1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
|
//===-- X86InstrUtils.td - X86 Instruction Utilities --------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides utilities for simplifying the instruction definitions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Classes for setting the fields of X86Inst
//===----------------------------------------------------------------------===//
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize16 { OperandSize OpSize = OpSize16; }
class OpSize32 { OperandSize OpSize = OpSize32; }
class AdSize16 { AddressSize AdSize = AdSize16; }
class AdSize32 { AddressSize AdSize = AdSize32; }
class AdSize64 { AddressSize AdSize = AdSize64; }
class REX_W { bit hasREX_W = 1; }
class LOCK { bit hasLockPrefix = 1; }
class REP { bit hasREPPrefix = 1; }
class TB { Map OpMap = TB; }
class T8 { Map OpMap = T8; }
class TA { Map OpMap = TA; }
class T_MAP4 { Map OpMap = T_MAP4; }
class T_MAP5 { Map OpMap = T_MAP5; }
class T_MAP6 { Map OpMap = T_MAP6; }
class T_MAP7 { Map OpMap = T_MAP7; }
class XOP8 { Map OpMap = XOP8; }
class XOP9 { Map OpMap = XOP9; }
class XOPA { Map OpMap = XOPA; }
class ThreeDNow { Map OpMap = ThreeDNow; }
class PS { Prefix OpPrefix = PS; }
class PD { Prefix OpPrefix = PD; }
class XD { Prefix OpPrefix = XD; }
class XS { Prefix OpPrefix = XS; }
class XOP { Encoding OpEnc = EncXOP; }
class VEX { Encoding OpEnc = EncVEX; }
class EVEX { Encoding OpEnc = EncEVEX; }
class WIG { bit IgnoresW = 1; }
class VEX_L { bit hasVEX_L = 1; }
class VEX_LIG { bit ignoresVEX_L = 1; }
class VVVV { bit hasVEX_4V = 1; }
class EVEX_K { bit hasEVEX_K = 1; }
class EVEX_KZ : EVEX_K { bit hasEVEX_Z = 1; }
class EVEX_B { bit hasEVEX_B = 1; }
class EVEX_NF { bit hasEVEX_NF = 1; }
class EVEX_RC { bit hasEVEX_RC = 1; }
class EVEX_V512 { bit hasEVEX_L2 = 1; bit hasVEX_L = 0; }
class EVEX_V256 { bit hasEVEX_L2 = 0; bit hasVEX_L = 1; }
class EVEX_V128 { bit hasEVEX_L2 = 0; bit hasVEX_L = 0; }
class NOTRACK { bit hasNoTrackPrefix = 1; }
class SIMD_EXC { list<Register> Uses = [MXCSR]; bit mayRaiseFPException = 1; }
// Specify AVX512 8-bit compressed displacement encoding based on the vector
// element size in bits (8, 16, 32, 64) and the CDisp8 form.
class EVEX_CD8<int esize, CD8VForm form> {
int CD8_EltSize = !srl(esize, 3);
bits<3> CD8_Form = form.Value;
}
class NoCD8 { bits<7> CD8_Scale = 0; }
class AVX512BIi8Base : TB, PD {
Domain ExeDomain = SSEPackedInt;
ImmType ImmT = Imm8;
}
class AVX512XSIi8Base : TB, XS {
Domain ExeDomain = SSEPackedInt;
ImmType ImmT = Imm8;
}
class AVX512XDIi8Base : TB, XD {
Domain ExeDomain = SSEPackedInt;
ImmType ImmT = Imm8;
}
class AVX512PSIi8Base : TB {
Domain ExeDomain = SSEPackedSingle;
ImmType ImmT = Imm8;
}
class AVX512PDIi8Base : TB, PD {
Domain ExeDomain = SSEPackedDouble;
ImmType ImmT = Imm8;
}
class ExplicitREX2Prefix { ExplicitOpPrefix explicitOpPrefix = ExplicitREX2; }
class ExplicitVEXPrefix { ExplicitOpPrefix explicitOpPrefix = ExplicitVEX; }
class ExplicitEVEXPrefix { ExplicitOpPrefix explicitOpPrefix = ExplicitEVEX; }
class DefEFLAGS { list<Register> Defs = [EFLAGS]; }
class UseEFLAGS { list<Register> Uses = [EFLAGS]; }
class DisassembleOnly {
// The disassembler should know about this, but not the asmparser.
bit isCodeGenOnly = 1;
bit ForceDisassemble = 1;
}
defvar unaryop_args = "$src1";
defvar unaryop_ndd_args = "{$src1, $dst|$dst, $src1}";
defvar binop_args = "{$src2, $src1|$src1, $src2}";
defvar binop_ndd_args = "{$src2, $src1, $dst|$dst, $src1, $src2}";
defvar binop_cl_args = "{%cl, $src1|$src1, cl}";
defvar binop_cl_ndd_args = "{%cl, $src1, $dst|$dst, $src1, cl}";
defvar triop_args = "{$src3, $src2, $src1|$src1, $src2, $src3}";
defvar triop_ndd_args = "{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}";
defvar triop_cl_args = "{%cl, $src2, $src1|$src1, $src2, cl}";
defvar triop_cl_ndd_args = "{%cl, $src2, $src1, $dst|$dst, $src1, $src2, cl}";
defvar tie_dst_src1 = "$src1 = $dst";
// NDD - Helper for new data destination instructions
class NDD<bit ndd> {
string Constraints = !if(!eq(ndd, 0), tie_dst_src1, "");
Encoding OpEnc = !if(!eq(ndd, 0), EncNormal, EncEVEX);
bit hasEVEX_B = ndd;
bit hasVEX_4V = ndd;
Map OpMap = !if(!eq(ndd, 0), OB, T_MAP4);
}
// NF - Helper for NF (no flags update) instructions
class NF: T_MAP4, EVEX, EVEX_NF;
// PL - Helper for promoted legacy instructions
class PL: T_MAP4, EVEX, ExplicitEVEXPrefix;
// ZU - Helper for Zero Upper instructions
class ZU: T_MAP4, EVEX, EVEX_B;
//===----------------------------------------------------------------------===//
// X86 Type infomation definitions
//===----------------------------------------------------------------------===//
/// X86TypeInfo - This is a bunch of information that describes relevant X86
/// information about value types. For example, it can tell you what the
/// register class and preferred load to use.
class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
Operand immoperand, SDPatternOperator immoperator,
SDPatternOperator immnosuoperator, Operand imm8operand,
SDPatternOperator imm8operator, SDPatternOperator imm8nosuoperator,
bit hasEvenOpcode, bit hasREX_W> {
/// VT - This is the value type itself.
ValueType VT = vt;
/// InstrSuffix - This is the suffix used on instructions with this type. For
/// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
string InstrSuffix = instrsuffix;
/// RegClass - This is the register class associated with this type. For
/// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
RegisterClass RegClass = regclass;
/// LoadNode - This is the load node associated with this type. For
/// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
PatFrag LoadNode = loadnode;
/// MemOperand - This is the memory operand associated with this type. For
/// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
X86MemOperand MemOperand = memoperand;
/// ImmEncoding - This is the encoding of an immediate of this type. For
/// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32
/// since the immediate fields of i64 instructions is a 32-bit sign extended
/// value.
ImmType ImmEncoding = immkind;
/// ImmOperand - This is the operand kind of an immediate of this type. For
/// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 ->
/// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
/// extended value.
Operand ImmOperand = immoperand;
/// ImmOperator - This is the operator that should be used to match an
/// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
SDPatternOperator ImmOperator = immoperator;
SDPatternOperator ImmNoSuOperator = immnosuoperator;
/// Imm8Operand - This is the operand kind to use for an imm8 of this type.
/// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is
/// only used for instructions that have a sign-extended imm8 field form.
Operand Imm8Operand = imm8operand;
/// Imm8Operator - This is the operator that should be used to match an 8-bit
/// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
SDPatternOperator Imm8Operator = imm8operator;
SDPatternOperator Imm8NoSuOperator = imm8nosuoperator;
/// HasEvenOpcode - This bit is true if the instruction should have an even (as
/// opposed to odd) opcode. Operations on i8 are even, operations on
/// other datatypes are usually odd.
bit HasEvenOpcode = hasEvenOpcode;
/// HasREX_W - This bit is set to true if the instruction should have
/// the 0x40 REX prefix. This is set for i64 types.
bit HasREX_W = hasREX_W;
}
def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
def Xi8 : X86TypeInfo<i8, "b", GR8, loadi8, i8mem, Imm8, i8imm,
imm_su, imm, i8imm, invalid_node, invalid_node,
1, 0>;
def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, Imm16, i16imm,
imm_su, imm, i16i8imm, i16immSExt8_su, i16immSExt8,
0, 0>;
def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, Imm32, i32imm,
imm_su, imm, i32i8imm, i32immSExt8_su, i32immSExt8,
0, 0>;
def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, Imm32S, i64i32imm,
i64immSExt32_su, i64immSExt32, i64i8imm, i64immSExt8_su,
i64immSExt8, 0, 1>;
// Group template arguments that can be derived from the vector type (EltNum x
// EltVT). These are things like the register class for the writemask, etc.
// The idea is to pass one of these as the template argument rather than the
// individual arguments.
// The template is also used for scalar types, in this case numelts is 1.
class X86VectorVTInfo<int numelts, ValueType eltvt, RegisterClass rc,
string suffix = ""> {
RegisterClass RC = rc;
ValueType EltVT = eltvt;
int NumElts = numelts;
// Corresponding mask register class.
RegisterClass KRC = !cast<RegisterClass>("VK" # NumElts);
// Corresponding mask register pair class.
RegisterOperand KRPC = !if (!gt(NumElts, 16), ?,
!cast<RegisterOperand>("VK" # NumElts # "Pair"));
// Corresponding write-mask register class.
RegisterClass KRCWM = !cast<RegisterClass>("VK" # NumElts # "WM");
// The mask VT.
ValueType KVT = !cast<ValueType>("v" # NumElts # "i1");
// Suffix used in the instruction mnemonic.
string Suffix = suffix;
// VTName is a string name for vector VT. For vector types it will be
// v # NumElts # EltVT, so for vector of 8 elements of i32 it will be v8i32
// It is a little bit complex for scalar types, where NumElts = 1.
// In this case we build v4f32 or v2f64
string VTName = "v" # !if (!eq (NumElts, 1),
!if (!eq (EltVT.Size, 16), 8,
!if (!eq (EltVT.Size, 32), 4,
!if (!eq (EltVT.Size, 64), 2, NumElts))), NumElts) # EltVT;
// The vector VT.
ValueType VT = !cast<ValueType>(VTName);
string EltTypeName = !cast<string>(EltVT);
// Size of the element type in bits, e.g. 32 for v16i32.
string EltSizeName = !subst("i", "", !subst("f", "", !subst("b", "", EltTypeName)));
int EltSize = EltVT.Size;
// "i" for integer types and "f" for floating-point types
string TypeVariantName = !subst("b", "", !subst(EltSizeName, "", EltTypeName));
// Size of RC in bits, e.g. 512 for VR512.
int Size = VT.Size;
// The corresponding memory operand, e.g. i512mem for VR512.
X86MemOperand MemOp = !cast<X86MemOperand>(TypeVariantName # Size # "mem");
X86MemOperand ScalarMemOp = !cast<X86MemOperand>(!subst("b", "", EltTypeName) # "mem");
// FP scalar memory operand for intrinsics - ssmem/sdmem.
Operand IntScalarMemOp = !if (!eq (EltTypeName, "f16"), !cast<Operand>("shmem"),
!if (!eq (EltTypeName, "bf16"), !cast<Operand>("shmem"),
!if (!eq (EltTypeName, "f32"), !cast<Operand>("ssmem"),
!if (!eq (EltTypeName, "f64"), !cast<Operand>("sdmem"), ?))));
// Load patterns
PatFrag LdFrag = !cast<PatFrag>("load" # VTName);
PatFrag AlignedLdFrag = !cast<PatFrag>("alignedload" # VTName);
PatFrag ScalarLdFrag = !cast<PatFrag>("load" # !subst("b", "", EltTypeName));
PatFrag BroadcastLdFrag = !cast<PatFrag>("X86VBroadcastld" # EltSizeName);
PatFrags ScalarIntMemFrags = !if (!eq (EltTypeName, "f16"), !cast<PatFrags>("sse_load_f16"),
!if (!eq (EltTypeName, "bf16"), !cast<PatFrags>("sse_load_f16"),
!if (!eq (EltTypeName, "f32"), !cast<PatFrags>("sse_load_f32"),
!if (!eq (EltTypeName, "f64"), !cast<PatFrags>("sse_load_f64"), ?))));
// The string to specify embedded broadcast in assembly.
string BroadcastStr = "{1to" # NumElts # "}";
// 8-bit compressed displacement tuple/subvector format. This is only
// defined for NumElts <= 8.
CD8VForm CD8TupleForm = !if (!eq (!srl(NumElts, 4), 0),
!cast<CD8VForm>("CD8VT" # NumElts), ?);
SubRegIndex SubRegIdx = !if (!eq (Size, 128), sub_xmm,
!if (!eq (Size, 256), sub_ymm, ?));
Domain ExeDomain = !if (!eq (EltTypeName, "f32"), SSEPackedSingle,
!if (!eq (EltTypeName, "f64"), SSEPackedDouble,
!if (!eq (EltTypeName, "f16"), SSEPackedSingle, // FIXME?
!if (!eq (EltTypeName, "bf16"), SSEPackedSingle, // FIXME?
SSEPackedInt))));
RegisterClass FRC = !if (!eq (EltTypeName, "f32"), FR32X,
!if (!eq (EltTypeName, "f16"), FR16X,
!if (!eq (EltTypeName, "bf16"), FR16X,
FR64X)));
dag ImmAllZerosV = (VT immAllZerosV);
string ZSuffix = !if (!eq (Size, 128), "Z128",
!if (!eq (Size, 256), "Z256", "Z"));
}
def v64i8_info : X86VectorVTInfo<64, i8, VR512, "b">;
def v32i16_info : X86VectorVTInfo<32, i16, VR512, "w">;
def v16i32_info : X86VectorVTInfo<16, i32, VR512, "d">;
def v8i64_info : X86VectorVTInfo<8, i64, VR512, "q">;
def v32f16_info : X86VectorVTInfo<32, f16, VR512, "ph">;
def v32bf16_info: X86VectorVTInfo<32, bf16, VR512, "pbf">;
def v16f32_info : X86VectorVTInfo<16, f32, VR512, "ps">;
def v8f64_info : X86VectorVTInfo<8, f64, VR512, "pd">;
// "x" in v32i8x_info means RC = VR256X
def v32i8x_info : X86VectorVTInfo<32, i8, VR256X, "b">;
def v16i16x_info : X86VectorVTInfo<16, i16, VR256X, "w">;
def v8i32x_info : X86VectorVTInfo<8, i32, VR256X, "d">;
def v4i64x_info : X86VectorVTInfo<4, i64, VR256X, "q">;
def v16f16x_info : X86VectorVTInfo<16, f16, VR256X, "ph">;
def v16bf16x_info: X86VectorVTInfo<16, bf16, VR256X, "pbf">;
def v8f32x_info : X86VectorVTInfo<8, f32, VR256X, "ps">;
def v4f64x_info : X86VectorVTInfo<4, f64, VR256X, "pd">;
def v16i8x_info : X86VectorVTInfo<16, i8, VR128X, "b">;
def v8i16x_info : X86VectorVTInfo<8, i16, VR128X, "w">;
def v4i32x_info : X86VectorVTInfo<4, i32, VR128X, "d">;
def v2i64x_info : X86VectorVTInfo<2, i64, VR128X, "q">;
def v8f16x_info : X86VectorVTInfo<8, f16, VR128X, "ph">;
def v8bf16x_info : X86VectorVTInfo<8, bf16, VR128X, "pbf">;
def v4f32x_info : X86VectorVTInfo<4, f32, VR128X, "ps">;
def v2f64x_info : X86VectorVTInfo<2, f64, VR128X, "pd">;
// We map scalar types to the smallest (128-bit) vector type
// with the appropriate element type. This allows to use the same masking logic.
def i32x_info : X86VectorVTInfo<1, i32, GR32, "si">;
def i64x_info : X86VectorVTInfo<1, i64, GR64, "sq">;
def f16x_info : X86VectorVTInfo<1, f16, VR128X, "sh">;
def bf16x_info : X86VectorVTInfo<1, bf16, VR128X, "sbf">;
def f32x_info : X86VectorVTInfo<1, f32, VR128X, "ss">;
def f64x_info : X86VectorVTInfo<1, f64, VR128X, "sd">;
class AVX512VLVectorVTInfo<X86VectorVTInfo i512, X86VectorVTInfo i256,
X86VectorVTInfo i128> {
X86VectorVTInfo info512 = i512;
X86VectorVTInfo info256 = i256;
X86VectorVTInfo info128 = i128;
}
def avx512vl_i8_info : AVX512VLVectorVTInfo<v64i8_info, v32i8x_info,
v16i8x_info>;
def avx512vl_i16_info : AVX512VLVectorVTInfo<v32i16_info, v16i16x_info,
v8i16x_info>;
def avx512vl_i32_info : AVX512VLVectorVTInfo<v16i32_info, v8i32x_info,
v4i32x_info>;
def avx512vl_i64_info : AVX512VLVectorVTInfo<v8i64_info, v4i64x_info,
v2i64x_info>;
def avx512vl_f16_info : AVX512VLVectorVTInfo<v32f16_info, v16f16x_info,
v8f16x_info>;
def avx512vl_bf16_info : AVX512VLVectorVTInfo<v32bf16_info, v16bf16x_info,
v8bf16x_info>;
def avx512vl_f32_info : AVX512VLVectorVTInfo<v16f32_info, v8f32x_info,
v4f32x_info>;
def avx512vl_f64_info : AVX512VLVectorVTInfo<v8f64_info, v4f64x_info,
v2f64x_info>;
class X86KVectorVTInfo<RegisterClass _krc, RegisterClass _krcwm,
ValueType _vt> {
RegisterClass KRC = _krc;
RegisterClass KRCWM = _krcwm;
ValueType KVT = _vt;
}
def v1i1_info : X86KVectorVTInfo<VK1, VK1WM, v1i1>;
def v2i1_info : X86KVectorVTInfo<VK2, VK2WM, v2i1>;
def v4i1_info : X86KVectorVTInfo<VK4, VK4WM, v4i1>;
def v8i1_info : X86KVectorVTInfo<VK8, VK8WM, v8i1>;
def v16i1_info : X86KVectorVTInfo<VK16, VK16WM, v16i1>;
def v32i1_info : X86KVectorVTInfo<VK32, VK32WM, v32i1>;
def v64i1_info : X86KVectorVTInfo<VK64, VK64WM, v64i1>;
// Subclasses of X86Inst
class PseudoI<dag oops, dag iops, list<dag> pattern>
: X86Inst<0, Pseudo, NoImm, oops, iops, ""> {
let Pattern = pattern;
}
class I<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: X86Inst<o, f, NoImm, outs, ins, asm, d> {
let Pattern = pattern;
}
class Ii8<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: X86Inst<o, f, Imm8, outs, ins, asm, d> {
let Pattern = pattern;
}
class Ii8Reg<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: X86Inst<o, f, Imm8Reg, outs, ins, asm, d> {
let Pattern = pattern;
}
class Ii8PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm8PCRel, outs, ins, asm> {
let Pattern = pattern;
}
class Ii16<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm16, outs, ins, asm> {
let Pattern = pattern;
}
class Ii32<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32, outs, ins, asm> {
let Pattern = pattern;
}
class Ii32S<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32S, outs, ins, asm> {
let Pattern = pattern;
}
class Ii64<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm64, outs, ins, asm> {
let Pattern = pattern;
}
class Ii16PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm16PCRel, outs, ins, asm> {
let Pattern = pattern;
}
class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32PCRel, outs, ins, asm> {
let Pattern = pattern;
}
// FPStack Instruction Templates:
// FPI - Floating Point Instruction template.
class FPI<bits<8> o, Format F, dag outs, dag ins, string asm>
: I<o, F, outs, ins, asm, []> {
let Defs = [FPSW];
let Predicates = [HasX87];
}
// FpI_ - Floating Point Pseudo Instruction template.
class FpI_<dag outs, dag ins, FPFormat fp, list<dag> pattern>
: PseudoI<outs, ins, pattern> {
let FPForm = fp;
let Defs = [FPSW];
let Predicates = [HasX87];
}
// Templates for instructions that use a 16- or 32-bit segmented address as
// their only operand: lcall (FAR CALL) and ljmp (FAR JMP)
//
// Iseg16 - 16-bit segment selector, 16-bit offset
// Iseg32 - 16-bit segment selector, 32-bit offset
class Iseg16 <bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm16, outs, ins, asm> {
let Pattern = pattern;
}
class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32, outs, ins, asm> {
let Pattern = pattern;
}
// SI - SSE 1 & 2 scalar instructions
class SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
!if(!eq(OpPrefix.Value, XD.Value), [UseSSE2],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])))));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SI - SSE 1 & 2 scalar intrinsics - vex form available on AVX512
class SI_Int<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
!if(!eq(OpPrefix.Value, XD.Value), [UseSSE2],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])))));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SIi8 - SSE 1 & 2 scalar instructions - vex form available on AVX512
class SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
[UseSSE2])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// PI - SSE 1 & 2 packed instructions
class PI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
Domain d>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// MMXPI - SSE 1 & 2 packed instructions with MMX operands
class MMXPI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
Domain d>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpPrefix.Value, PD.Value), [HasMMX, HasSSE2],
[HasMMX, HasSSE1]);
}
// PIi8 - SSE 1 & 2 packed instructions with immediate
class PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d>
: Ii8<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SSE1 Instruction Templates:
//
// SSI - SSE1 instructions with XS prefix.
// PSI - SSE1 instructions with PS prefix.
// PSIi8 - SSE1 instructions with ImmT == Imm8 and PS prefix.
// VSSI - SSE1 instructions with XS prefix in AVX form.
// VPSI - SSE1 instructions with PS prefix in AVX form, packed single.
class SSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, TB, XS, Requires<[UseSSE1]>;
class SSIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, TB, XS, Requires<[UseSSE1]>;
class PSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedSingle>, TB,
Requires<[UseSSE1]>;
class PSIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedSingle>, TB,
Requires<[UseSSE1]>;
class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, TB, XS,
Requires<[HasAVX]>;
class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedSingle>,
TB, Requires<[HasAVX]>;
// SSE2 Instruction Templates:
//
// SDI - SSE2 instructions with XD prefix.
// SDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix.
// S2SI - SSE2 instructions with XS prefix.
// SSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix.
// PDI - SSE2 instructions with PD prefix, packed double domain.
// PDIi8 - SSE2 instructions with ImmT == Imm8 and PD prefix.
// VSDI - SSE2 scalar instructions with XD prefix in AVX form.
// VPDI - SSE2 vector instructions with PD prefix in AVX form,
// packed double domain.
// VS2I - SSE2 scalar instructions with PD prefix in AVX form.
// S2I - SSE2 scalar instructions with PD prefix.
// MMXSDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix as well as
// MMX operands.
// MMXSSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix as well as
// MMX operands.
class SDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, TB, XD, Requires<[UseSSE2]>;
class SDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, TB, XD, Requires<[UseSSE2]>;
class S2SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, TB, XS, Requires<[UseSSE2]>;
class S2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, TB, XS, Requires<[UseSSE2]>;
class PDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, TB, PD,
Requires<[UseSSE2]>;
class PDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedDouble>, TB, PD,
Requires<[UseSSE2]>;
class VSDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, TB, XD,
Requires<[UseAVX]>;
class VS2SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, TB, XS,
Requires<[HasAVX]>;
class VPDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedDouble>,
TB, PD, Requires<[HasAVX]>;
class VS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, TB, PD,
Requires<[UseAVX]>;
class S2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, TB, PD, Requires<[UseSSE2]>;
class MMXSDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, TB, XD, Requires<[HasMMX, HasSSE2]>;
class MMXS2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, TB, XS, Requires<[HasMMX, HasSSE2]>;
// SSE3 Instruction Templates:
//
// S3I - SSE3 instructions with PD prefixes.
// S3SI - SSE3 instructions with XS prefix.
// S3DI - SSE3 instructions with XD prefix.
class S3SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedSingle>, TB, XS,
Requires<[UseSSE3]>;
class S3DI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, TB, XD,
Requires<[UseSSE3]>;
class S3I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, TB, PD,
Requires<[UseSSE3]>;
// SSSE3 Instruction Templates:
//
// SS38I - SSSE3 instructions with T8 prefix.
// SS3AI - SSSE3 instructions with TA prefix.
// MMXSS38I - SSSE3 instructions with T8 prefix and MMX operands.
// MMXSS3AI - SSSE3 instructions with TA prefix and MMX operands.
//
// Note: SSSE3 instructions have 64-bit and 128-bit versions. The 64-bit version
// uses the MMX registers. The 64-bit versions are grouped with the MMX
// classes. They need to be enabled even if AVX is enabled.
class SS38I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, PD,
Requires<[UseSSSE3]>;
class SS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
Requires<[UseSSSE3]>;
class MMXSS38I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8,
Requires<[HasMMX, HasSSSE3]>;
class MMXSS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA,
Requires<[HasMMX, HasSSSE3]>;
// SSE4.1 Instruction Templates:
//
// SS48I - SSE 4.1 instructions with T8 prefix.
// SS41AIi8 - SSE 4.1 instructions with TA prefix and ImmT == Imm8.
//
class SS48I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, PD,
Requires<[UseSSE41]>;
class SS4AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
Requires<[UseSSE41]>;
// SSE4.2 Instruction Templates:
//
// SS428I - SSE 4.2 instructions with T8 prefix.
class SS428I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, PD,
Requires<[UseSSE42]>;
// SS42AI = SSE 4.2 instructions with TA prefix
class SS42AI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
Requires<[UseSSE42]>;
// AVX Instruction Templates:
// Instructions introduced in AVX (no SSE equivalent forms)
//
// AVX8I - AVX instructions with T8, PD prefix.
// AVXAIi8 - AVX instructions with TA, PD prefix and ImmT = Imm8.
class AVX8I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, PD,
Requires<[HasAVX]>;
class AVXAIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
Requires<[HasAVX]>;
// AVX2 Instruction Templates:
// Instructions introduced in AVX2 (no SSE equivalent forms)
//
// AVX28I - AVX2 instructions with T8, PD prefix.
// AVX2AIi8 - AVX2 instructions with TA, PD prefix and ImmT = Imm8.
class AVX28I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, PD,
Requires<[HasAVX2]>;
class AVX2AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
Requires<[HasAVX2]>;
// AVX-512 Instruction Templates:
// Instructions introduced in AVX-512 (no SSE equivalent forms)
//
// AVX5128I - AVX-512 instructions with T8, PD prefix.
// AVX512AIi8 - AVX-512 instructions with TA, PD prefix and ImmT = Imm8.
// AVX512PDI - AVX-512 instructions with PD, double packed.
// AVX512PSI - AVX-512 instructions with PS, single packed.
// AVX512XS8I - AVX-512 instructions with T8 and XS prefixes.
// AVX512XSI - AVX-512 instructions with XS prefix, generic domain.
// AVX512BI - AVX-512 instructions with PD, int packed domain.
// AVX512SI - AVX-512 scalar instructions with PD prefix.
class AVX5128I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, PD,
Requires<[HasAVX512]>;
class AVX5128IBase : T8, PD {
Domain ExeDomain = SSEPackedInt;
}
class AVX512XS8I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, XS,
Requires<[HasAVX512]>;
class AVX512XSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, TB, XS,
Requires<[HasAVX512]>;
class AVX512XDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, TB, XD,
Requires<[HasAVX512]>;
class AVX512BI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, TB, PD,
Requires<[HasAVX512]>;
class AVX512BIBase : TB, PD {
Domain ExeDomain = SSEPackedInt;
}
class AVX512BIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TB, PD,
Requires<[HasAVX512]>;
class AVX512AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
Requires<[HasAVX512]>;
class AVX512AIi8Base : TA, PD {
ImmType ImmT = Imm8;
}
class AVX512Ii8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>,
Requires<[HasAVX512]>;
class AVX512PDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, TB, PD,
Requires<[HasAVX512]>;
class AVX512PSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedSingle>, TB,
Requires<[HasAVX512]>;
class AVX512PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d>
: Ii8<o, F, outs, ins, asm, pattern, d>, Requires<[HasAVX512]>;
class AVX512PI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d>
: I<o, F, outs, ins, asm, pattern, d>, Requires<[HasAVX512]>;
class AVX512FMA3S<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8, PD,
EVEX, VVVV, Requires<[HasAVX512]>;
class AVX512<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, Requires<[HasAVX512]>;
// AES Instruction Templates:
//
// AES8I
// These use the same encoding as the SSE4.2 T8 and TA encodings.
class AES8I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8, PD,
Requires<[NoAVX, HasAES]>;
class AESAI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
Requires<[NoAVX, HasAES]>;
// PCLMUL Instruction Templates
class PCLMULIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD;
// FMA3 Instruction Templates
class FMA3<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8, PD,
VEX, VVVV, FMASC, Requires<[HasFMA, NoFMA4, NoVLX]>;
class FMA3S<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8, PD,
VEX, VVVV, FMASC, Requires<[HasFMA, NoFMA4, NoAVX512]>;
class FMA3S_Int<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8, PD,
VEX, VVVV, FMASC, Requires<[HasFMA, NoAVX512]>;
// FMA4 Instruction Templates
class FMA4<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern>, TA, PD,
VEX, VVVV, FMASC, Requires<[HasFMA4, NoVLX]>;
class FMA4S<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern>, TA, PD,
VEX, VVVV, FMASC, Requires<[HasFMA4, NoAVX512]>;
class FMA4S_Int<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern>, TA, PD,
VEX, VVVV, FMASC, Requires<[HasFMA4]>;
// XOP 2, 3 and 4 Operand Instruction Template
class IXOP<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
XOP9, Requires<[HasXOP]>;
// XOP 2 and 3 Operand Instruction Templates with imm byte
class IXOPi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
XOP8, Requires<[HasXOP]>;
// XOP 4 Operand Instruction Templates with imm byte
class IXOPi8Reg<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
XOP8, Requires<[HasXOP]>;
// XOP 5 operand instruction (VEX encoding!)
class IXOP5<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA, PD,
VEX, VVVV, Requires<[HasXOP]>;
// X86-64 Instruction templates...
//
class RI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, REX_W;
class RIi8 <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, REX_W;
class RIi16 <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii16<o, F, outs, ins, asm, pattern>, REX_W;
class RIi32 <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii32<o, F, outs, ins, asm, pattern>, REX_W;
class RIi32S <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii32S<o, F, outs, ins, asm, pattern>, REX_W;
class RIi64<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii64<o, F, outs, ins, asm, pattern>, REX_W;
class RS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: S2I<o, F, outs, ins, asm, pattern>, REX_W;
class VRS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: VS2I<o, F, outs, ins, asm, pattern>, REX_W;
// MMX Instruction templates
//
// MMXI - MMX instructions with TB prefix.
// MMXRI - MMX instructions with TB prefix and REX.W.
// MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix.
class MMXI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, TB, Requires<[HasMMX]>;
class MMXRI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, TB, REX_W,
Requires<[HasMMX,In64BitMode]>;
class MMXIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, TB, Requires<[HasMMX]>;
/// ITy - This instruction base class takes the type info for the instruction.
/// Using this, it:
/// 1. Concatenates together the instruction mnemonic with the appropriate
/// suffix letter, a tab, and the arguments.
/// 2. Infers whether the instruction should have a 0x40 REX_W prefix.
/// 3. Infers whether the low bit of the opcode should be 0 (for i8 operations)
/// or 1 (for i16,i32,i64 operations).
class ITy<bits<8> o, Format f, X86TypeInfo t, dag outs, dag ins, string m,
string args, list<dag> p>
: I<{o{7}, o{6}, o{5}, o{4}, o{3}, o{2}, o{1},
!if(!eq(t.HasEvenOpcode, 1), 0, o{0})}, f, outs, ins,
!strconcat(m, "{", t.InstrSuffix, "}\t", args), p>, NoCD8 {
let hasSideEffects = 0;
let hasREX_W = t.HasREX_W;
let IgnoresW = !if(!eq(t.VT, i8), 1, 0);
}
// BinOpRR - Instructions that read "reg, reg".
class BinOpRR<bits<8> o, string m, string args, X86TypeInfo t, dag out, list<dag> p>
: ITy<o, MRMDestReg, t, out, (ins t.RegClass:$src1, t.RegClass:$src2), m,
args, p>, Sched<[WriteALU]>;
// BinOpRR_F - Instructions that read "reg, reg" and write EFLAGS only.
class BinOpRR_F<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node>
: BinOpRR<o, m, binop_args, t, (outs),
[(set EFLAGS, (node t.RegClass:$src1, t.RegClass:$src2))]>,
DefEFLAGS;
// BinOpRR_F_Rev - Reversed encoding of BinOpRR_F
class BinOpRR_F_Rev<bits<8> o, string m, X86TypeInfo t>
: BinOpRR_F<o, m, t, null_frag>, DisassembleOnly {
let Form = MRMSrcReg;
}
// BinOpRR_R - Instructions that read "reg, reg" and write "reg".
class BinOpRR_R<bits<8> o, string m, X86TypeInfo t, bit ndd = 0>
: BinOpRR<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t,
(outs t.RegClass:$dst), []>, NDD<ndd>;
// BinOpRR_R_Rev - Reversed encoding of BinOpRR_R
class BinOpRR_R_Rev<bits<8> o, string m, X86TypeInfo t, bit ndd = 0>
: BinOpRR_R<o, m, t, ndd>, DisassembleOnly {
let Form = MRMSrcReg;
}
// BinOpRR_RF - Instructions that read "reg, reg", and write "reg", EFLAGS.
class BinOpRR_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node, bit ndd = 0>
: BinOpRR<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t,
(outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS,
(node t.RegClass:$src1, t.RegClass:$src2))]>, DefEFLAGS, NDD<ndd>;
// BinOpRR_RF_Rev - Reversed encoding of BinOpRR_RF.
class BinOpRR_RF_Rev<bits<8> o, string m, X86TypeInfo t, bit ndd = 0>
: BinOpRR_RF<o, m, t, null_frag, ndd>, DisassembleOnly {
let Form = MRMSrcReg;
}
// BinOpRRF_RF - Instructions that read "reg, reg", write "reg" and read/write
// EFLAGS.
class BinOpRRF_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
: BinOpRR<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS,
(node t.RegClass:$src1, t.RegClass:$src2,
EFLAGS))]>, DefEFLAGS, UseEFLAGS, NDD<ndd> {
let SchedRW = [WriteADC];
}
// BinOpRRF_RF_Rev - Reversed encoding of BinOpRRF_RF
class BinOpRRF_RF_Rev<bits<8> o, string m, X86TypeInfo t, bit ndd = 0>
: BinOpRRF_RF<o, m, t, null_frag, ndd>, DisassembleOnly {
let Form = MRMSrcReg;
}
// BinOpRM - Instructions that read "reg, [mem]".
class BinOpRM<bits<8> o, string m, string args, X86TypeInfo t, dag out, list<dag> p>
: ITy<o, MRMSrcMem, t, out, (ins t.RegClass:$src1, t.MemOperand:$src2), m,
args, p>,
Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]> {
let mayLoad = 1;
}
// BinOpRM_F - Instructions that read "reg, [mem]" and write EFLAGS only.
class BinOpRM_F<bits<8> o, string m, X86TypeInfo t, SDNode node>
: BinOpRM<o, m, binop_args, t, (outs),
[(set EFLAGS, (node t.RegClass:$src1,
(t.LoadNode addr:$src2)))]>, DefEFLAGS;
// BinOpRM_R - Instructions that read "reg, [mem]", and write "reg".
class BinOpRM_R<bits<8> o, string m, X86TypeInfo t, bit ndd = 0>
: BinOpRM<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, (outs t.RegClass:$dst),
[]>, NDD<ndd>;
// BinOpRM_RF - Instructions that read "reg, [mem]", and write "reg", EFLAGS.
class BinOpRM_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node, bit ndd = 0>
: BinOpRM<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS, (node t.RegClass:$src1,
(t.LoadNode addr:$src2)))]>, DefEFLAGS, NDD<ndd>;
// BinOpRMF_RF - Instructions that read "reg, [mem]", write "reg" and read/write
// EFLAGS.
class BinOpRMF_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
: BinOpRM<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS,
(node t.RegClass:$src1, (t.LoadNode addr:$src2), EFLAGS))]>,
DefEFLAGS, UseEFLAGS, NDD<ndd> {
let SchedRW = [WriteADC.Folded, WriteADC.ReadAfterFold,
// base, scale, index, offset, segment.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// implicit register read.
WriteADC.ReadAfterFold];
}
// BinOpRI - Instructions that read "reg, imm".
class BinOpRI<bits<8> o, string m, string args, X86TypeInfo t, Format f, dag out, list<dag> p>
: ITy<o, f, t, out, (ins t.RegClass:$src1, t.ImmOperand:$src2), m,
args, p>, Sched<[WriteALU]> {
let ImmT = t.ImmEncoding;
}
// BinOpRI_F - Instructions that read "reg, imm" and write EFLAGS only.
class BinOpRI_F<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node,
Format f>
: BinOpRI<o, m, binop_args, t, f, (outs),
[(set EFLAGS, (node t.RegClass:$src1,
t.ImmOperator:$src2))]>, DefEFLAGS;
// BinOpRI_R - Instructions that read "reg, imm" and write "reg".
class BinOpRI_R<bits<8> o, string m, X86TypeInfo t, Format f, bit ndd = 0>
: BinOpRI<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, f, (outs t.RegClass:$dst),
[]>, NDD<ndd>;
// BinOpRI8U_R - Instructions that read "reg, u8imm" and write "reg".
class BinOpRI8U_R<string m, Format f, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
: ITy<0xC1, f, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1, u8imm:$src2), m,
!if(!eq(ndd, 0), binop_args, binop_ndd_args),
[(set t.RegClass:$dst, (node t.RegClass:$src1, (i8 imm:$src2)))]>, NDD<ndd> {
let ImmT = Imm8;
}
// BinOpRI_RF - Instructions that read "reg, imm" and write "reg", EFLAGS.
class BinOpRI_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node, Format f, bit ndd = 0>
: BinOpRI<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, f, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS,
(node t.RegClass:$src1, t.ImmOperator:$src2))]>, DefEFLAGS, NDD<ndd>;
// BinOpRIF_RF - Instructions that read "reg, imm", write "reg" and read/write
// EFLAGS.
class BinOpRIF_RF<bits<8> o, string m, X86TypeInfo t, SDNode node, Format f, bit ndd = 0>
: BinOpRI<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, f, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS,
(node t.RegClass:$src1, t.ImmOperator:$src2,
EFLAGS))]>, DefEFLAGS, UseEFLAGS, NDD<ndd> {
let SchedRW = [WriteADC];
}
// BinOpRI8 - Instructions that read "reg, imm8".
class BinOpRI8<bits<8> o, string m, string args, X86TypeInfo t, Format f, dag out>
: ITy<o, f, t, out, (ins t.RegClass:$src1, t.Imm8Operand:$src2), m,
args, []>, Sched<[WriteALU]> {
let ImmT = Imm8;
}
// BinOpRI8_F - Instructions that read "reg, imm8" and write EFLAGS only.
class BinOpRI8_F<bits<8> o, string m, X86TypeInfo t, Format f>
: BinOpRI8<o, m, binop_args, t, f, (outs)>, DefEFLAGS;
// BinOpRI8_R - Instructions that read "reg, imm8" and write "reg".
class BinOpRI8_R<bits<8> o, string m, X86TypeInfo t, Format f, bit ndd = 0>
: BinOpRI8<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, f, (outs t.RegClass:$dst)>, NDD<ndd>;
// BinOpRI8_RF - Instructions that read "reg, imm8" and write "reg", EFLAGS.
class BinOpRI8_RF<bits<8> o, string m, X86TypeInfo t, Format f, bit ndd = 0>
: BinOpRI8<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, f, (outs t.RegClass:$dst)>, DefEFLAGS, NDD<ndd>;
// BinOpRI8F_RF - Instructions that read "reg, imm", write "reg" and read/write
// EFLAGS.
class BinOpRI8F_RF<bits<8> o, string m, X86TypeInfo t, Format f, bit ndd = 0>
: BinOpRI8<o, m, !if(!eq(ndd, 0), binop_args, binop_ndd_args), t, f, (outs t.RegClass:$dst)>, DefEFLAGS, UseEFLAGS, NDD<ndd> {
let SchedRW = [WriteADC];
}
// BinOpMR - Instructions that read "[mem], reg".
class BinOpMR<bits<8> o, string m, string args, X86TypeInfo t, dag out, list<dag> p>
: ITy<o, MRMDestMem, t, out, (ins t.MemOperand:$src1, t.RegClass:$src2), m,
args, p> {
let mayLoad = 1;
let SchedRW = [WriteALU.Folded, WriteALU.ReadAfterFold];
}
// BinOpMR_R - Instructions that read "[mem], reg", and write "reg".
class BinOpMR_R<bits<8> o, string m, X86TypeInfo t>
: BinOpMR<o, m, binop_ndd_args, t, (outs t.RegClass:$dst), []>, NDD<1>;
// BinOpMR_RF - Instructions that read "[mem], reg", and write "reg", EFLAGS.
class BinOpMR_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node>
: BinOpMR<o, m, binop_ndd_args, t, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS, (node (t.LoadNode addr:$src1),
t.RegClass:$src2))]>, DefEFLAGS, NDD<1>;
// BinOpMR_F - Instructions that read "[mem], imm8" and write EFLAGS only.
class BinOpMR_F<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node>
: BinOpMR<o, m, binop_args, t, (outs),
[(set EFLAGS, (node (t.LoadNode addr:$src1), t.RegClass:$src2))]>,
Sched<[WriteALU.Folded, ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault, WriteALU.ReadAfterFold]>, DefEFLAGS;
// BinOpMR_M - Instructions that read "[mem], reg" and write "[mem]".
class BinOpMR_M<bits<8> o, string m, X86TypeInfo t>
: BinOpMR<o, m, binop_args, t, (outs), []>,
Sched<[WriteALURMW,
// base, scale, index, offset, segment
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault]> {
let mayStore = 1;
}
// BinOpMR_MF - Instructions that read "[mem], reg" and write "[mem]", EFLAGS.
class BinOpMR_MF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node>
: BinOpMR<o, m, binop_args, t, (outs),
[(store (node (load addr:$src1), t.RegClass:$src2), addr:$src1),
(implicit EFLAGS)]>,
Sched<[WriteALURMW,
// base, scale, index, offset, segment
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
WriteALU.ReadAfterFold]>, // reg
DefEFLAGS {
let mayStore = 1;
}
// BinOpMRF_RF - Instructions that read "[mem], reg", write "reg" and
// read/write EFLAGS.
class BinOpMRF_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node>
: BinOpMR<o, m, binop_ndd_args, t, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS, (node (load addr:$src1),
t.RegClass:$src2, EFLAGS))]>, DefEFLAGS, UseEFLAGS, NDD<1>,
Sched<[WriteADC.Folded, WriteADC.ReadAfterFold]>;
// BinOpMRF_MF - Instructions that read "[mem], reg", write "[mem]" and
// read/write EFLAGS.
class BinOpMRF_MF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node>
: BinOpMR<o, m, binop_args, t, (outs),
[(store (node (load addr:$src1), t.RegClass:$src2, EFLAGS),
addr:$src1), (implicit EFLAGS)]>,
Sched<[WriteADCRMW,
// base, scale, index, offset, segment
ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault,
WriteALU.ReadAfterFold, // reg
WriteALU.ReadAfterFold]>, // EFLAGS
DefEFLAGS, UseEFLAGS {
let mayStore = 1;
}
// BinOpMI - Instructions that read "[mem], imm".
class BinOpMI<bits<8> o, string m, string args, X86TypeInfo t, Format f, dag out, list<dag> p>
: ITy<o, f, t, out, (ins t.MemOperand:$src1, t.ImmOperand:$src2), m,
args, p> {
let ImmT = t.ImmEncoding;
let mayLoad = 1;
}
// BinOpMI_F - Instructions that read "[mem], imm" and write EFLAGS only.
class BinOpMI_F<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node,
Format f>
: BinOpMI<o, m, binop_args, t, f, (outs),
[(set EFLAGS, (node (t.LoadNode addr:$src1), t.ImmOperator:$src2))]>,
Sched<[WriteALU.Folded]>, DefEFLAGS;
// BinOpMI_R - Instructions that read "[mem], imm" and write "reg".
class BinOpMI_R<bits<8> o, string m, X86TypeInfo t, Format f>
: BinOpMI<o, m, binop_ndd_args, t, f, (outs t.RegClass:$dst), []>,
Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>, NDD<1>;
// BinOpMI_R - Instructions that read "[mem], imm" and write "reg", EFLAGS.
class BinOpMI_RF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node,
Format f>
: BinOpMI<o, m, binop_ndd_args, t, f, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS, (node (t.LoadNode addr:$src1), t.ImmOperator:$src2))]>,
Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>, DefEFLAGS, NDD<1>;
// BinOpMI_M - Instructions that read "[mem], imm" and write "[mem]".
class BinOpMI_M<bits<8> o, string m, X86TypeInfo t, Format f>
: BinOpMI<o, m, binop_args, t, f, (outs), []>, Sched<[WriteALURMW]> {
let mayStore = 1;
}
// BinOpMI_MF - Instructions that read "[mem], imm" and write "[mem]", EFLAGS.
class BinOpMI_MF<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node, Format f>
: BinOpMI<o, m, binop_args, t, f, (outs),
[(store (node (t.VT (load addr:$src1)),
t.ImmOperator:$src2), addr:$src1), (implicit EFLAGS)]>,
Sched<[WriteALURMW]>, DefEFLAGS {
let mayStore = 1;
}
// BinOpMIF_RF - Instructions that read "[mem], imm", write "reg" and
// read/write EFLAGS.
class BinOpMIF_RF<bits<8> o, string m, X86TypeInfo t, SDNode node, Format f>
: BinOpMI<o, m, binop_ndd_args, t, f, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS, (node (t.VT (load addr:$src1)),
t.ImmOperator:$src2, EFLAGS))]>,
Sched<[WriteADC.Folded, WriteADC.ReadAfterFold]>, DefEFLAGS, UseEFLAGS, NDD<1>;
// BinOpMIF_MF - Instructions that read "[mem], imm", write "[mem]" and
// read/write EFLAGS.
class BinOpMIF_MF<bits<8> o, string m, X86TypeInfo t, SDNode node, Format f>
: BinOpMI<o, m, binop_args, t, f, (outs),
[(store (node (t.VT (load addr:$src1)),
t.ImmOperator:$src2, EFLAGS), addr:$src1), (implicit EFLAGS)]>,
Sched<[WriteADCRMW]>, DefEFLAGS, UseEFLAGS {
let mayStore = 1;
}
// BinOpMI8 - Instructions that read "[mem], imm8".
class BinOpMI8<string m, string args, X86TypeInfo t, Format f, dag out>
: ITy<0x83, f, t, out, (ins t.MemOperand:$src1, t.Imm8Operand:$src2), m,
args, []> {
let ImmT = Imm8;
let mayLoad = 1;
}
// BinOpMI8U - Instructions that read "[mem], u8imm".
class BinOpMI8U<string m, string args, X86TypeInfo t, Format f, dag out, list<dag> p>
: ITy<0xC1, f, t, out, (ins t.MemOperand:$src1, u8imm:$src2), m, args, p> {
let ImmT = Imm8;
let mayLoad = 1;
}
// BinOpMI8_F - Instructions that read "[mem], imm8" and write EFLAGS only.
class BinOpMI8_F<string m, X86TypeInfo t, Format f>
: BinOpMI8<m, binop_args, t, f, (outs)>, Sched<[WriteALU.Folded]>, DefEFLAGS;
// BinOpMI8_R - Instructions that read "[mem], imm8" and write "reg".
class BinOpMI8_R<string m, X86TypeInfo t, Format f>
: BinOpMI8<m, binop_ndd_args, t, f, (outs t.RegClass:$dst)>, Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>, NDD<1>;
// BinOpMI8U_R - Instructions that read "[mem], u8imm" and write "reg".
class BinOpMI8U_R<string m, Format f, X86TypeInfo t, SDPatternOperator node = null_frag>
: BinOpMI8U<m, binop_ndd_args, t, f, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), (i8 imm:$src2)))]>, NDD<1>;
// BinOpMI8_RF - Instructions that read "[mem], imm8" and write "reg"/EFLAGS.
class BinOpMI8_RF<string m, X86TypeInfo t, Format f>
: BinOpMI8<m, binop_ndd_args, t, f, (outs t.RegClass:$dst)>, Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>, DefEFLAGS, NDD<1>;
// BinOpMI8_M - Instructions that read "[mem], imm8" and write "[mem]".
class BinOpMI8_M<string m, X86TypeInfo t, Format f>
: BinOpMI8<m, binop_args, t, f, (outs)>, Sched<[WriteALURMW]> {
let mayStore = 1;
}
// BinOpMI8U_M - Instructions that read "[mem], u8imm" and write "[mem]".
class BinOpMI8U_M<string m, Format f, X86TypeInfo t, SDPatternOperator node = null_frag>
: BinOpMI8U<m, binop_args, t, f, (outs),
[(store (node (t.LoadNode addr:$src1), (i8 imm:$src2)), addr:$src1)]> {
let mayStore = 1;
}
// BinOpMI8_MF - Instructions that read "[mem], imm8" and write "[mem]", EFLAGS.
class BinOpMI8_MF<string m, X86TypeInfo t, Format f>
: BinOpMI8<m, binop_args, t, f, (outs)>, Sched<[WriteALURMW]>, DefEFLAGS {
let mayStore = 1;
}
// BinOpMI8F_RF - Instructions that read "[mem], imm8", write "reg" and
// read/write EFLAGS.
class BinOpMI8F_RF<string m, X86TypeInfo t, Format f>
: BinOpMI8<m, binop_ndd_args, t, f, (outs t.RegClass:$dst)>,
Sched<[WriteADC.Folded, WriteADC.ReadAfterFold]>, DefEFLAGS, UseEFLAGS, NDD<1>;
// BinOpMI8F_MF - Instructions that read "[mem], imm8", write "[mem]" and
// read/write EFLAGS.
class BinOpMI8F_MF<string m, X86TypeInfo t, Format f>
: BinOpMI8<m, binop_args, t, f, (outs)>, Sched<[WriteADCRMW]>, DefEFLAGS, UseEFLAGS {
let mayStore = 1;
}
// BinOpAI - Instructions that read "a-reg imm" (Accumulator register).
class BinOpAI<bits<8> o, string m, X86TypeInfo t, Register areg, string args>
: ITy<o, RawFrm, t, (outs), (ins t.ImmOperand:$src), m, args, []>,
Sched<[WriteALU]> {
let ImmT = t.ImmEncoding;
let Uses = [areg];
}
// BinOpAI_F - Instructions that read "a-reg imm" and write EFLAGS only.
class BinOpAI_F<bits<8> o, string m, X86TypeInfo t, Register areg, string args>
: BinOpAI<o, m, t, areg, args>, DefEFLAGS;
// BinOpAI_AF - Instructions that read "a-reg imm" and write a-reg/EFLAGS.
class BinOpAI_AF<bits<8> o, string m, X86TypeInfo t, Register areg,
string args> : BinOpAI<o, m, t, areg, args> {
let Defs = [areg, EFLAGS];
}
// BinOpAIF_AF - Instructions that read "a-reg imm", write a-reg and read/write
// EFLAGS.
class BinOpAIF_AF<bits<8> o, string m, X86TypeInfo t, Register areg,
string args> : BinOpAI<o, m, t, areg, args> {
let Uses = [areg, EFLAGS];
let Defs = [areg, EFLAGS];
let SchedRW = [WriteADC];
}
// BinOpRC_R - Instructions that read "reg, cl" and write reg.
class BinOpRC_R<string m, Format f, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
: ITy<0xD3, f, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1), m,
!if(!eq(ndd, 0), binop_cl_args, binop_cl_ndd_args),
[(set t.RegClass:$dst, (node t.RegClass:$src1, CL))]>, NDD<ndd> {
let Uses = [CL];
}
// BinOpMC_M - Instructions that read "[mem], cl" and write [mem].
class BinOpMC_M<string m, Format f, X86TypeInfo t, SDPatternOperator node = null_frag>
: ITy<0xD3, f, t, (outs), (ins t.MemOperand:$src1), m, binop_cl_args,
[(store (node (t.LoadNode addr:$src1), CL), addr:$src1)]> {
let Uses = [CL];
let mayLoad = 1;
let mayStore = 1;
}
// BinOpMC_R - Instructions that read "[mem], cl" and write reg.
class BinOpMC_R<string m, Format f, X86TypeInfo t, SDPatternOperator node = null_frag>
: ITy<0xD3, f, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1), m, binop_cl_ndd_args,
[(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), CL))]>, NDD<1> {
let Uses = [CL];
let mayLoad = 1;
}
// UnaryOpR - Instructions that read "reg".
class UnaryOpR<bits<8> o, Format f, string m, string args, X86TypeInfo t,
dag out, list<dag> p>
: ITy<o, f, t, out, (ins t.RegClass:$src1), m, args, p>, Sched<[WriteALU]>;
// UnaryOpR_R - Instructions that read "reg" and write "reg".
class UnaryOpR_R<bits<8> o, Format f, string m, X86TypeInfo t,
SDPatternOperator node = null_frag, bit ndd = 0>
: UnaryOpR<o, f, m, !if(!eq(ndd, 0), unaryop_args, unaryop_ndd_args), t,
(outs t.RegClass:$dst),
[(set t.RegClass:$dst, (node t.RegClass:$src1))]>, NDD<ndd>;
// UnaryOpR_RF - Instructions that read "reg" and write "reg"/EFLAGS.
class UnaryOpR_RF<bits<8> o, Format f, string m, X86TypeInfo t,
SDPatternOperator node = null_frag, bit ndd = 0>
: UnaryOpR<o, f, m, !if(!eq(ndd, 0), unaryop_args, unaryop_ndd_args), t,
(outs t.RegClass:$dst),
[(set t.RegClass:$dst, (node t.RegClass:$src1)),
(implicit EFLAGS)]>, DefEFLAGS, NDD<ndd>;
// UnaryOpM - Instructions that read "[mem]".
class UnaryOpM<bits<8> o, Format f, string m, string args, X86TypeInfo t,
dag out, list<dag> p>
: ITy<o, f, t, out, (ins t.MemOperand:$src1), m, args, p> {
let mayLoad = 1;
}
// UnaryOpM_R - Instructions that read "[mem]" and writes "reg".
class UnaryOpM_R<bits<8> o, Format f, string m, X86TypeInfo t,
SDPatternOperator node = null_frag>
: UnaryOpM<o, f, m, unaryop_ndd_args, t, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, (node (t.LoadNode addr:$src1)))]>,
Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>, NDD<1>;
// UnaryOpM_RF - Instructions that read "[mem]" and writes "reg"/EFLAGS.
class UnaryOpM_RF<bits<8> o, Format f, string m, X86TypeInfo t,
SDPatternOperator node = null_frag>
: UnaryOpM<o, f, m, unaryop_ndd_args, t, (outs t.RegClass:$dst),
[(set t.RegClass:$dst, EFLAGS, (node (t.LoadNode addr:$src1)))]>,
Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>, DefEFLAGS, NDD<1>;
// UnaryOpM_M - Instructions that read "[mem]" and writes "[mem]".
class UnaryOpM_M<bits<8> o, Format f, string m, X86TypeInfo t,
SDPatternOperator node = null_frag>
: UnaryOpM<o, f, m, unaryop_args, t, (outs),
[(store (node (t.LoadNode addr:$src1)), addr:$src1)]>,
Sched<[WriteALURMW]>{
let mayStore = 1;
}
// UnaryOpM_MF - Instructions that read "[mem]" and writes "[mem]"/EFLAGS.
class UnaryOpM_MF<bits<8> o, Format f, string m, X86TypeInfo t,
SDPatternOperator node = null_frag>
: UnaryOpM<o, f, m, unaryop_args, t, (outs),
[(store (node (t.LoadNode addr:$src1)), addr:$src1),
(implicit EFLAGS)]>, Sched<[WriteALURMW]>, DefEFLAGS {
let mayStore = 1;
}
|