File: X86InstrShiftRotate.td

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (691 lines) | stat: -rw-r--r-- 33,110 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
//===-- X86InstrShiftRotate.td - Shift and Rotate Instrs ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the shift and rotate instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Shift/Rotate instructions
//===----------------------------------------------------------------------===//

multiclass ShiftRotate<string m, Format RegMRM, Format MemMRM, SDPatternOperator node,
                       SchedReadWrite rCL, SchedReadWrite ri, SchedReadWrite mCL,
                       SchedReadWrite mi, list<Register> uses = []> {

  let Uses = uses in {
    let isConvertibleToThreeAddress = !if(!eq(m, "shl"), 1, 0) in {
      let Predicates = [NoNDD] in {
        def 8ri  : BinOpRI8U_R<m, RegMRM, Xi8, node>, Sched<[ri]>, DefEFLAGS;
        def 16ri : BinOpRI8U_R<m, RegMRM, Xi16, node>, Sched<[ri]>, DefEFLAGS, OpSize16;
        def 32ri : BinOpRI8U_R<m, RegMRM, Xi32, node>, Sched<[ri]>, DefEFLAGS, OpSize32;
        def 64ri : BinOpRI8U_R<m, RegMRM, Xi64, node>, Sched<[ri]>, DefEFLAGS;
      }
      let Predicates = [HasNDD, In64BitMode] in {
        def 8ri_ND  : BinOpRI8U_R<m, RegMRM, Xi8, node, 1>, Sched<[ri]>, DefEFLAGS;
        def 16ri_ND : BinOpRI8U_R<m, RegMRM, Xi16, node, 1>, Sched<[ri]>, DefEFLAGS, PD;
        def 32ri_ND : BinOpRI8U_R<m, RegMRM, Xi32, node, 1>, Sched<[ri]>, DefEFLAGS;
        def 64ri_ND : BinOpRI8U_R<m, RegMRM, Xi64, node, 1>, Sched<[ri]>, DefEFLAGS;
      }
      let Predicates = [In64BitMode] in {
        def 8ri_EVEX  : BinOpRI8U_R<m, RegMRM, Xi8>, Sched<[ri]>, DefEFLAGS, PL;
        def 16ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi16>, Sched<[ri]>, DefEFLAGS, PL, PD;
        def 32ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi32>, Sched<[ri]>, DefEFLAGS, PL;
        def 64ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi64>, Sched<[ri]>, DefEFLAGS, PL;
      }
    }

    def 8mi  : BinOpMI8U_M<m, MemMRM, Xi8, node>, Sched<[mi, WriteRMW]>, DefEFLAGS;
    def 16mi : BinOpMI8U_M<m, MemMRM, Xi16, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, OpSize16;
    def 32mi : BinOpMI8U_M<m, MemMRM, Xi32, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, OpSize32;
    def 64mi : BinOpMI8U_M<m, MemMRM, Xi64, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, Requires<[In64BitMode]>;
    let Predicates = [HasNDD, In64BitMode] in {
      def 8mi_ND  : BinOpMI8U_R<m, MemMRM, Xi8, node>, Sched<[mi, ri]>, DefEFLAGS;
      def 16mi_ND : BinOpMI8U_R<m, MemMRM, Xi16, node>, Sched<[mi, ri]>, DefEFLAGS, PD;
      def 32mi_ND : BinOpMI8U_R<m, MemMRM, Xi32, node>, Sched<[mi, ri]>, DefEFLAGS;
      def 64mi_ND : BinOpMI8U_R<m, MemMRM, Xi64, node>, Sched<[mi, ri]>, DefEFLAGS;
    }
    let Predicates = [In64BitMode] in {
      def 8mi_EVEX  : BinOpMI8U_M<m, MemMRM, Xi8>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
      def 16mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi16>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL, PD;
      def 32mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi32>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
      def 64mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi64>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
    }

    let SchedRW = [ri] in {
      def 8r1  : UnaryOpR_RF<0xD1, RegMRM, m, Xi8>;
      def 16r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi16>, OpSize16;
      def 32r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi32>, OpSize32;
      def 64r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi64>;

      // FIXME: Assembler can't tell whether it's 8r1_ND or 8rCL when the source register is cl, e.g.
      //
      //  shlb %cl, %al
      //
      // GNU binutils distinguish them by adding an explicit $1 to asm string of 8r1_ND. But we haven't support
      // constant immediate in asm string for X86 in TD. So we add DisassembleOnly for 8r1_ND for the time being.
      let Predicates = [In64BitMode] in {
        def 8r1_ND  : UnaryOpR_RF<0xD1, RegMRM, m, Xi8, null_frag, 1>, DisassembleOnly;
        def 16r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi16, null_frag, 1>, PD;
        def 32r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi32, null_frag, 1>;
        def 64r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi64, null_frag, 1>;

        def 8r1_EVEX  : UnaryOpR_RF<0xD1, RegMRM, m, Xi8>, PL;
        def 16r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi16>, PL, PD;
        def 32r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi32>, PL;
        def 64r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi64>, PL;
      }
    }

    let SchedRW = [mi, WriteRMW] in {
      def 8m1  : UnaryOpM_MF<0xD1, MemMRM, m, Xi8>;
      def 16m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi16>, OpSize16;
      def 32m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi32>, OpSize32;
      def 64m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi64>, Requires<[In64BitMode]>;

      let Predicates = [In64BitMode] in {
        def 8m1_EVEX  : UnaryOpM_MF<0xD1, MemMRM, m, Xi8>, PL;
        def 16m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi16>, PL, PD;
        def 32m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi32>, PL;
        def 64m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi64>, PL;
      }
    }
    let SchedRW = [mi, ri], Predicates = [In64BitMode] in {
      def 8m1_ND  : UnaryOpM_RF<0xD1, MemMRM, m, Xi8>;
      def 16m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi16>, PD;
      def 32m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi32>;
      def 64m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi64>;
    }
  }

  let Uses = !listconcat([CL], uses), Defs = [EFLAGS] in {
    let Predicates = [NoNDD] in {
      def 8rCL  : BinOpRC_R<m, RegMRM, Xi8, node>, Sched<[rCL]>;
      def 16rCL : BinOpRC_R<m, RegMRM, Xi16, node>, Sched<[rCL]>, OpSize16;
      def 32rCL : BinOpRC_R<m, RegMRM, Xi32, node>, Sched<[rCL]>, OpSize32;
      def 64rCL : BinOpRC_R<m, RegMRM, Xi64, node>, Sched<[rCL]>;
    }
    let Predicates = [HasNDD, In64BitMode] in {
      def 8rCL_ND  : BinOpRC_R<m, RegMRM, Xi8, node, 1>, Sched<[rCL]>;
      def 16rCL_ND : BinOpRC_R<m, RegMRM, Xi16, node, 1>, Sched<[rCL]>, PD;
      def 32rCL_ND : BinOpRC_R<m, RegMRM, Xi32, node, 1>, Sched<[rCL]>;
      def 64rCL_ND : BinOpRC_R<m, RegMRM, Xi64, node, 1>, Sched<[rCL]>;
    }
    let Predicates = [In64BitMode] in {
      def 8rCL_EVEX  : BinOpRC_R<m, RegMRM, Xi8>, Sched<[rCL]>, PL;
      def 16rCL_EVEX : BinOpRC_R<m, RegMRM, Xi16>, Sched<[rCL]>, PL, PD;
      def 32rCL_EVEX : BinOpRC_R<m, RegMRM, Xi32>, Sched<[rCL]>, PL;
      def 64rCL_EVEX : BinOpRC_R<m, RegMRM, Xi64>, Sched<[rCL]>, PL;
    }

    def 8mCL  : BinOpMC_M<m, MemMRM, Xi8, node>, Sched<[mCL, WriteRMW]>;
    def 16mCL : BinOpMC_M<m, MemMRM, Xi16, node>, Sched<[mCL, WriteRMW]>, OpSize16;
    def 32mCL : BinOpMC_M<m, MemMRM, Xi32, node>, Sched<[mCL, WriteRMW]>, OpSize32;
    def 64mCL : BinOpMC_M<m, MemMRM, Xi64, node>, Sched<[mCL, WriteRMW]>, Requires<[In64BitMode]>;

    let Predicates = [HasNDD, In64BitMode] in {
      def 8mCL_ND  : BinOpMC_R<m, MemMRM, Xi8, node>, Sched<[mCL, rCL]>;
      def 16mCL_ND : BinOpMC_R<m, MemMRM, Xi16, node>, Sched<[mCL, rCL]>, PD;
      def 32mCL_ND : BinOpMC_R<m, MemMRM, Xi32, node>, Sched<[mCL, rCL]>;
      def 64mCL_ND : BinOpMC_R<m, MemMRM, Xi64, node>, Sched<[mCL, rCL]>;
    }

    let Predicates = [In64BitMode] in {
      def 8mCL_EVEX  : BinOpMC_M<m, MemMRM, Xi8>, Sched<[mCL, WriteRMW]>, PL;
      def 16mCL_EVEX : BinOpMC_M<m, MemMRM, Xi16>, Sched<[mCL, WriteRMW]>, PL, PD;
      def 32mCL_EVEX : BinOpMC_M<m, MemMRM, Xi32>, Sched<[mCL, WriteRMW]>, PL;
      def 64mCL_EVEX : BinOpMC_M<m, MemMRM, Xi64>, Sched<[mCL, WriteRMW]>, PL;
    }
  }
}

multiclass ShiftRotate_NF<string m, Format RegMRM, Format MemMRM, SchedReadWrite rCL,
                          SchedReadWrite ri, SchedReadWrite mCL, SchedReadWrite mi> {
  let Predicates = [In64BitMode] in {
    let isConvertibleToThreeAddress = !if(!eq(m, "shl"), 1, 0) in {
      def 8ri_NF  : BinOpRI8U_R<m, RegMRM, Xi8>, Sched<[ri]>, NF;
      def 16ri_NF : BinOpRI8U_R<m, RegMRM, Xi16>, Sched<[ri]>, NF, PD;
      def 32ri_NF : BinOpRI8U_R<m, RegMRM, Xi32>, Sched<[ri]>, NF;
      def 64ri_NF : BinOpRI8U_R<m, RegMRM, Xi64>, Sched<[ri]>, NF;

      def 8ri_NF_ND  : BinOpRI8U_R<m, RegMRM, Xi8, null_frag, 1>, Sched<[ri]>, EVEX_NF;
      def 16ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi16, null_frag, 1>, Sched<[ri]>, EVEX_NF, PD;
      def 32ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi32, null_frag, 1>, Sched<[ri]>, EVEX_NF;
      def 64ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi64, null_frag, 1>, Sched<[ri]>, EVEX_NF;
    }

    def 8mi_NF  : BinOpMI8U_M<m, MemMRM, Xi8>, Sched<[mi, WriteRMW]>, NF;
    def 16mi_NF : BinOpMI8U_M<m, MemMRM, Xi16>, Sched<[mi, WriteRMW]>, NF, PD;
    def 32mi_NF : BinOpMI8U_M<m, MemMRM, Xi32>, Sched<[mi, WriteRMW]>, NF;
    def 64mi_NF : BinOpMI8U_M<m, MemMRM, Xi64>, Sched<[mi, WriteRMW]>, NF;

    def 8mi_NF_ND  : BinOpMI8U_R<m, MemMRM, Xi8>, Sched<[mi, ri]>, EVEX_NF;
    def 16mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi16>, Sched<[mi, ri]>, EVEX_NF, PD;
    def 32mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi32>, Sched<[mi, ri]>, EVEX_NF;
    def 64mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi64>, Sched<[mi, ri]>, EVEX_NF;

    let SchedRW = [ri] in {
      // FIXME: Assembler can't tell whether it's 8r1_NF_ND or 8rCL_NF when the source register is cl, e.g.
      //
      //  {nf} shlb %cl, %al
      //
      // GNU binutils distinguish them by adding an explicit $1 to asm string of 8r1_NF_ND. But we haven't support
      // constant immediate in asm string for X86 in TD. So we add DisassembleOnly for 8r1_NF_ND for the time being.
      def 8r1_NF  : UnaryOpR_R<0xD1, RegMRM, m, Xi8>, NF;
      def 16r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi16>, NF, PD;
      def 32r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi32>, NF;
      def 64r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi64>, NF;

      def 8r1_NF_ND  : UnaryOpR_R<0xD1, RegMRM, m, Xi8, null_frag, 1>, EVEX_NF, DisassembleOnly;
      def 16r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi16, null_frag, 1>, EVEX_NF, PD;
      def 32r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi32, null_frag, 1>, EVEX_NF;
      def 64r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi64, null_frag, 1>, EVEX_NF;
    }

    let SchedRW = [mi, WriteRMW] in {
      def 8m1_NF  : UnaryOpM_M<0xD1, MemMRM, m, Xi8>, NF;
      def 16m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi16>, NF, PD;
      def 32m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi32>, NF;
      def 64m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi64>, NF;
    }
    let SchedRW = [mi, ri] in {
      def 8m1_NF_ND  : UnaryOpM_R<0xD1, MemMRM, m, Xi8>, EVEX_NF;
      def 16m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi16>, EVEX_NF, PD;
      def 32m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi32>, EVEX_NF;
      def 64m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi64>, EVEX_NF;
    }

    let Uses = [CL] in {
      def 8rCL_NF  : BinOpRC_R<m, RegMRM, Xi8>, Sched<[rCL]>, NF;
      def 16rCL_NF : BinOpRC_R<m, RegMRM, Xi16>, Sched<[rCL]>, NF, PD;
      def 32rCL_NF : BinOpRC_R<m, RegMRM, Xi32>, Sched<[rCL]>, NF;
      def 64rCL_NF : BinOpRC_R<m, RegMRM, Xi64>, Sched<[rCL]>, NF;

      def 8rCL_NF_ND  : BinOpRC_R<m, RegMRM, Xi8, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
      def 16rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi16, null_frag, 1>, Sched<[rCL]>, EVEX_NF, PD;
      def 32rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi32, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
      def 64rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi64, null_frag, 1>, Sched<[rCL]>, EVEX_NF;

      def 8mCL_NF  : BinOpMC_M<m, MemMRM, Xi8>, Sched<[mCL, WriteRMW]>, NF;
      def 16mCL_NF : BinOpMC_M<m, MemMRM, Xi16>, Sched<[mCL, WriteRMW]>, NF, PD;
      def 32mCL_NF : BinOpMC_M<m, MemMRM, Xi32>, Sched<[mCL, WriteRMW]>, NF;
      def 64mCL_NF : BinOpMC_M<m, MemMRM, Xi64>, Sched<[mCL, WriteRMW]>, NF;

      def 8mCL_NF_ND  : BinOpMC_R<m, MemMRM, Xi8>, Sched<[mCL, rCL]>, EVEX_NF;
      def 16mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi16>, Sched<[mCL, rCL]>, EVEX_NF, PD;
      def 32mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi32>, Sched<[mCL, rCL]>, EVEX_NF;
      def 64mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi64>, Sched<[mCL, rCL]>, EVEX_NF;
    }
  }
}
defm SHL: ShiftRotate<"shl", MRM4r, MRM4m, shl, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SHR: ShiftRotate<"shr", MRM5r, MRM5m, srl, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SAR: ShiftRotate<"sar", MRM7r, MRM7m, sra, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;

defm ROL: ShiftRotate<"rol", MRM0r, MRM0m, rotl, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm ROR: ShiftRotate<"ror", MRM1r, MRM1m, rotr, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm RCL: ShiftRotate<"rcl", MRM2r, MRM2m, null_frag, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd, [EFLAGS]>;
defm RCR: ShiftRotate<"rcr", MRM3r, MRM3m, null_frag, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd, [EFLAGS]>;

defm SHL: ShiftRotate_NF<"shl", MRM4r, MRM4m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SHR: ShiftRotate_NF<"shr", MRM5r, MRM5m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SAR: ShiftRotate_NF<"sar", MRM7r, MRM7m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;

defm ROL: ShiftRotate_NF<"rol", MRM0r, MRM0m, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm ROR: ShiftRotate_NF<"ror", MRM1r, MRM1m, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;

// Use the opposite rotate if allows us to use the rotate by 1 instruction.
let Predicates = [NoNDD] in {
  def : Pat<(rotl GR8:$src1,  (i8 7)),  (ROR8r1  GR8:$src1)>;
  def : Pat<(rotl GR16:$src1, (i8 15)), (ROR16r1 GR16:$src1)>;
  def : Pat<(rotl GR32:$src1, (i8 31)), (ROR32r1 GR32:$src1)>;
  def : Pat<(rotl GR64:$src1, (i8 63)), (ROR64r1 GR64:$src1)>;
  def : Pat<(rotr GR8:$src1,  (i8 7)),  (ROL8r1  GR8:$src1)>;
  def : Pat<(rotr GR16:$src1, (i8 15)), (ROL16r1 GR16:$src1)>;
  def : Pat<(rotr GR32:$src1, (i8 31)), (ROL32r1 GR32:$src1)>;
  def : Pat<(rotr GR64:$src1, (i8 63)), (ROL64r1 GR64:$src1)>;
}
let Predicates = [HasNDD] in {
  def : Pat<(rotl GR8:$src1,  (i8 7)),  (ROR8r1_ND  GR8:$src1)>;
  def : Pat<(rotl GR16:$src1, (i8 15)), (ROR16r1_ND GR16:$src1)>;
  def : Pat<(rotl GR32:$src1, (i8 31)), (ROR32r1_ND GR32:$src1)>;
  def : Pat<(rotl GR64:$src1, (i8 63)), (ROR64r1_ND GR64:$src1)>;
  def : Pat<(rotr GR8:$src1,  (i8 7)),  (ROL8r1_ND  GR8:$src1)>;
  def : Pat<(rotr GR16:$src1, (i8 15)), (ROL16r1_ND GR16:$src1)>;
  def : Pat<(rotr GR32:$src1, (i8 31)), (ROL32r1_ND GR32:$src1)>;
  def : Pat<(rotr GR64:$src1, (i8 63)), (ROL64r1_ND GR64:$src1)>;
}

def : Pat<(store (rotl (loadi8 addr:$dst), (i8 7)), addr:$dst),
          (ROR8m1 addr:$dst)>;
def : Pat<(store (rotl (loadi16 addr:$dst), (i8 15)), addr:$dst),
          (ROR16m1 addr:$dst)>;
def : Pat<(store (rotl (loadi32 addr:$dst), (i8 31)), addr:$dst),
          (ROR32m1 addr:$dst)>;
def : Pat<(store (rotl (loadi64 addr:$dst), (i8 63)), addr:$dst),
          (ROR64m1 addr:$dst)>, Requires<[In64BitMode]>;

def : Pat<(store (rotr (loadi8 addr:$dst), (i8 7)), addr:$dst),
          (ROL8m1 addr:$dst)>;
def : Pat<(store (rotr (loadi16 addr:$dst), (i8 15)), addr:$dst),
          (ROL16m1 addr:$dst)>;
def : Pat<(store (rotr (loadi32 addr:$dst), (i8 31)), addr:$dst),
          (ROL32m1 addr:$dst)>;
def : Pat<(store (rotr (loadi64 addr:$dst), (i8 63)), addr:$dst),
          (ROL64m1 addr:$dst)>, Requires<[In64BitMode]>;

let Predicates = [HasNDD] in {
def : Pat<(rotl (loadi8 addr:$src), (i8 7)),
          (ROR8m1_ND addr:$src)>;
def : Pat<(rotl (loadi16 addr:$src), (i8 15)),
          (ROR16m1_ND addr:$src)>;
def : Pat<(rotl (loadi32 addr:$src), (i8 31)),
          (ROR32m1_ND addr:$src)>;
def : Pat<(rotl (loadi64 addr:$src), (i8 63)),
          (ROR64m1_ND addr:$src)>;

def : Pat<(rotr (loadi8 addr:$src), (i8 7)),
          (ROL8m1_ND addr:$src)>;
def : Pat<(rotr (loadi16 addr:$src), (i8 15)),
          (ROL16m1_ND addr:$src)>;
def : Pat<(rotr (loadi32 addr:$src), (i8 31)),
          (ROL32m1_ND addr:$src)>;
def : Pat<(rotr (loadi64 addr:$src), (i8 63)),
          (ROL64m1_ND addr:$src)>;
}

// Patterns for rotate with relocImm for the immediate field.
let Predicates = [NoNDD] in {
  def : Pat<(rotl GR8:$src1, (i8 relocImm:$src2)),
            (ROL8ri GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR16:$src1, (i8 relocImm:$src2)),
            (ROL16ri GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR32:$src1, (i8 relocImm:$src2)),
            (ROL32ri GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR64:$src1, (i8 relocImm:$src2)),
            (ROL64ri GR64:$src1, relocImm:$src2)>;

  def : Pat<(rotr GR8:$src1, (i8 relocImm:$src2)),
            (ROR8ri GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR16:$src1, (i8 relocImm:$src2)),
            (ROR16ri GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR32:$src1, (i8 relocImm:$src2)),
            (ROR32ri GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR64:$src1, (i8 relocImm:$src2)),
            (ROR64ri GR64:$src1, relocImm:$src2)>;
}
let Predicates = [HasNDD] in {
  def : Pat<(rotl GR8:$src1, (i8 relocImm:$src2)),
            (ROL8ri_ND GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR16:$src1, (i8 relocImm:$src2)),
            (ROL16ri_ND GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR32:$src1, (i8 relocImm:$src2)),
            (ROL32ri_ND GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR64:$src1, (i8 relocImm:$src2)),
            (ROL64ri_ND GR64:$src1, relocImm:$src2)>;

  def : Pat<(rotr GR8:$src1, (i8 relocImm:$src2)),
            (ROR8ri_ND GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR16:$src1, (i8 relocImm:$src2)),
            (ROR16ri_ND GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR32:$src1, (i8 relocImm:$src2)),
            (ROR32ri_ND GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR64:$src1, (i8 relocImm:$src2)),
            (ROR64ri_ND GR64:$src1, relocImm:$src2)>;
}

//===----------------------------------------------------------------------===//
// Double precision shift instructions (generalizations of rotate)
//===----------------------------------------------------------------------===//

class ShlrdOpRRI8U_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
  : ITy<o, MRMDestReg, t, (outs t.RegClass:$dst),
        (ins t.RegClass:$src1, t.RegClass:$src2, u8imm:$src3), m, !if(!eq(ndd, 0), triop_args, triop_ndd_args),
        []>, NDD<ndd> {
  let isCommutable = 1;
  let ImmT = Imm8;
  let SchedRW = [WriteSHDrri];
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node t.RegClass:$src1, t.RegClass:$src2, (i8 imm:$src3)))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, t.RegClass:$src1, (i8 imm:$src3)))]);
}

class ShlrdOpRRC_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
  : BinOpRR<o, m, !if(!eq(ndd, 0), triop_cl_args, triop_cl_ndd_args), t, (outs t.RegClass:$dst), []>, NDD<ndd> {
  let Uses = [CL];
  let SchedRW = [WriteSHDrrcl];
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node t.RegClass:$src1, t.RegClass:$src2, CL))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, t.RegClass:$src1, CL))]);
}

class ShlrdOpMRI8U_M<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : ITy<o, MRMDestMem, t, (outs), (ins t.MemOperand:$src1, t.RegClass:$src2, u8imm:$src3),
        m, triop_args, []>, TB {
  let ImmT = Imm8;
  let SchedRW = [WriteSHDmri];
  let mayLoad = 1;
  let mayStore = 1;
  let Pattern = !if(!eq(m, "shld"),
                    [(store (node (t.LoadNode addr:$src1), t.RegClass:$src2, (i8 imm:$src3)), addr:$src1)],
                    [(store (node t.RegClass:$src2, (t.LoadNode addr:$src1), (i8 imm:$src3)), addr:$src1)]);
}

class ShlrdOpMRC_M<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : BinOpMR<o, m, triop_cl_args, t, (outs), []>, TB {
  let Uses = [CL];
  let SchedRW = [WriteSHDmrcl];
  let mayStore = 1;
  let Pattern = !if(!eq(m, "shld"),
                    [(store (node (t.LoadNode addr:$src1), t.RegClass:$src2, CL), addr:$src1)],
                    [(store (node t.RegClass:$src2, (t.LoadNode addr:$src1), CL), addr:$src1)]);
}

class ShlrdOpMRI8U_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : ITy<o, MRMDestMem, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, t.RegClass:$src2, u8imm:$src3),
        m, triop_ndd_args, []>, NDD<1> {
  let ImmT = Imm8;
  let SchedRW = [WriteSHDmri];
  let mayLoad = 1;
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), t.RegClass:$src2, (i8 imm:$src3)))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, (t.LoadNode addr:$src1), (i8 imm:$src3)))]);
}

class ShlrdOpMRC_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : BinOpMR<o, m, triop_cl_ndd_args, t, (outs t.RegClass:$dst), []>, NDD<1> {
  let Uses = [CL];
  let SchedRW = [WriteSHDmrcl];
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), t.RegClass:$src2, CL))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, (t.LoadNode addr:$src1), CL))]);
}

multiclass Shlrd<bits<8> o1, bits<8> o2, bits<8> o3, string m, SDPatternOperator node, SDPatternOperator t_node> {
  let Predicates = [NoNDD] in {
    def 16rri8 : ShlrdOpRRI8U_R<o1, m, Xi16, t_node>, TB, DefEFLAGS, OpSize16;
    def 32rri8 : ShlrdOpRRI8U_R<o1, m, Xi32, node>, TB, DefEFLAGS, OpSize32;
    def 64rri8 : ShlrdOpRRI8U_R<o1, m, Xi64, node>, TB, DefEFLAGS;

    def 16rrCL : ShlrdOpRRC_R<o2, m, Xi16, t_node>, TB, DefEFLAGS, OpSize16;
    def 32rrCL : ShlrdOpRRC_R<o2, m, Xi32, node>, TB, DefEFLAGS, OpSize32;
    def 64rrCL : ShlrdOpRRC_R<o2, m, Xi64, node>, TB, DefEFLAGS;
  }
  let Predicates = [HasNDD, In64BitMode] in {
    def 16rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi16, t_node, 1>, DefEFLAGS, PD;
    def 32rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi32, node, 1>, DefEFLAGS;
    def 64rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi64, node, 1>, DefEFLAGS;

    def 16rrCL_ND : ShlrdOpRRC_R<o2, m, Xi16, t_node, 1>, DefEFLAGS, PD;
    def 32rrCL_ND : ShlrdOpRRC_R<o2, m, Xi32, node, 1>, DefEFLAGS;
    def 64rrCL_ND : ShlrdOpRRC_R<o2, m, Xi64, node, 1>, DefEFLAGS;
  }

  let Predicates = [In64BitMode] in {
    def 16rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi16>, NF, PD;
    def 32rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi32>, NF;
    def 64rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi64>, NF;

    def 16rrCL_NF : ShlrdOpRRC_R<o2, m, Xi16>, NF, PD;
    def 32rrCL_NF : ShlrdOpRRC_R<o2, m, Xi32>, NF;
    def 64rrCL_NF : ShlrdOpRRC_R<o2, m, Xi64>, NF;

    def 16rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi16, null_frag, 1>, EVEX_NF, PD;
    def 32rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi32, null_frag, 1>, EVEX_NF;
    def 64rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi64, null_frag, 1>, EVEX_NF;

    def 16rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi16, null_frag, 1>, EVEX_NF, PD;
    def 32rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi32, null_frag, 1>, EVEX_NF;
    def 64rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi64, null_frag, 1>, EVEX_NF;

    def 16rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi16>, DefEFLAGS, PL, PD;
    def 32rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi32>, DefEFLAGS, PL;
    def 64rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi64>, DefEFLAGS, PL;

    def 16rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi16>, DefEFLAGS, PL, PD;
    def 32rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi32>, DefEFLAGS, PL;
    def 64rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi64>, DefEFLAGS, PL;
  }

  def 16mri8 : ShlrdOpMRI8U_M<o1, m, Xi16, t_node>, DefEFLAGS, OpSize16;
  def 32mri8 : ShlrdOpMRI8U_M<o1, m, Xi32, node>, DefEFLAGS, OpSize32;
  def 64mri8 : ShlrdOpMRI8U_M<o1, m, Xi64, node>, DefEFLAGS;

  def 16mrCL : ShlrdOpMRC_M<o2, m, Xi16, t_node>, DefEFLAGS, OpSize16;
  def 32mrCL : ShlrdOpMRC_M<o2, m, Xi32, node>, DefEFLAGS, OpSize32;
  def 64mrCL : ShlrdOpMRC_M<o2, m, Xi64, node>, DefEFLAGS;

  let Predicates = [HasNDD, In64BitMode] in {
    def 16mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi16, t_node>, DefEFLAGS, PD;
    def 32mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi32, node>, DefEFLAGS;
    def 64mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi64, node>, DefEFLAGS;

    def 16mrCL_ND : ShlrdOpMRC_R<o2, m, Xi16, t_node>, DefEFLAGS, PD;
    def 32mrCL_ND : ShlrdOpMRC_R<o2, m, Xi32, node>, DefEFLAGS;
    def 64mrCL_ND : ShlrdOpMRC_R<o2, m, Xi64, node>, DefEFLAGS;
  }

  let Predicates = [In64BitMode] in {
    def 16mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi16>, NF, PD;
    def 32mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi32>, NF;
    def 64mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi64>, NF;

    def 16mrCL_NF : ShlrdOpMRC_M<o2, m, Xi16>, NF, PD;
    def 32mrCL_NF : ShlrdOpMRC_M<o2, m, Xi32>, NF;
    def 64mrCL_NF : ShlrdOpMRC_M<o2, m, Xi64>, NF;

    def 16mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi16>, EVEX_NF, PD;
    def 32mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi32>, EVEX_NF;
    def 64mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi64>, EVEX_NF;

    def 16mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi16>, EVEX_NF, PD;
    def 32mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi32>, EVEX_NF;
    def 64mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi64>, EVEX_NF;

    def 16mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi16>, DefEFLAGS, PL, PD;
    def 32mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi32>, DefEFLAGS, PL;
    def 64mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi64>, DefEFLAGS, PL;

    def 16mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi16>, DefEFLAGS, PL, PD;
    def 32mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi32>, DefEFLAGS, PL;
    def 64mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi64>, DefEFLAGS, PL;
  }
}

defm SHLD : Shlrd<0xA4, 0xA5, 0x24, "shld", fshl, X86fshl>;
defm SHRD : Shlrd<0xAC, 0xAD, 0x2C, "shrd", fshr, X86fshr>;

// Sandy Bridge and newer Intel processors support faster rotates using
// SHLD to avoid a partial flag update on the normal rotate instructions.
// Use a pseudo so that TwoInstructionPass and register allocation will see
// this as unary instruction.
let Predicates = [HasFastSHLDRotate], AddedComplexity = 5,
    Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteSHDrri],
    Constraints = "$src1 = $dst" in {
  def SHLDROT32ri  : I<0, Pseudo, (outs GR32:$dst),
                       (ins GR32:$src1, u8imm:$shamt), "",
                     [(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$shamt)))]>;
  def SHLDROT64ri  : I<0, Pseudo, (outs GR64:$dst),
                       (ins GR64:$src1, u8imm:$shamt), "",
                     [(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$shamt)))]>;

  def SHRDROT32ri  : I<0, Pseudo, (outs GR32:$dst),
                       (ins GR32:$src1, u8imm:$shamt), "",
                     [(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$shamt)))]>;
  def SHRDROT64ri  : I<0, Pseudo, (outs GR64:$dst),
                       (ins GR64:$src1, u8imm:$shamt), "",
                     [(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$shamt)))]>;
}

//===----------------------------------------------------------------------===//
// BMI Shift/Rotate instructions
//===----------------------------------------------------------------------===//

def ROT32L2R_imm8  : SDNodeXForm<imm, [{
  // Convert a ROTL shamt to a ROTR shamt on 32-bit integer.
  return getI8Imm(32 - N->getZExtValue(), SDLoc(N));
}]>;

def ROT64L2R_imm8  : SDNodeXForm<imm, [{
  // Convert a ROTL shamt to a ROTR shamt on 64-bit integer.
  return getI8Imm(64 - N->getZExtValue(), SDLoc(N));
}]>;

// NOTE: We use WriteShift for these rotates as they avoid the stalls
// of many of the older x86 rotate instructions.
class RorXri<X86TypeInfo t>
  : ITy<0xF0, MRMSrcReg, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1, u8imm:$src2),
        "rorx", binop_ndd_args, []>, TA, XD, Sched<[WriteShift]> {
  let ImmT = Imm8;
}
class RorXmi<X86TypeInfo t>
  : ITy<0xF0, MRMSrcMem, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, u8imm:$src2),
        "rorx", binop_ndd_args, []>, TA, XD, Sched<[WriteShiftLd]> {
  let ImmT = Imm8;
  let mayLoad = 1;
}

multiclass RorX<X86TypeInfo t> {
  let Predicates = [HasBMI2, NoEGPR] in {
    def ri : RorXri<t>, VEX;
    def mi : RorXmi<t>, VEX;
  }
  let Predicates = [HasBMI2, HasEGPR, In64BitMode] in {
    def ri_EVEX : RorXri<t>, EVEX;
    def mi_EVEX : RorXmi<t>, EVEX;
  }
}

defm RORX32: RorX<Xi32>;
defm RORX64: RorX<Xi64>;

class ShiftXrr<string m, X86TypeInfo t>
  : ITy<0xF7, MRMSrcReg4VOp3, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1, t.RegClass:$src2),
        m, binop_ndd_args, []>, T8, Sched<[WriteShift]>;

class ShiftXrm<string m, X86TypeInfo t>
  : ITy<0xF7, MRMSrcMem4VOp3, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, t.RegClass:$src2),
        m, binop_ndd_args, []>, T8,
    Sched<[WriteShift.Folded,
           // x86memop:$src1
           ReadDefault, ReadDefault, ReadDefault, ReadDefault,
           ReadDefault,
           // RC:$src2
           WriteShift.ReadAfterFold]> {
  let mayLoad = 1;
}


multiclass ShiftX<string m, X86TypeInfo t> {
  let Predicates = [HasBMI2, NoEGPR] in {
    def rr : ShiftXrr<m, t>, VEX;
    def rm : ShiftXrm<m, t>, VEX;
  }
  let Predicates = [HasBMI2, HasEGPR, In64BitMode] in {
    def rr_EVEX : ShiftXrr<m, t>, EVEX;
    def rm_EVEX : ShiftXrm<m, t>, EVEX;
  }
}

defm SARX32: ShiftX<"sarx", Xi32>, XS;
defm SARX64: ShiftX<"sarx", Xi64>, XS;
defm SHRX32: ShiftX<"shrx", Xi32>, XD;
defm SHRX64: ShiftX<"shrx", Xi64>, XD;
defm SHLX32: ShiftX<"shlx", Xi32>, PD;
defm SHLX64: ShiftX<"shlx", Xi64>, PD;

multiclass RORX_Pats<string suffix> {
  // Prefer RORX which is non-destructive and doesn't update EFLAGS.
  let AddedComplexity = 10 in {
    def : Pat<(rotr GR32:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX32ri#suffix) GR32:$src, imm:$shamt)>;
    def : Pat<(rotr GR64:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX64ri#suffix) GR64:$src, imm:$shamt)>;

    def : Pat<(rotl GR32:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX32ri#suffix) GR32:$src, (ROT32L2R_imm8 imm:$shamt))>;
    def : Pat<(rotl GR64:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX64ri#suffix) GR64:$src, (ROT64L2R_imm8 imm:$shamt))>;
  }

  def : Pat<(rotr (loadi32 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX32mi#suffix) addr:$src, imm:$shamt)>;
  def : Pat<(rotr (loadi64 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX64mi#suffix) addr:$src, imm:$shamt)>;

  def : Pat<(rotl (loadi32 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX32mi#suffix) addr:$src, (ROT32L2R_imm8 imm:$shamt))>;
  def : Pat<(rotl (loadi64 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX64mi#suffix) addr:$src, (ROT64L2R_imm8 imm:$shamt))>;
}

multiclass ShiftX_Pats<SDNode op, string suffix = ""> {
  // Prefer SARX/SHRX/SHLX over SAR/SHR/SHL with variable shift BUT not
  // immediate shift, i.e. the following code is considered better
  //
  //  mov %edi, %esi
  //  shl $imm, %esi
  //  ... %edi, ...
  //
  // than
  //
  //  movb $imm, %sil
  //  shlx %sil, %edi, %esi
  //  ... %edi, ...
  //
  let AddedComplexity = 1 in {
   def : Pat<(op GR32:$src1, GR8:$src2),
              (!cast<Instruction>(NAME#"32rr"#suffix) GR32:$src1,
               (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
   def : Pat<(op GR64:$src1, GR8:$src2),
              (!cast<Instruction>(NAME#"64rr"#suffix) GR64:$src1,
               (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
   def : Pat<(op GR32:$src1, (shiftMask32 GR8:$src2)),
              (!cast<Instruction>(NAME#"32rr"#suffix) GR32:$src1,
               (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
   def : Pat<(op GR64:$src1, (shiftMask64 GR8:$src2)),
              (!cast<Instruction>(NAME#"64rr"#suffix) GR64:$src1,
               (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  }
  // We prefer to use
  //  mov (%ecx), %esi
  //  shl $imm, $esi
  //
  // over
  //
  //  movb $imm, %al
  //  shlx %al, (%ecx), %esi
  //
  // This priority is enforced by IsProfitableToFoldLoad.
  def : Pat<(op (loadi32 addr:$src1), GR8:$src2),
             (!cast<Instruction>(NAME#"32rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(op (loadi64 addr:$src1), GR8:$src2),
             (!cast<Instruction>(NAME#"64rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(op (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
             (!cast<Instruction>(NAME#"32rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(op (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
             (!cast<Instruction>(NAME#"64rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}

let Predicates = [HasBMI2, NoEGPR] in {
  defm : RORX_Pats<"">;
  defm SARX : ShiftX_Pats<sra>;
  defm SHRX : ShiftX_Pats<srl>;
  defm SHLX : ShiftX_Pats<shl>;
}

let Predicates = [HasBMI2, HasEGPR] in {
  defm : RORX_Pats<"_EVEX">;
  defm SARX : ShiftX_Pats<sra, "_EVEX">;
  defm SHRX : ShiftX_Pats<srl, "_EVEX">;
  defm SHLX : ShiftX_Pats<shl, "_EVEX">;
}