoad = 1;
}
multiclass ShiftX<string m, X86TypeInfo t> {
let Predicates = [HasBMI2, NoEGPR] in {
def rr : ShiftXrr<m, t>, VEX;
def rm : ShiftXrm<m, t>, VEX;
}
let Predicates = [HasBMI2, HasEGPR, In64BitMode] in {
def rr_EVEX : ShiftXrr<m, t>, EVEX;
def rm_EVEX : ShiftXrm<m, t>, EVEX;
}
}
defm SARX32: ShiftX<"sarx", Xi32>, XS;
defm SARX64: ShiftX<"sarx", Xi64>, XS;
defm SHRX32: ShiftX<"shrx", Xi32>, XD;
defm SHRX64: ShiftX<"shrx", Xi64>, XD;
defm SHLX32: ShiftX<"shlx", Xi32>, PD;
defm SHLX64: ShiftX<"shlx", Xi64>, PD;
multiclass RORX_Pats<string suffix> {
// Prefer RORX which is non-destructive and doesn't update EFLAGS.
let AddedComplexity = 10 in {
def : Pat<(rotr GR32:$src, (i8 imm:$shamt)),
(!cast<Instruction>(RORX32ri#suffix) GR32:$src, imm:$shamt)>;
def : Pat<(rotr GR64:$src, (i8 imm:$shamt)),
(!cast<Instruction>(RORX64ri#suffix) GR64:$src, imm:$shamt)>;
def : Pat<(rotl GR32:$src, (i8 imm:$shamt)),
(!cast<Instruction>(RORX32ri#suffix) GR32:$src, (ROT32L2R_imm8 imm:$shamt))>;
def : Pat<(rotl GR64:$src, (i8 imm:$shamt)),
(!cast<Instruction>(RORX64ri#suffix) GR64:$src, (ROT64L2R_imm8 imm:$shamt))>;
}
def : Pat<(rotr (loadi32 addr:$src), (i8 imm:$shamt)),
(!cast<Instruction>(RORX32mi#suffix) addr:$src, imm:$shamt)>;
def : Pat<(rotr (loadi64 addr:$src), (i8 imm:$shamt)),
(!cast<Instruction>(RORX64mi#suffix) addr:$src, imm:$shamt)>;
def : Pat<(rotl (loadi32 addr:$src), (i8 imm:$shamt)),
(!cast<Instruction>(RORX32mi#suffix) addr:$src, (ROT32L2R_imm8 imm:$shamt))>;
def : Pat<(rotl (loadi64 addr:$src), (i8 imm:$shamt)),
(!cast<Instruction>(RORX64mi#suffix) addr:$src, (ROT64L2R_imm8 imm:$shamt))>;
}
multiclass ShiftX_Pats<SDNode op, string suffix = ""> {
// Prefer SARX/SHRX/SHLX over SAR/SHR/SHL with variable shift BUT not
// immediate shift, i.e. the following code is considered better
//
// mov %edi, %esi
// shl $imm, %esi
// ... %edi, ...
//
// than
//
// movb $imm, %sil
// shlx %sil, %edi, %esi
// ... %edi, ...
//
let AddedComplexity = 1 in {
def : Pat<(op GR32:$src1, GR8:$src2),
(!cast<Instruction>(NAME#"32rr"#suffix) GR32:$src1,
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
def : Pat<(op GR64:$src1, GR8:$src2),
(!cast<Instruction>(NAME#"64rr"#suffix) GR64:$src1,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
def : Pat<(op GR32:$src1, (shiftMask32 GR8:$src2)),
(!cast<Instruction>(NAME#"32rr"#suffix) GR32:$src1,
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
def : Pat<(op GR64:$src1, (shiftMask64 GR8:$src2)),
(!cast<Instruction>(NAME#"64rr"#suffix) GR64:$src1,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}
// We prefer to use
// mov (%ecx), %esi
// shl $imm, $esi
//
// over
//
// movb $imm, %al
// shlx %al, (%ecx), %esi
//
// This priority is enforced by IsProfitableToFoldLoad.
def : Pat<(op (loadi32 addr:$src1), GR8:$src2),
(!cast<Instruction>(NAME#"32rm"#suffix) addr:$src1,
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
def : Pat<(op (loadi64 addr:$src1), GR8:$src2),
(!cast<Instruction>(NAME#"64rm"#suffix) addr:$src1,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
def : Pat<(op (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
(!cast<Instruction>(NAME#"32rm"#suffix) addr:$src1,
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
def : Pat<(op (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
(!cast<Instruction>(NAME#"64rm"#suffix) addr:$src1,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}
let Predicates = [HasBMI2, NoEGPR] in {
defm : RORX_Pats<"">;
defm SARX : ShiftX_Pats<sra>;
defm SHRX : ShiftX_Pats<srl>;
defm SHLX : ShiftX_Pats<shl>;
}
let Predicates = [HasBMI2, HasEGPR] in {
defm : RORX_Pats<"_EVEX">;
defm SARX : ShiftX_Pats<sra, "_EVEX">;
defm SHRX : ShiftX_Pats<srl, "_EVEX">;
defm SHLX : ShiftX_Pats<shl, "_EVEX">;
}
|