1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
//===----- HipStdPar.cpp - HIP C++ Standard Parallelism Support Passes ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements two passes that enable HIP C++ Standard Parallelism
// Support:
//
// 1. AcceleratorCodeSelection (required): Given that only algorithms are
// accelerated, and that the accelerated implementation exists in the form of
// a compute kernel, we assume that only the kernel, and all functions
// reachable from it, constitute code that the user expects the accelerator
// to execute. Thus, we identify the set of all functions reachable from
// kernels, and then remove all unreachable ones. This last part is necessary
// because it is possible for code that the user did not expect to execute on
// an accelerator to contain constructs that cannot be handled by the target
// BE, which cannot be provably demonstrated to be dead code in general, and
// thus can lead to mis-compilation. The degenerate case of this is when a
// Module contains no kernels (the parent TU had no algorithm invocations fit
// for acceleration), which we handle by completely emptying said module.
// **NOTE**: The above does not handle indirectly reachable functions i.e.
// it is possible to obtain a case where the target of an indirect
// call is otherwise unreachable and thus is removed; this
// restriction is aligned with the current `-hipstdpar` limitations
// and will be relaxed in the future.
//
// 2. AllocationInterposition (required only when on-demand paging is
// unsupported): Some accelerators or operating systems might not support
// transparent on-demand paging. Thus, they would only be able to access
// memory that is allocated by an accelerator-aware mechanism. For such cases
// the user can opt into enabling allocation / deallocation interposition,
// whereby we replace calls to known allocation / deallocation functions with
// calls to runtime implemented equivalents that forward the requests to
// accelerator-aware interfaces. We also support freeing system allocated
// memory that ends up in one of the runtime equivalents, since this can
// happen if e.g. a library that was compiled without interposition returns
// an allocation that can be validly passed to `free`.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/HipStdPar/HipStdPar.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <cassert>
#include <string>
#include <utility>
using namespace llvm;
template<typename T>
static inline void eraseFromModule(T &ToErase) {
ToErase.replaceAllUsesWith(PoisonValue::get(ToErase.getType()));
ToErase.eraseFromParent();
}
static inline bool checkIfSupported(GlobalVariable &G) {
if (!G.isThreadLocal())
return true;
G.dropDroppableUses();
if (!G.isConstantUsed())
return true;
std::string W;
raw_string_ostream OS(W);
OS << "Accelerator does not support the thread_local variable "
<< G.getName();
Instruction *I = nullptr;
SmallVector<User *> Tmp(G.user_begin(), G.user_end());
SmallPtrSet<User *, 5> Visited;
do {
auto U = std::move(Tmp.back());
Tmp.pop_back();
if (Visited.contains(U))
continue;
if (isa<Instruction>(U))
I = cast<Instruction>(U);
else
Tmp.insert(Tmp.end(), U->user_begin(), U->user_end());
Visited.insert(U);
} while (!I && !Tmp.empty());
assert(I && "thread_local global should have at least one non-constant use.");
G.getContext().diagnose(
DiagnosticInfoUnsupported(*I->getParent()->getParent(), W,
I->getDebugLoc(), DS_Error));
return false;
}
static inline void clearModule(Module &M) { // TODO: simplify.
while (!M.functions().empty())
eraseFromModule(*M.begin());
while (!M.globals().empty())
eraseFromModule(*M.globals().begin());
while (!M.aliases().empty())
eraseFromModule(*M.aliases().begin());
while (!M.ifuncs().empty())
eraseFromModule(*M.ifuncs().begin());
}
static inline void maybeHandleGlobals(Module &M) {
unsigned GlobAS = M.getDataLayout().getDefaultGlobalsAddressSpace();
for (auto &&G : M.globals()) { // TODO: should we handle these in the FE?
if (!checkIfSupported(G))
return clearModule(M);
if (G.isThreadLocal())
continue;
if (G.isConstant())
continue;
if (G.getAddressSpace() != GlobAS)
continue;
if (G.getLinkage() != GlobalVariable::ExternalLinkage)
continue;
G.setLinkage(GlobalVariable::ExternalWeakLinkage);
G.setInitializer(nullptr);
G.setExternallyInitialized(true);
}
}
template<unsigned N>
static inline void removeUnreachableFunctions(
const SmallPtrSet<const Function *, N>& Reachable, Module &M) {
removeFromUsedLists(M, [&](Constant *C) {
if (auto F = dyn_cast<Function>(C))
return !Reachable.contains(F);
return false;
});
SmallVector<std::reference_wrapper<Function>> ToRemove;
copy_if(M, std::back_inserter(ToRemove), [&](auto &&F) {
return !F.isIntrinsic() && !Reachable.contains(&F);
});
for_each(ToRemove, eraseFromModule<Function>);
}
static inline bool isAcceleratorExecutionRoot(const Function *F) {
if (!F)
return false;
return F->getCallingConv() == CallingConv::AMDGPU_KERNEL;
}
static inline bool checkIfSupported(const Function *F, const CallBase *CB) {
const auto Dx = F->getName().rfind("__hipstdpar_unsupported");
if (Dx == StringRef::npos)
return true;
const auto N = F->getName().substr(0, Dx);
std::string W;
raw_string_ostream OS(W);
if (N == "__ASM")
OS << "Accelerator does not support the ASM block:\n"
<< cast<ConstantDataArray>(CB->getArgOperand(0))->getAsCString();
else
OS << "Accelerator does not support the " << N << " function.";
auto Caller = CB->getParent()->getParent();
Caller->getContext().diagnose(
DiagnosticInfoUnsupported(*Caller, W, CB->getDebugLoc(), DS_Error));
return false;
}
PreservedAnalyses
HipStdParAcceleratorCodeSelectionPass::run(Module &M,
ModuleAnalysisManager &MAM) {
auto &CGA = MAM.getResult<CallGraphAnalysis>(M);
SmallPtrSet<const Function *, 32> Reachable;
for (auto &&CGN : CGA) {
if (!isAcceleratorExecutionRoot(CGN.first))
continue;
Reachable.insert(CGN.first);
SmallVector<const Function *> Tmp({CGN.first});
do {
auto F = std::move(Tmp.back());
Tmp.pop_back();
for (auto &&N : *CGA[F]) {
if (!N.second)
continue;
if (!N.second->getFunction())
continue;
if (Reachable.contains(N.second->getFunction()))
continue;
if (!checkIfSupported(N.second->getFunction(),
dyn_cast<CallBase>(*N.first)))
return PreservedAnalyses::none();
Reachable.insert(N.second->getFunction());
Tmp.push_back(N.second->getFunction());
}
} while (!std::empty(Tmp));
}
if (std::empty(Reachable))
clearModule(M);
else
removeUnreachableFunctions(Reachable, M);
maybeHandleGlobals(M);
return PreservedAnalyses::none();
}
static constexpr std::pair<StringLiteral, StringLiteral> ReplaceMap[]{
{"aligned_alloc", "__hipstdpar_aligned_alloc"},
{"calloc", "__hipstdpar_calloc"},
{"free", "__hipstdpar_free"},
{"malloc", "__hipstdpar_malloc"},
{"memalign", "__hipstdpar_aligned_alloc"},
{"posix_memalign", "__hipstdpar_posix_aligned_alloc"},
{"realloc", "__hipstdpar_realloc"},
{"reallocarray", "__hipstdpar_realloc_array"},
{"_ZdaPv", "__hipstdpar_operator_delete"},
{"_ZdaPvm", "__hipstdpar_operator_delete_sized"},
{"_ZdaPvSt11align_val_t", "__hipstdpar_operator_delete_aligned"},
{"_ZdaPvmSt11align_val_t", "__hipstdpar_operator_delete_aligned_sized"},
{"_ZdlPv", "__hipstdpar_operator_delete"},
{"_ZdlPvm", "__hipstdpar_operator_delete_sized"},
{"_ZdlPvSt11align_val_t", "__hipstdpar_operator_delete_aligned"},
{"_ZdlPvmSt11align_val_t", "__hipstdpar_operator_delete_aligned_sized"},
{"_Znam", "__hipstdpar_operator_new"},
{"_ZnamRKSt9nothrow_t", "__hipstdpar_operator_new_nothrow"},
{"_ZnamSt11align_val_t", "__hipstdpar_operator_new_aligned"},
{"_ZnamSt11align_val_tRKSt9nothrow_t",
"__hipstdpar_operator_new_aligned_nothrow"},
{"_Znwm", "__hipstdpar_operator_new"},
{"_ZnwmRKSt9nothrow_t", "__hipstdpar_operator_new_nothrow"},
{"_ZnwmSt11align_val_t", "__hipstdpar_operator_new_aligned"},
{"_ZnwmSt11align_val_tRKSt9nothrow_t",
"__hipstdpar_operator_new_aligned_nothrow"},
{"__builtin_calloc", "__hipstdpar_calloc"},
{"__builtin_free", "__hipstdpar_free"},
{"__builtin_malloc", "__hipstdpar_malloc"},
{"__builtin_operator_delete", "__hipstdpar_operator_delete"},
{"__builtin_operator_new", "__hipstdpar_operator_new"},
{"__builtin_realloc", "__hipstdpar_realloc"},
{"__libc_calloc", "__hipstdpar_calloc"},
{"__libc_free", "__hipstdpar_free"},
{"__libc_malloc", "__hipstdpar_malloc"},
{"__libc_memalign", "__hipstdpar_aligned_alloc"},
{"__libc_realloc", "__hipstdpar_realloc"}
};
PreservedAnalyses
HipStdParAllocationInterpositionPass::run(Module &M, ModuleAnalysisManager&) {
SmallDenseMap<StringRef, StringRef> AllocReplacements(std::cbegin(ReplaceMap),
std::cend(ReplaceMap));
for (auto &&F : M) {
if (!F.hasName())
continue;
if (!AllocReplacements.contains(F.getName()))
continue;
if (auto R = M.getFunction(AllocReplacements[F.getName()])) {
F.replaceAllUsesWith(R);
} else {
std::string W;
raw_string_ostream OS(W);
OS << "cannot be interposed, missing: " << AllocReplacements[F.getName()]
<< ". Tried to run the allocation interposition pass without the "
<< "replacement functions available.";
F.getContext().diagnose(DiagnosticInfoUnsupported(F, W,
F.getSubprogram(),
DS_Warning));
}
}
if (auto F = M.getFunction("__hipstdpar_hidden_free")) {
auto LibcFree = M.getOrInsertFunction("__libc_free", F->getFunctionType(),
F->getAttributes());
F->replaceAllUsesWith(LibcFree.getCallee());
eraseFromModule(*F);
}
return PreservedAnalyses::none();
}
|