1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
//===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a target parser to recognise hardware features
// for RISC-V CPUs.
//
//===----------------------------------------------------------------------===//
#include "llvm/TargetParser/RISCVTargetParser.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/TargetParser/RISCVISAInfo.h"
#include "llvm/TargetParser/Triple.h"
namespace llvm {
namespace RISCV {
enum CPUKind : unsigned {
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \
FAST_VECTOR_UNALIGN) \
CK_##ENUM,
#define TUNE_PROC(ENUM, NAME) CK_##ENUM,
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
};
struct CPUInfo {
StringLiteral Name;
StringLiteral DefaultMarch;
bool FastScalarUnalignedAccess;
bool FastVectorUnalignedAccess;
bool is64Bit() const { return DefaultMarch.starts_with("rv64"); }
};
constexpr CPUInfo RISCVCPUInfo[] = {
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \
FAST_VECTOR_UNALIGN) \
{NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, FAST_VECTOR_UNALIGN},
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
};
static const CPUInfo *getCPUInfoByName(StringRef CPU) {
for (auto &C : RISCVCPUInfo)
if (C.Name == CPU)
return &C;
return nullptr;
}
bool hasFastScalarUnalignedAccess(StringRef CPU) {
const CPUInfo *Info = getCPUInfoByName(CPU);
return Info && Info->FastScalarUnalignedAccess;
}
bool hasFastVectorUnalignedAccess(StringRef CPU) {
const CPUInfo *Info = getCPUInfoByName(CPU);
return Info && Info->FastVectorUnalignedAccess;
}
bool parseCPU(StringRef CPU, bool IsRV64) {
const CPUInfo *Info = getCPUInfoByName(CPU);
if (!Info)
return false;
return Info->is64Bit() == IsRV64;
}
bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) {
std::optional<CPUKind> Kind =
llvm::StringSwitch<std::optional<CPUKind>>(TuneCPU)
#define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM)
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
.Default(std::nullopt);
if (Kind.has_value())
return true;
// Fallback to parsing as a CPU.
return parseCPU(TuneCPU, IsRV64);
}
StringRef getMArchFromMcpu(StringRef CPU) {
const CPUInfo *Info = getCPUInfoByName(CPU);
if (!Info)
return "";
return Info->DefaultMarch;
}
void fillValidCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
for (const auto &C : RISCVCPUInfo) {
if (IsRV64 == C.is64Bit())
Values.emplace_back(C.Name);
}
}
void fillValidTuneCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
for (const auto &C : RISCVCPUInfo) {
if (IsRV64 == C.is64Bit())
Values.emplace_back(C.Name);
}
#define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME));
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
}
// This function is currently used by IREE, so it's not dead code.
void getFeaturesForCPU(StringRef CPU,
SmallVectorImpl<std::string> &EnabledFeatures,
bool NeedPlus) {
StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU);
if (MarchFromCPU == "")
return;
EnabledFeatures.clear();
auto RII = RISCVISAInfo::parseArchString(
MarchFromCPU, /* EnableExperimentalExtension */ true);
if (llvm::errorToBool(RII.takeError()))
return;
std::vector<std::string> FeatStrings =
(*RII)->toFeatures(/* AddAllExtensions */ false);
for (const auto &F : FeatStrings)
if (NeedPlus)
EnabledFeatures.push_back(F);
else
EnabledFeatures.push_back(F.substr(1));
}
namespace RISCVExtensionBitmaskTable {
#define GET_RISCVExtensionBitmaskTable_IMPL
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
} // namespace RISCVExtensionBitmaskTable
namespace {
struct LessExtName {
bool operator()(const RISCVExtensionBitmaskTable::RISCVExtensionBitmask &LHS,
StringRef RHS) {
return StringRef(LHS.Name) < RHS;
}
};
} // namespace
} // namespace RISCV
namespace RISCVVType {
// Encode VTYPE into the binary format used by the the VSETVLI instruction which
// is used by our MC layer representation.
//
// Bits | Name | Description
// -----+------------+------------------------------------------------
// 7 | vma | Vector mask agnostic
// 6 | vta | Vector tail agnostic
// 5:3 | vsew[2:0] | Standard element width (SEW) setting
// 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting
unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic,
bool MaskAgnostic) {
assert(isValidSEW(SEW) && "Invalid SEW");
unsigned VLMULBits = static_cast<unsigned>(VLMUL);
unsigned VSEWBits = encodeSEW(SEW);
unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
if (TailAgnostic)
VTypeI |= 0x40;
if (MaskAgnostic)
VTypeI |= 0x80;
return VTypeI;
}
std::pair<unsigned, bool> decodeVLMUL(RISCVII::VLMUL VLMUL) {
switch (VLMUL) {
default:
llvm_unreachable("Unexpected LMUL value!");
case RISCVII::VLMUL::LMUL_1:
case RISCVII::VLMUL::LMUL_2:
case RISCVII::VLMUL::LMUL_4:
case RISCVII::VLMUL::LMUL_8:
return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
case RISCVII::VLMUL::LMUL_F2:
case RISCVII::VLMUL::LMUL_F4:
case RISCVII::VLMUL::LMUL_F8:
return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
}
}
void printVType(unsigned VType, raw_ostream &OS) {
unsigned Sew = getSEW(VType);
OS << "e" << Sew;
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
if (Fractional)
OS << ", mf";
else
OS << ", m";
OS << LMul;
if (isTailAgnostic(VType))
OS << ", ta";
else
OS << ", tu";
if (isMaskAgnostic(VType))
OS << ", ma";
else
OS << ", mu";
}
unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
// Convert LMul to a fixed point value with 3 fractional bits.
LMul = Fractional ? (8 / LMul) : (LMul * 8);
assert(SEW >= 8 && "Unexpected SEW value");
return (SEW * 8) / LMul;
}
std::optional<RISCVII::VLMUL>
getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
unsigned EMULFixedPoint = (EEW * 8) / Ratio;
bool Fractional = EMULFixedPoint < 8;
unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
if (!isValidLMUL(EMUL, Fractional))
return std::nullopt;
return RISCVVType::encodeLMUL(EMUL, Fractional);
}
} // namespace RISCVVType
} // namespace llvm
|