1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
|
//===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the transformation that promotes indirect calls to
// conditional direct calls when the indirect-call value profile metadata is
// available.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/IndirectCallVisitor.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/Value.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "pgo-icall-prom"
STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
extern cl::opt<unsigned> MaxNumVTableAnnotations;
namespace llvm {
extern cl::opt<bool> EnableVTableProfileUse;
}
// Command line option to disable indirect-call promotion with the default as
// false. This is for debug purpose.
static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
cl::desc("Disable indirect call promotion"));
// Set the cutoff value for the promotion. If the value is other than 0, we
// stop the transformation once the total number of promotions equals the cutoff
// value.
// For debug use only.
static cl::opt<unsigned>
ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
cl::desc("Max number of promotions for this compilation"));
// If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
// For debug use only.
static cl::opt<unsigned>
ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
cl::desc("Skip Callsite up to this number for this compilation"));
// Set if the pass is called in LTO optimization. The difference for LTO mode
// is the pass won't prefix the source module name to the internal linkage
// symbols.
static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion in LTO "
"mode"));
// Set if the pass is called in SamplePGO mode. The difference for SamplePGO
// mode is it will add prof metadatato the created direct call.
static cl::opt<bool>
ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion in SamplePGO mode"));
// If the option is set to true, only call instructions will be considered for
// transformation -- invoke instructions will be ignored.
static cl::opt<bool>
ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion for call instructions "
"only"));
// If the option is set to true, only invoke instructions will be considered for
// transformation -- call instructions will be ignored.
static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
cl::Hidden,
cl::desc("Run indirect-call promotion for "
"invoke instruction only"));
// Dump the function level IR if the transformation happened in this
// function. For debug use only.
static cl::opt<bool>
ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
cl::desc("Dump IR after transformation happens"));
// Indirect call promotion pass will fall back to function-based comparison if
// vtable-count / function-count is smaller than this threshold.
static cl::opt<float> ICPVTablePercentageThreshold(
"icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden,
cl::desc("The percentage threshold of vtable-count / function-count for "
"cost-benefit analysis."));
// Although comparing vtables can save a vtable load, we may need to compare
// vtable pointer with multiple vtable address points due to class inheritance.
// Comparing with multiple vtables inserts additional instructions on hot code
// path, and doing so for an earlier candidate delays the comparisons for later
// candidates. For the last candidate, only the fallback path is affected.
// We allow multiple vtable comparison for the last function candidate and use
// the option below to cap the number of vtables.
static cl::opt<int> ICPMaxNumVTableLastCandidate(
"icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
cl::desc("The maximum number of vtable for the last candidate."));
namespace {
// The key is a vtable global variable, and the value is a map.
// In the inner map, the key represents address point offsets and the value is a
// constant for this address point.
using VTableAddressPointOffsetValMap =
SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
// A struct to collect type information for a virtual call site.
struct VirtualCallSiteInfo {
// The offset from the address point to virtual function in the vtable.
uint64_t FunctionOffset;
// The instruction that computes the address point of vtable.
Instruction *VPtr;
// The compatible type used in LLVM type intrinsics.
StringRef CompatibleTypeStr;
};
// The key is a virtual call, and value is its type information.
using VirtualCallSiteTypeInfoMap =
SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
// The key is vtable GUID, and value is its value profile count.
using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
// Return the address point offset of the given compatible type.
//
// Type metadata of a vtable specifies the types that can contain a pointer to
// this vtable, for example, `Base*` can be a pointer to an derived type
// but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
static std::optional<uint64_t>
getAddressPointOffset(const GlobalVariable &VTableVar,
StringRef CompatibleType) {
SmallVector<MDNode *> Types;
VTableVar.getMetadata(LLVMContext::MD_type, Types);
for (MDNode *Type : Types)
if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
TypeId && TypeId->getString() == CompatibleType)
return cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
return std::nullopt;
}
// Return a constant representing the vtable's address point specified by the
// offset.
static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
uint32_t AddressPointOffset) {
Module &M = *VTable->getParent();
LLVMContext &Context = M.getContext();
assert(AddressPointOffset <
M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
"Out-of-bound access");
return ConstantExpr::getInBoundsGetElementPtr(
Type::getInt8Ty(Context), VTable,
llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
}
// Return the basic block in which Use `U` is used via its `UserInst`.
static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
return PN->getIncomingBlock(U);
return UserInst->getParent();
}
// `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
// and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
// is the sole predecessor of `DestBB` and `DestBB` is dominated by
// `Inst->getParent()`.
static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
// 'BB' is used only by assert.
[[maybe_unused]] BasicBlock *BB = Inst->getParent();
assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
DestBB->getUniquePredecessor() == BB &&
"Guaranteed by ICP transformation");
BasicBlock *UserBB = nullptr;
for (Use &Use : Inst->uses()) {
User *User = Use.getUser();
// Do checked cast since IR verifier guarantees that the user of an
// instruction must be an instruction. See `Verifier::visitInstruction`.
Instruction *UserInst = cast<Instruction>(User);
// We can sink debug or pseudo instructions together with Inst.
if (UserInst->isDebugOrPseudoInst())
continue;
UserBB = getUserBasicBlock(Use, UserInst);
// Do not sink if Inst is used in a basic block that is not DestBB.
// TODO: Sink to the common dominator of all user blocks.
if (UserBB != DestBB)
return false;
}
return UserBB != nullptr;
}
// For the virtual call dispatch sequence, try to sink vtable load instructions
// to the cold indirect call fallback.
// FIXME: Move the sink eligibility check below to a utility function in
// Transforms/Utils/ directory.
static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
if (!isDestBBSuitableForSink(I, DestBlock))
return false;
// Do not move control-flow-involving, volatile loads, vaarg, alloca
// instructions, etc.
if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
isa<AllocaInst>(I))
return false;
// Do not sink convergent call instructions.
if (const auto *C = dyn_cast<CallBase>(I))
if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
return false;
// Do not move an instruction that may write to memory.
if (I->mayWriteToMemory())
return false;
// We can only sink load instructions if there is nothing between the load and
// the end of block that could change the value.
if (I->mayReadFromMemory()) {
// We already know that SrcBlock is the unique predecessor of DestBlock.
for (BasicBlock::iterator Scan = std::next(I->getIterator()),
E = I->getParent()->end();
Scan != E; ++Scan) {
// Note analysis analysis can tell whether two pointers can point to the
// same object in memory or not thereby find further opportunities to
// sink.
if (Scan->mayWriteToMemory())
return false;
}
}
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
I->moveBefore(*DestBlock, InsertPos);
// TODO: Sink debug intrinsic users of I to 'DestBlock'.
// 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
// 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
// the core logic to do this.
return true;
}
// Try to sink instructions after VPtr to the indirect call fallback.
// Return the number of sunk IR instructions.
static int tryToSinkInstructions(BasicBlock *OriginalBB,
BasicBlock *IndirectCallBB) {
int SinkCount = 0;
// Do not sink across a critical edge for simplicity.
if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
return SinkCount;
// Sink all eligible instructions in OriginalBB in reverse order.
for (Instruction &I :
llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
if (tryToSinkInstruction(&I, IndirectCallBB))
SinkCount++;
return SinkCount;
}
// Promote indirect calls to conditional direct calls, keeping track of
// thresholds.
class IndirectCallPromoter {
private:
Function &F;
Module &M;
ProfileSummaryInfo *PSI = nullptr;
// Symtab that maps indirect call profile values to function names and
// defines.
InstrProfSymtab *const Symtab;
const bool SamplePGO;
// A map from a virtual call to its type information.
const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
OptimizationRemarkEmitter &ORE;
// A struct that records the direct target and it's call count.
struct PromotionCandidate {
Function *const TargetFunction;
const uint64_t Count;
// The following fields only exists for promotion candidates with vtable
// information.
//
// Due to class inheritance, one virtual call candidate can come from
// multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
// counts for 'TargetFunction'. `AddressPoints` stores the vtable address
// points for comparison.
VTableGUIDCountsMap VTableGUIDAndCounts;
SmallVector<Constant *> AddressPoints;
PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
};
// Check if the indirect-call call site should be promoted. Return the number
// of promotions. Inst is the candidate indirect call, ValueDataRef
// contains the array of value profile data for profiled targets,
// TotalCount is the total profiled count of call executions, and
// NumCandidates is the number of candidate entries in ValueDataRef.
std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
uint64_t TotalCount, uint32_t NumCandidates);
// Promote a list of targets for one indirect-call callsite by comparing
// indirect callee with functions. Return true if there are IR
// transformations and false otherwise.
bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount,
ArrayRef<InstrProfValueData> ICallProfDataRef,
uint32_t NumCandidates,
VTableGUIDCountsMap &VTableGUIDCounts);
// Promote a list of targets for one indirect call by comparing vtables with
// functions. Return true if there are IR transformations and false
// otherwise.
bool tryToPromoteWithVTableCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalFuncCount, uint32_t NumCandidates,
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
VTableGUIDCountsMap &VTableGUIDCounts);
// Return true if it's profitable to compare vtables for the callsite.
bool isProfitableToCompareVTables(const CallBase &CB,
ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount);
// Given an indirect callsite and the list of function candidates, compute
// the following vtable information in output parameters and return vtable
// pointer if type profiles exist.
// - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
// metadata attached on the vtable pointer.
// - For each function candidate, finds out the vtables from which it gets
// called and stores the <vtable-guid, count> in promotion candidate.
Instruction *computeVTableInfos(const CallBase *CB,
VTableGUIDCountsMap &VTableGUIDCounts,
std::vector<PromotionCandidate> &Candidates);
Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
uint64_t AddressPointOffset);
void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
uint64_t Sum, uint32_t MaxMDCount);
void updateVPtrValueProfiles(Instruction *VPtr,
VTableGUIDCountsMap &VTableGUIDCounts);
public:
IndirectCallPromoter(
Function &Func, Module &M, ProfileSummaryInfo *PSI,
InstrProfSymtab *Symtab, bool SamplePGO,
const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
OptimizationRemarkEmitter &ORE)
: F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO),
VirtualCSInfo(VirtualCSInfo),
VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {}
IndirectCallPromoter(const IndirectCallPromoter &) = delete;
IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
bool processFunction(ProfileSummaryInfo *PSI);
};
} // end anonymous namespace
// Indirect-call promotion heuristic. The direct targets are sorted based on
// the count. Stop at the first target that is not promoted.
std::vector<IndirectCallPromoter::PromotionCandidate>
IndirectCallPromoter::getPromotionCandidatesForCallSite(
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
uint64_t TotalCount, uint32_t NumCandidates) {
std::vector<PromotionCandidate> Ret;
LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
<< " Num_targets: " << ValueDataRef.size()
<< " Num_candidates: " << NumCandidates << "\n");
NumOfPGOICallsites++;
if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
LLVM_DEBUG(dbgs() << " Skip: User options.\n");
return Ret;
}
for (uint32_t I = 0; I < NumCandidates; I++) {
uint64_t Count = ValueDataRef[I].Count;
assert(Count <= TotalCount);
(void)TotalCount;
uint64_t Target = ValueDataRef[I].Value;
LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
<< " Target_func: " << Target << "\n");
if (ICPInvokeOnly && isa<CallInst>(CB)) {
LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
<< " Not promote: User options";
});
break;
}
if (ICPCallOnly && isa<InvokeInst>(CB)) {
LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
<< " Not promote: User options";
});
break;
}
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
<< " Not promote: Cutoff reached";
});
break;
}
// Don't promote if the symbol is not defined in the module. This avoids
// creating a reference to a symbol that doesn't exist in the module
// This can happen when we compile with a sample profile collected from
// one binary but used for another, which may have profiled targets that
// aren't used in the new binary. We might have a declaration initially in
// the case where the symbol is globally dead in the binary and removed by
// ThinLTO.
Function *TargetFunction = Symtab->getFunction(Target);
if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
<< "Cannot promote indirect call: target with md5sum "
<< ore::NV("target md5sum", Target) << " not found";
});
break;
}
const char *Reason = nullptr;
if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
using namespace ore;
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
<< "Cannot promote indirect call to "
<< NV("TargetFunction", TargetFunction) << " with count of "
<< NV("Count", Count) << ": " << Reason;
});
break;
}
Ret.push_back(PromotionCandidate(TargetFunction, Count));
TotalCount -= Count;
}
return Ret;
}
Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
GlobalVariable *GV, uint64_t AddressPointOffset) {
auto [Iter, Inserted] =
VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
if (Inserted)
Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
return Iter->second;
}
Instruction *IndirectCallPromoter::computeVTableInfos(
const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
std::vector<PromotionCandidate> &Candidates) {
if (!EnableVTableProfileUse)
return nullptr;
// Take the following code sequence as an example, here is how the code works
// @vtable1 = {[n x ptr] [... ptr @func1]}
// @vtable2 = {[m x ptr] [... ptr @func2]}
//
// %vptr = load ptr, ptr %d, !prof !0
// %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
// tail call void @llvm.assume(i1 %0)
// %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
// %1 = load ptr, ptr %vfn
// call void %1(ptr %d), !prof !1
//
// !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
// !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
//
// Step 1. Find out the %vptr instruction for indirect call and use its !prof
// to populate `GUIDCountsMap`.
// Step 2. For each vtable-guid, look up its definition from symtab. LTO can
// make vtable definitions visible across modules.
// Step 3. Compute the byte offset of the virtual call, by adding vtable
// address point offset and function's offset relative to vtable address
// point. For each function candidate, this step tells us the vtable from
// which it comes from, and the vtable address point to compare %vptr with.
// Only virtual calls have virtual call site info.
auto Iter = VirtualCSInfo.find(CB);
if (Iter == VirtualCSInfo.end())
return nullptr;
LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
<< NumOfPGOICallsites << "\n");
const auto &VirtualCallInfo = Iter->second;
Instruction *VPtr = VirtualCallInfo.VPtr;
SmallDenseMap<Function *, int, 4> CalleeIndexMap;
for (size_t I = 0; I < Candidates.size(); I++)
CalleeIndexMap[Candidates[I].TargetFunction] = I;
uint64_t TotalVTableCount = 0;
auto VTableValueDataArray =
getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
MaxNumVTableAnnotations, TotalVTableCount);
if (VTableValueDataArray.empty())
return VPtr;
// Compute the functions and counts from by each vtable.
for (const auto &V : VTableValueDataArray) {
uint64_t VTableVal = V.Value;
GUIDCountsMap[VTableVal] = V.Count;
GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
if (!VTableVar) {
LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal
<< "; maybe the vtable isn't imported\n");
continue;
}
std::optional<uint64_t> MaybeAddressPointOffset =
getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
if (!MaybeAddressPointOffset)
continue;
const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
Function *Callee = nullptr;
std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
if (!Callee)
continue;
auto CalleeIndexIter = CalleeIndexMap.find(Callee);
if (CalleeIndexIter == CalleeIndexMap.end())
continue;
auto &Candidate = Candidates[CalleeIndexIter->second];
// There shouldn't be duplicate GUIDs in one !prof metadata (except
// duplicated zeros), so assign counters directly won't cause overwrite or
// counter loss.
Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
Candidate.AddressPoints.push_back(
getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
}
return VPtr;
}
// Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
// Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
uint64_t FalseWeight) {
MDBuilder MDB(Context);
uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
scaleBranchCount(FalseWeight, Scale));
}
CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
uint64_t Count, uint64_t TotalCount,
bool AttachProfToDirectCall,
OptimizationRemarkEmitter *ORE) {
CallBase &NewInst = promoteCallWithIfThenElse(
CB, DirectCallee,
createBranchWeights(CB.getContext(), Count, TotalCount - Count));
if (AttachProfToDirectCall)
setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
/*IsExpected=*/false);
using namespace ore;
if (ORE)
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
<< "Promote indirect call to " << NV("DirectCallee", DirectCallee)
<< " with count " << NV("Count", Count) << " out of "
<< NV("TotalCount", TotalCount);
});
return NewInst;
}
// Promote indirect-call to conditional direct-call for one callsite.
bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
uint32_t NumPromoted = 0;
for (const auto &C : Candidates) {
uint64_t FuncCount = C.Count;
pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
SamplePGO, &ORE);
assert(TotalCount >= FuncCount);
TotalCount -= FuncCount;
NumOfPGOICallPromotion++;
NumPromoted++;
if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
continue;
// After a virtual call candidate gets promoted, update the vtable's counts
// proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
// a vtable from which the virtual call is loaded. Compute the sum and use
// 128-bit APInt to improve accuracy.
uint64_t SumVTableCount = 0;
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
SumVTableCount += VTableCount;
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
APFuncCount *= VTableCount;
VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
}
}
if (NumPromoted == 0)
return false;
assert(NumPromoted <= ICallProfDataRef.size() &&
"Number of promoted functions should not be greater than the number "
"of values in profile metadata");
// Update value profiles on the indirect call.
updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
NumCandidates);
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
return true;
}
void IndirectCallPromoter::updateFuncValueProfiles(
CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
uint32_t MaxMDCount) {
// First clear the existing !prof.
CB.setMetadata(LLVMContext::MD_prof, nullptr);
// Annotate the remaining value profiles if counter is not zero.
if (TotalCount != 0)
annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
MaxMDCount);
}
void IndirectCallPromoter::updateVPtrValueProfiles(
Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
if (!EnableVTableProfileUse || VPtr == nullptr ||
!VPtr->getMetadata(LLVMContext::MD_prof))
return;
VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
std::vector<InstrProfValueData> VTableValueProfiles;
uint64_t TotalVTableCount = 0;
for (auto [GUID, Count] : VTableGUIDCounts) {
if (Count == 0)
continue;
VTableValueProfiles.push_back({GUID, Count});
TotalVTableCount += Count;
}
llvm::sort(VTableValueProfiles,
[](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
return LHS.Count > RHS.Count;
});
annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
IPVK_VTableTarget, VTableValueProfiles.size());
}
bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalFuncCount, uint32_t NumCandidates,
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
VTableGUIDCountsMap &VTableGUIDCounts) {
SmallVector<uint64_t, 4> PromotedFuncCount;
for (const auto &Candidate : Candidates) {
for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
VTableGUIDCounts[GUID] -= Count;
// 'OriginalBB' is the basic block of indirect call. After each candidate
// is promoted, a new basic block is created for the indirect fallback basic
// block and indirect call `CB` is moved into this new BB.
BasicBlock *OriginalBB = CB.getParent();
promoteCallWithVTableCmp(
CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
createBranchWeights(CB.getContext(), Candidate.Count,
TotalFuncCount - Candidate.Count));
int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
ORE.emit([&]() {
OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
Remark << "Promote indirect call to "
<< ore::NV("DirectCallee", Candidate.TargetFunction)
<< " with count " << ore::NV("Count", Candidate.Count)
<< " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
<< ore::NV("SinkCount", SinkCount)
<< " instruction(s) and compare "
<< ore::NV("VTable", VTableGUIDAndCounts.size())
<< " vtable(s): {";
// Sort GUIDs so remark message is deterministic.
std::set<uint64_t> GUIDSet;
for (auto [GUID, Count] : VTableGUIDAndCounts)
GUIDSet.insert(GUID);
for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
if (Iter != GUIDSet.begin())
Remark << ", ";
Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
}
Remark << "}";
return Remark;
});
PromotedFuncCount.push_back(Candidate.Count);
assert(TotalFuncCount >= Candidate.Count &&
"Within one prof metadata, total count is the sum of counts from "
"individual <target, count> pairs");
// Use std::min since 'TotalFuncCount' is the saturated sum of individual
// counts, see
// https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
NumOfPGOICallPromotion++;
}
if (PromotedFuncCount.empty())
return false;
// Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
// a distinct 'VPtr'.
// FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
// used to load multiple virtual functions. The vtable profiles needs to be
// updated properly in that case (e.g, for each indirect call annotate both
// type profiles and function profiles in one !prof).
for (size_t I = 0; I < PromotedFuncCount.size(); I++)
ICallProfDataRef[I].Count -=
std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
// Sort value profiles by count in descending order.
llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
const InstrProfValueData &RHS) {
return LHS.Count > RHS.Count;
});
// Drop the <target-value, count> pair if count is zero.
ArrayRef<InstrProfValueData> VDs(
ICallProfDataRef.begin(),
llvm::upper_bound(ICallProfDataRef, 0U,
[](uint64_t Count, const InstrProfValueData &ProfData) {
return ProfData.Count <= Count;
}));
updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
return true;
}
// Traverse all the indirect-call callsite and get the value profile
// annotation to perform indirect-call promotion.
bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
bool Changed = false;
ICallPromotionAnalysis ICallAnalysis;
for (auto *CB : findIndirectCalls(F)) {
uint32_t NumCandidates;
uint64_t TotalCount;
auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
CB, TotalCount, NumCandidates);
if (!NumCandidates ||
(PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
continue;
auto PromotionCandidates = getPromotionCandidatesForCallSite(
*CB, ICallProfDataRef, TotalCount, NumCandidates);
VTableGUIDCountsMap VTableGUIDCounts;
Instruction *VPtr =
computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount))
Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
TotalCount, NumCandidates,
ICallProfDataRef, VTableGUIDCounts);
else
Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
TotalCount, ICallProfDataRef,
NumCandidates, VTableGUIDCounts);
}
return Changed;
}
// TODO: Return false if the function addressing and vtable load instructions
// cannot sink to indirect fallback.
bool IndirectCallPromoter::isProfitableToCompareVTables(
const CallBase &CB, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount) {
if (!EnableVTableProfileUse || Candidates.empty())
return false;
LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
<< NumOfPGOICallsites << CB << "\n");
uint64_t RemainingVTableCount = TotalCount;
const size_t CandidateSize = Candidates.size();
for (size_t I = 0; I < CandidateSize; I++) {
auto &Candidate = Candidates[I];
auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: "
<< Candidate.Count << ", VTableCounts:");
// Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
<< ", " << Count << "}");
LLVM_DEBUG(dbgs() << "\n");
uint64_t CandidateVTableCount = 0;
for (auto &[GUID, Count] : VTableGUIDAndCounts)
CandidateVTableCount += Count;
if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
LLVM_DEBUG(
dbgs() << " function count " << Candidate.Count
<< " and its vtable sum count " << CandidateVTableCount
<< " have discrepancies. Bail out vtable comparison.\n");
return false;
}
RemainingVTableCount -= Candidate.Count;
// 'MaxNumVTable' limits the number of vtables to make vtable comparison
// profitable. Comparing multiple vtables for one function candidate will
// insert additional instructions on the hot path, and allowing more than
// one vtable for non last candidates may or may not elongate the dependency
// chain for the subsequent candidates. Set its value to 1 for non-last
// candidate and allow option to override it for the last candidate.
int MaxNumVTable = 1;
if (I == CandidateSize - 1)
MaxNumVTable = ICPMaxNumVTableLastCandidate;
if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got "
<< Candidate.AddressPoints.size()
<< " vtables. Bail out for vtable comparison.\n");
return false;
}
}
// If the indirect fallback is not cold, don't compare vtables.
if (PSI && PSI->hasProfileSummary() &&
!PSI->isColdCount(RemainingVTableCount)) {
LLVM_DEBUG(dbgs() << " Indirect fallback basic block is not cold. Bail "
"out for vtable comparison.\n");
return false;
}
return true;
}
// For virtual calls in the module, collect per-callsite information which will
// be used to associate an ICP candidate with a vtable and a specific function
// in the vtable. With type intrinsics (llvm.type.test), we can find virtual
// calls in a compile-time efficient manner (by iterating its users) and more
// importantly use the compatible type later to figure out the function byte
// offset relative to the start of vtables.
static void
computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
// Right now only llvm.type.test is used to find out virtual call sites.
// With ThinLTO and whole-program-devirtualization, llvm.type.test and
// llvm.public.type.test are emitted, and llvm.public.type.test is either
// refined to llvm.type.test or dropped before indirect-call-promotion pass.
//
// FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
// Find out virtual calls by looking at users of llvm.type.checked.load in
// that case.
Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
if (!TypeTestFunc || TypeTestFunc->use_empty())
return;
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
return FAM.getResult<DominatorTreeAnalysis>(F);
};
// Iterate all type.test calls to find all indirect calls.
for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
auto *CI = dyn_cast<CallInst>(U.getUser());
if (!CI)
continue;
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
if (!TypeMDVal)
continue;
auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
if (!CompatibleTypeId)
continue;
// Find out all devirtualizable call sites given a llvm.type.test
// intrinsic call.
SmallVector<DevirtCallSite, 1> DevirtCalls;
SmallVector<CallInst *, 1> Assumes;
auto &DT = LookupDomTree(*CI->getFunction());
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
for (auto &DevirtCall : DevirtCalls) {
CallBase &CB = DevirtCall.CB;
// Given an indirect call, try find the instruction which loads a
// pointer to virtual table.
Instruction *VTablePtr =
PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
if (!VTablePtr)
continue;
VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
CompatibleTypeId->getString()};
}
}
}
// A wrapper function that does the actual work.
static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
bool SamplePGO, ModuleAnalysisManager &MAM) {
if (DisableICP)
return false;
InstrProfSymtab Symtab;
if (Error E = Symtab.create(M, InLTO)) {
std::string SymtabFailure = toString(std::move(E));
M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
return false;
}
bool Changed = false;
VirtualCallSiteTypeInfoMap VirtualCSInfo;
if (EnableVTableProfileUse)
computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
// VTableAddressPointOffsetVal stores the vtable address points. The vtable
// address point of a given <vtable, address point offset> is static (doesn't
// change after being computed once).
// IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
// entry the first time a <vtable, offset> pair is seen, as
// promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
// repeatedly on each function.
VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
for (auto &F : M) {
if (F.isDeclaration() || F.hasOptNone())
continue;
auto &FAM =
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO,
VirtualCSInfo,
VTableAddressPointOffsetVal, ORE);
bool FuncChanged = CallPromoter.processFunction(PSI);
if (ICPDUMPAFTER && FuncChanged) {
LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
Changed |= FuncChanged;
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
break;
}
}
return Changed;
}
PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
ModuleAnalysisManager &MAM) {
ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
SamplePGO | ICPSamplePGOMode, MAM))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
|