1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
|
//===-- NumericalStabilitySanitizer.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the instrumentation pass for the numerical sanitizer.
// Conceptually the pass injects shadow computations using higher precision
// types and inserts consistency checks. For details see the paper
// https://arxiv.org/abs/2102.12782.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/EscapeEnumerator.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "nsan"
STATISTIC(NumInstrumentedFTLoads,
"Number of instrumented floating-point loads");
STATISTIC(NumInstrumentedFTCalls,
"Number of instrumented floating-point calls");
STATISTIC(NumInstrumentedFTRets,
"Number of instrumented floating-point returns");
STATISTIC(NumInstrumentedFTStores,
"Number of instrumented floating-point stores");
STATISTIC(NumInstrumentedNonFTStores,
"Number of instrumented non floating-point stores");
STATISTIC(
NumInstrumentedNonFTMemcpyStores,
"Number of instrumented non floating-point stores with memcpy semantics");
STATISTIC(NumInstrumentedFCmp, "Number of instrumented fcmps");
// Using smaller shadow types types can help improve speed. For example, `dlq`
// is 3x slower to 5x faster in opt mode and 2-6x faster in dbg mode compared to
// `dqq`.
static cl::opt<std::string> ClShadowMapping(
"nsan-shadow-type-mapping", cl::init("dqq"),
cl::desc("One shadow type id for each of `float`, `double`, `long double`. "
"`d`,`l`,`q`,`e` mean double, x86_fp80, fp128 (quad) and "
"ppc_fp128 (extended double) respectively. The default is to "
"shadow `float` as `double`, and `double` and `x86_fp80` as "
"`fp128`"),
cl::Hidden);
static cl::opt<bool>
ClInstrumentFCmp("nsan-instrument-fcmp", cl::init(true),
cl::desc("Instrument floating-point comparisons"),
cl::Hidden);
static cl::opt<std::string> ClCheckFunctionsFilter(
"check-functions-filter",
cl::desc("Only emit checks for arguments of functions "
"whose names match the given regular expression"),
cl::value_desc("regex"));
static cl::opt<bool> ClTruncateFCmpEq(
"nsan-truncate-fcmp-eq", cl::init(true),
cl::desc(
"This flag controls the behaviour of fcmp equality comparisons."
"For equality comparisons such as `x == 0.0f`, we can perform the "
"shadow check in the shadow (`x_shadow == 0.0) == (x == 0.0f)`) or app "
" domain (`(trunc(x_shadow) == 0.0f) == (x == 0.0f)`). This helps "
"catch the case when `x_shadow` is accurate enough (and therefore "
"close enough to zero) so that `trunc(x_shadow)` is zero even though "
"both `x` and `x_shadow` are not"),
cl::Hidden);
// When there is external, uninstrumented code writing to memory, the shadow
// memory can get out of sync with the application memory. Enabling this flag
// emits consistency checks for loads to catch this situation.
// When everything is instrumented, this is not strictly necessary because any
// load should have a corresponding store, but can help debug cases when the
// framework did a bad job at tracking shadow memory modifications by failing on
// load rather than store.
// TODO: provide a way to resume computations from the FT value when the load
// is inconsistent. This ensures that further computations are not polluted.
static cl::opt<bool> ClCheckLoads("nsan-check-loads",
cl::desc("Check floating-point load"),
cl::Hidden);
static cl::opt<bool> ClCheckStores("nsan-check-stores", cl::init(true),
cl::desc("Check floating-point stores"),
cl::Hidden);
static cl::opt<bool> ClCheckRet("nsan-check-ret", cl::init(true),
cl::desc("Check floating-point return values"),
cl::Hidden);
// LLVM may store constant floats as bitcasted ints.
// It's not really necessary to shadow such stores,
// if the shadow value is unknown the framework will re-extend it on load
// anyway. Moreover, because of size collisions (e.g. bf16 vs f16) it is
// impossible to determine the floating-point type based on the size.
// However, for debugging purposes it can be useful to model such stores.
static cl::opt<bool> ClPropagateNonFTConstStoresAsFT(
"nsan-propagate-non-ft-const-stores-as-ft",
cl::desc(
"Propagate non floating-point const stores as floating point values."
"For debugging purposes only"),
cl::Hidden);
constexpr StringLiteral kNsanModuleCtorName("nsan.module_ctor");
constexpr StringLiteral kNsanInitName("__nsan_init");
// The following values must be kept in sync with the runtime.
constexpr int kShadowScale = 2;
constexpr int kMaxVectorWidth = 8;
constexpr int kMaxNumArgs = 128;
constexpr int kMaxShadowTypeSizeBytes = 16; // fp128
namespace {
// Defines the characteristics (type id, type, and floating-point semantics)
// attached for all possible shadow types.
class ShadowTypeConfig {
public:
static std::unique_ptr<ShadowTypeConfig> fromNsanTypeId(char TypeId);
// The LLVM Type corresponding to the shadow type.
virtual Type *getType(LLVMContext &Context) const = 0;
// The nsan type id of the shadow type (`d`, `l`, `q`, ...).
virtual char getNsanTypeId() const = 0;
virtual ~ShadowTypeConfig() = default;
};
template <char NsanTypeId>
class ShadowTypeConfigImpl : public ShadowTypeConfig {
public:
char getNsanTypeId() const override { return NsanTypeId; }
static constexpr const char kNsanTypeId = NsanTypeId;
};
// `double` (`d`) shadow type.
class F64ShadowConfig : public ShadowTypeConfigImpl<'d'> {
Type *getType(LLVMContext &Context) const override {
return Type::getDoubleTy(Context);
}
};
// `x86_fp80` (`l`) shadow type: X86 long double.
class F80ShadowConfig : public ShadowTypeConfigImpl<'l'> {
Type *getType(LLVMContext &Context) const override {
return Type::getX86_FP80Ty(Context);
}
};
// `fp128` (`q`) shadow type.
class F128ShadowConfig : public ShadowTypeConfigImpl<'q'> {
Type *getType(LLVMContext &Context) const override {
return Type::getFP128Ty(Context);
}
};
// `ppc_fp128` (`e`) shadow type: IBM extended double with 106 bits of mantissa.
class PPC128ShadowConfig : public ShadowTypeConfigImpl<'e'> {
Type *getType(LLVMContext &Context) const override {
return Type::getPPC_FP128Ty(Context);
}
};
// Creates a ShadowTypeConfig given its type id.
std::unique_ptr<ShadowTypeConfig>
ShadowTypeConfig::fromNsanTypeId(const char TypeId) {
switch (TypeId) {
case F64ShadowConfig::kNsanTypeId:
return std::make_unique<F64ShadowConfig>();
case F80ShadowConfig::kNsanTypeId:
return std::make_unique<F80ShadowConfig>();
case F128ShadowConfig::kNsanTypeId:
return std::make_unique<F128ShadowConfig>();
case PPC128ShadowConfig::kNsanTypeId:
return std::make_unique<PPC128ShadowConfig>();
}
report_fatal_error("nsan: invalid shadow type id '" + Twine(TypeId) + "'");
}
// An enum corresponding to shadow value types. Used as indices in arrays, so
// not an `enum class`.
enum FTValueType { kFloat, kDouble, kLongDouble, kNumValueTypes };
// If `FT` corresponds to a primitive FTValueType, return it.
static std::optional<FTValueType> ftValueTypeFromType(Type *FT) {
if (FT->isFloatTy())
return kFloat;
if (FT->isDoubleTy())
return kDouble;
if (FT->isX86_FP80Ty())
return kLongDouble;
return {};
}
// Returns the LLVM type for an FTValueType.
static Type *typeFromFTValueType(FTValueType VT, LLVMContext &Context) {
switch (VT) {
case kFloat:
return Type::getFloatTy(Context);
case kDouble:
return Type::getDoubleTy(Context);
case kLongDouble:
return Type::getX86_FP80Ty(Context);
case kNumValueTypes:
return nullptr;
}
llvm_unreachable("Unhandled FTValueType enum");
}
// Returns the type name for an FTValueType.
static const char *typeNameFromFTValueType(FTValueType VT) {
switch (VT) {
case kFloat:
return "float";
case kDouble:
return "double";
case kLongDouble:
return "longdouble";
case kNumValueTypes:
return nullptr;
}
llvm_unreachable("Unhandled FTValueType enum");
}
// A specific mapping configuration of application type to shadow type for nsan
// (see -nsan-shadow-mapping flag).
class MappingConfig {
public:
explicit MappingConfig(LLVMContext &C) : Context(C) {
if (ClShadowMapping.size() != 3)
report_fatal_error("Invalid nsan mapping: " + Twine(ClShadowMapping));
unsigned ShadowTypeSizeBits[kNumValueTypes];
for (int VT = 0; VT < kNumValueTypes; ++VT) {
auto Config = ShadowTypeConfig::fromNsanTypeId(ClShadowMapping[VT]);
if (!Config)
report_fatal_error("Failed to get ShadowTypeConfig for " +
Twine(ClShadowMapping[VT]));
const unsigned AppTypeSize =
typeFromFTValueType(static_cast<FTValueType>(VT), Context)
->getScalarSizeInBits();
const unsigned ShadowTypeSize =
Config->getType(Context)->getScalarSizeInBits();
// Check that the shadow type size is at most kShadowScale times the
// application type size, so that shadow memory compoutations are valid.
if (ShadowTypeSize > kShadowScale * AppTypeSize)
report_fatal_error("Invalid nsan mapping f" + Twine(AppTypeSize) +
"->f" + Twine(ShadowTypeSize) +
": The shadow type size should be at most " +
Twine(kShadowScale) +
" times the application type size");
ShadowTypeSizeBits[VT] = ShadowTypeSize;
Configs[VT] = std::move(Config);
}
// Check that the mapping is monotonous. This is required because if one
// does an fpextend of `float->long double` in application code, nsan is
// going to do an fpextend of `shadow(float) -> shadow(long double)` in
// shadow code. This will fail in `qql` mode, since nsan would be
// fpextending `f128->long`, which is invalid.
// TODO: Relax this.
if (ShadowTypeSizeBits[kFloat] > ShadowTypeSizeBits[kDouble] ||
ShadowTypeSizeBits[kDouble] > ShadowTypeSizeBits[kLongDouble])
report_fatal_error("Invalid nsan mapping: { float->f" +
Twine(ShadowTypeSizeBits[kFloat]) + "; double->f" +
Twine(ShadowTypeSizeBits[kDouble]) +
"; long double->f" +
Twine(ShadowTypeSizeBits[kLongDouble]) + " }");
}
const ShadowTypeConfig &byValueType(FTValueType VT) const {
assert(VT < FTValueType::kNumValueTypes && "invalid value type");
return *Configs[VT];
}
// Returns the extended shadow type for a given application type.
Type *getExtendedFPType(Type *FT) const {
if (const auto VT = ftValueTypeFromType(FT))
return Configs[*VT]->getType(Context);
if (FT->isVectorTy()) {
auto *VecTy = cast<VectorType>(FT);
// TODO: add support for scalable vector types.
if (VecTy->isScalableTy())
return nullptr;
Type *ExtendedScalar = getExtendedFPType(VecTy->getElementType());
return ExtendedScalar
? VectorType::get(ExtendedScalar, VecTy->getElementCount())
: nullptr;
}
return nullptr;
}
private:
LLVMContext &Context;
std::unique_ptr<ShadowTypeConfig> Configs[FTValueType::kNumValueTypes];
};
// The memory extents of a type specifies how many elements of a given
// FTValueType needs to be stored when storing this type.
struct MemoryExtents {
FTValueType ValueType;
uint64_t NumElts;
};
static MemoryExtents getMemoryExtentsOrDie(Type *FT) {
if (const auto VT = ftValueTypeFromType(FT))
return {*VT, 1};
if (auto *VecTy = dyn_cast<VectorType>(FT)) {
const auto ScalarExtents = getMemoryExtentsOrDie(VecTy->getElementType());
return {ScalarExtents.ValueType,
ScalarExtents.NumElts * VecTy->getElementCount().getFixedValue()};
}
llvm_unreachable("invalid value type");
}
// The location of a check. Passed as parameters to runtime checking functions.
class CheckLoc {
public:
// Creates a location that references an application memory location.
static CheckLoc makeStore(Value *Address) {
CheckLoc Result(kStore);
Result.Address = Address;
return Result;
}
static CheckLoc makeLoad(Value *Address) {
CheckLoc Result(kLoad);
Result.Address = Address;
return Result;
}
// Creates a location that references an argument, given by id.
static CheckLoc makeArg(int ArgId) {
CheckLoc Result(kArg);
Result.ArgId = ArgId;
return Result;
}
// Creates a location that references the return value of a function.
static CheckLoc makeRet() { return CheckLoc(kRet); }
// Creates a location that references a vector insert.
static CheckLoc makeInsert() { return CheckLoc(kInsert); }
// Returns the CheckType of location this refers to, as an integer-typed LLVM
// IR value.
Value *getType(LLVMContext &C) const {
return ConstantInt::get(Type::getInt32Ty(C), static_cast<int>(CheckTy));
}
// Returns a CheckType-specific value representing details of the location
// (e.g. application address for loads or stores), as an `IntptrTy`-typed LLVM
// IR value.
Value *getValue(Type *IntptrTy, IRBuilder<> &Builder) const {
switch (CheckTy) {
case kUnknown:
llvm_unreachable("unknown type");
case kRet:
case kInsert:
return ConstantInt::get(IntptrTy, 0);
case kArg:
return ConstantInt::get(IntptrTy, ArgId);
case kLoad:
case kStore:
return Builder.CreatePtrToInt(Address, IntptrTy);
}
llvm_unreachable("Unhandled CheckType enum");
}
private:
// Must be kept in sync with the runtime,
// see compiler-rt/lib/nsan/nsan_stats.h
enum CheckType {
kUnknown = 0,
kRet,
kArg,
kLoad,
kStore,
kInsert,
};
explicit CheckLoc(CheckType CheckTy) : CheckTy(CheckTy) {}
Value *Address = nullptr;
const CheckType CheckTy;
int ArgId = -1;
};
// A map of LLVM IR values to shadow LLVM IR values.
class ValueToShadowMap {
public:
explicit ValueToShadowMap(const MappingConfig &Config) : Config(Config) {}
ValueToShadowMap(const ValueToShadowMap &) = delete;
ValueToShadowMap &operator=(const ValueToShadowMap &) = delete;
// Sets the shadow value for a value. Asserts that the value does not already
// have a value.
void setShadow(Value &V, Value &Shadow) {
[[maybe_unused]] const bool Inserted = Map.try_emplace(&V, &Shadow).second;
LLVM_DEBUG({
if (!Inserted) {
if (auto *I = dyn_cast<Instruction>(&V))
errs() << I->getFunction()->getName() << ": ";
errs() << "duplicate shadow (" << &V << "): ";
V.dump();
}
});
assert(Inserted && "duplicate shadow");
}
// Returns true if the value already has a shadow (including if the value is a
// constant). If true, calling getShadow() is valid.
bool hasShadow(Value *V) const {
return isa<Constant>(V) || (Map.find(V) != Map.end());
}
// Returns the shadow value for a given value. Asserts that the value has
// a shadow value. Lazily creates shadows for constant values.
Value *getShadow(Value *V) const {
if (Constant *C = dyn_cast<Constant>(V))
return getShadowConstant(C);
return Map.find(V)->second;
}
bool empty() const { return Map.empty(); }
private:
// Extends a constant application value to its shadow counterpart.
APFloat extendConstantFP(APFloat CV, const fltSemantics &To) const {
bool LosesInfo = false;
CV.convert(To, APFloatBase::rmTowardZero, &LosesInfo);
return CV;
}
// Returns the shadow constant for the given application constant.
Constant *getShadowConstant(Constant *C) const {
if (UndefValue *U = dyn_cast<UndefValue>(C)) {
return UndefValue::get(Config.getExtendedFPType(U->getType()));
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
// Floating-point constants.
Type *Ty = Config.getExtendedFPType(CFP->getType());
return ConstantFP::get(
Ty, extendConstantFP(CFP->getValueAPF(), Ty->getFltSemantics()));
}
// Vector, array, or aggregate constants.
if (C->getType()->isVectorTy()) {
SmallVector<Constant *, 8> Elements;
for (int I = 0, E = cast<VectorType>(C->getType())
->getElementCount()
.getFixedValue();
I < E; ++I)
Elements.push_back(getShadowConstant(C->getAggregateElement(I)));
return ConstantVector::get(Elements);
}
llvm_unreachable("unimplemented");
}
const MappingConfig &Config;
DenseMap<Value *, Value *> Map;
};
/// Instantiating NumericalStabilitySanitizer inserts the nsan runtime library
/// API function declarations into the module if they don't exist already.
/// Instantiating ensures the __nsan_init function is in the list of global
/// constructors for the module.
class NumericalStabilitySanitizer {
public:
NumericalStabilitySanitizer(Module &M);
bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
private:
bool instrumentMemIntrinsic(MemIntrinsic *MI);
void maybeAddSuffixForNsanInterface(CallBase *CI);
bool addrPointsToConstantData(Value *Addr);
void maybeCreateShadowValue(Instruction &Root, const TargetLibraryInfo &TLI,
ValueToShadowMap &Map);
Value *createShadowValueWithOperandsAvailable(Instruction &Inst,
const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map);
PHINode *maybeCreateShadowPhi(PHINode &Phi, const TargetLibraryInfo &TLI);
void createShadowArguments(Function &F, const TargetLibraryInfo &TLI,
ValueToShadowMap &Map);
void populateShadowStack(CallBase &CI, const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map);
void propagateShadowValues(Instruction &Inst, const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map);
Value *emitCheck(Value *V, Value *ShadowV, IRBuilder<> &Builder,
CheckLoc Loc);
Value *emitCheckInternal(Value *V, Value *ShadowV, IRBuilder<> &Builder,
CheckLoc Loc);
void emitFCmpCheck(FCmpInst &FCmp, const ValueToShadowMap &Map);
// Value creation handlers.
Value *handleLoad(LoadInst &Load, Type *VT, Type *ExtendedVT);
Value *handleCallBase(CallBase &Call, Type *VT, Type *ExtendedVT,
const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map, IRBuilder<> &Builder);
Value *maybeHandleKnownCallBase(CallBase &Call, Type *VT, Type *ExtendedVT,
const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map,
IRBuilder<> &Builder);
Value *handleTrunc(const FPTruncInst &Trunc, Type *VT, Type *ExtendedVT,
const ValueToShadowMap &Map, IRBuilder<> &Builder);
Value *handleExt(const FPExtInst &Ext, Type *VT, Type *ExtendedVT,
const ValueToShadowMap &Map, IRBuilder<> &Builder);
// Value propagation handlers.
void propagateFTStore(StoreInst &Store, Type *VT, Type *ExtendedVT,
const ValueToShadowMap &Map);
void propagateNonFTStore(StoreInst &Store, Type *VT,
const ValueToShadowMap &Map);
const DataLayout &DL;
LLVMContext &Context;
MappingConfig Config;
IntegerType *IntptrTy = nullptr;
FunctionCallee NsanGetShadowPtrForStore[FTValueType::kNumValueTypes] = {};
FunctionCallee NsanGetShadowPtrForLoad[FTValueType::kNumValueTypes] = {};
FunctionCallee NsanCheckValue[FTValueType::kNumValueTypes] = {};
FunctionCallee NsanFCmpFail[FTValueType::kNumValueTypes] = {};
FunctionCallee NsanCopyValues;
FunctionCallee NsanSetValueUnknown;
FunctionCallee NsanGetRawShadowTypePtr;
FunctionCallee NsanGetRawShadowPtr;
GlobalValue *NsanShadowRetTag = nullptr;
Type *NsanShadowRetType = nullptr;
GlobalValue *NsanShadowRetPtr = nullptr;
GlobalValue *NsanShadowArgsTag = nullptr;
Type *NsanShadowArgsType = nullptr;
GlobalValue *NsanShadowArgsPtr = nullptr;
std::optional<Regex> CheckFunctionsFilter;
};
} // end anonymous namespace
PreservedAnalyses
NumericalStabilitySanitizerPass::run(Module &M, ModuleAnalysisManager &MAM) {
getOrCreateSanitizerCtorAndInitFunctions(
M, kNsanModuleCtorName, kNsanInitName, /*InitArgTypes=*/{},
/*InitArgs=*/{},
// This callback is invoked when the functions are created the first
// time. Hook them into the global ctors list in that case:
[&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
NumericalStabilitySanitizer Nsan(M);
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
for (Function &F : M)
Nsan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F));
return PreservedAnalyses::none();
}
static GlobalValue *createThreadLocalGV(const char *Name, Module &M, Type *Ty) {
return dyn_cast<GlobalValue>(M.getOrInsertGlobal(Name, Ty, [&M, Ty, Name] {
return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
nullptr, Name, nullptr,
GlobalVariable::InitialExecTLSModel);
}));
}
NumericalStabilitySanitizer::NumericalStabilitySanitizer(Module &M)
: DL(M.getDataLayout()), Context(M.getContext()), Config(Context) {
IntptrTy = DL.getIntPtrType(Context);
Type *PtrTy = PointerType::getUnqual(Context);
Type *Int32Ty = Type::getInt32Ty(Context);
Type *Int1Ty = Type::getInt1Ty(Context);
Type *VoidTy = Type::getVoidTy(Context);
AttributeList Attr;
Attr = Attr.addFnAttribute(Context, Attribute::NoUnwind);
// Initialize the runtime values (functions and global variables).
for (int I = 0; I < kNumValueTypes; ++I) {
const FTValueType VT = static_cast<FTValueType>(I);
const char *VTName = typeNameFromFTValueType(VT);
Type *VTTy = typeFromFTValueType(VT, Context);
// Load/store.
const std::string GetterPrefix =
std::string("__nsan_get_shadow_ptr_for_") + VTName;
NsanGetShadowPtrForStore[VT] = M.getOrInsertFunction(
GetterPrefix + "_store", Attr, PtrTy, PtrTy, IntptrTy);
NsanGetShadowPtrForLoad[VT] = M.getOrInsertFunction(
GetterPrefix + "_load", Attr, PtrTy, PtrTy, IntptrTy);
// Check.
const auto &ShadowConfig = Config.byValueType(VT);
Type *ShadowTy = ShadowConfig.getType(Context);
NsanCheckValue[VT] =
M.getOrInsertFunction(std::string("__nsan_internal_check_") + VTName +
"_" + ShadowConfig.getNsanTypeId(),
Attr, Int32Ty, VTTy, ShadowTy, Int32Ty, IntptrTy);
NsanFCmpFail[VT] = M.getOrInsertFunction(
std::string("__nsan_fcmp_fail_") + VTName + "_" +
ShadowConfig.getNsanTypeId(),
Attr, VoidTy, VTTy, VTTy, ShadowTy, ShadowTy, Int32Ty, Int1Ty, Int1Ty);
}
NsanCopyValues = M.getOrInsertFunction("__nsan_copy_values", Attr, VoidTy,
PtrTy, PtrTy, IntptrTy);
NsanSetValueUnknown = M.getOrInsertFunction("__nsan_set_value_unknown", Attr,
VoidTy, PtrTy, IntptrTy);
// TODO: Add attributes nofree, nosync, readnone, readonly,
NsanGetRawShadowTypePtr = M.getOrInsertFunction(
"__nsan_internal_get_raw_shadow_type_ptr", Attr, PtrTy, PtrTy);
NsanGetRawShadowPtr = M.getOrInsertFunction(
"__nsan_internal_get_raw_shadow_ptr", Attr, PtrTy, PtrTy);
NsanShadowRetTag = createThreadLocalGV("__nsan_shadow_ret_tag", M, IntptrTy);
NsanShadowRetType = ArrayType::get(Type::getInt8Ty(Context),
kMaxVectorWidth * kMaxShadowTypeSizeBytes);
NsanShadowRetPtr =
createThreadLocalGV("__nsan_shadow_ret_ptr", M, NsanShadowRetType);
NsanShadowArgsTag =
createThreadLocalGV("__nsan_shadow_args_tag", M, IntptrTy);
NsanShadowArgsType =
ArrayType::get(Type::getInt8Ty(Context),
kMaxVectorWidth * kMaxNumArgs * kMaxShadowTypeSizeBytes);
NsanShadowArgsPtr =
createThreadLocalGV("__nsan_shadow_args_ptr", M, NsanShadowArgsType);
if (!ClCheckFunctionsFilter.empty()) {
Regex R = Regex(ClCheckFunctionsFilter);
std::string RegexError;
assert(R.isValid(RegexError));
CheckFunctionsFilter = std::move(R);
}
}
// Returns true if the given LLVM Value points to constant data (typically, a
// global variable reference).
bool NumericalStabilitySanitizer::addrPointsToConstantData(Value *Addr) {
// If this is a GEP, just analyze its pointer operand.
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
Addr = GEP->getPointerOperand();
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr))
return GV->isConstant();
return false;
}
// This instruments the function entry to create shadow arguments.
// Pseudocode:
// if (this_fn_ptr == __nsan_shadow_args_tag) {
// s(arg0) = LOAD<sizeof(arg0)>(__nsan_shadow_args);
// s(arg1) = LOAD<sizeof(arg1)>(__nsan_shadow_args + sizeof(arg0));
// ...
// __nsan_shadow_args_tag = 0;
// } else {
// s(arg0) = fext(arg0);
// s(arg1) = fext(arg1);
// ...
// }
void NumericalStabilitySanitizer::createShadowArguments(
Function &F, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) {
assert(!F.getIntrinsicID() && "found a definition of an intrinsic");
// Do not bother if there are no FP args.
if (all_of(F.args(), [this](const Argument &Arg) {
return Config.getExtendedFPType(Arg.getType()) == nullptr;
}))
return;
IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHI());
// The function has shadow args if the shadow args tag matches the function
// address.
Value *HasShadowArgs = Builder.CreateICmpEQ(
Builder.CreateLoad(IntptrTy, NsanShadowArgsTag, /*isVolatile=*/false),
Builder.CreatePtrToInt(&F, IntptrTy));
unsigned ShadowArgsOffsetBytes = 0;
for (Argument &Arg : F.args()) {
Type *VT = Arg.getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
if (ExtendedVT == nullptr)
continue; // Not an FT value.
Value *L = Builder.CreateAlignedLoad(
ExtendedVT,
Builder.CreateConstGEP2_64(NsanShadowArgsType, NsanShadowArgsPtr, 0,
ShadowArgsOffsetBytes),
Align(1), /*isVolatile=*/false);
Value *Shadow = Builder.CreateSelect(HasShadowArgs, L,
Builder.CreateFPExt(&Arg, ExtendedVT));
Map.setShadow(Arg, *Shadow);
TypeSize SlotSize = DL.getTypeStoreSize(ExtendedVT);
assert(!SlotSize.isScalable() && "unsupported");
ShadowArgsOffsetBytes += SlotSize;
}
Builder.CreateStore(ConstantInt::get(IntptrTy, 0), NsanShadowArgsTag);
}
// Returns true if the instrumentation should emit code to check arguments
// before a function call.
static bool shouldCheckArgs(CallBase &CI, const TargetLibraryInfo &TLI,
const std::optional<Regex> &CheckFunctionsFilter) {
Function *Fn = CI.getCalledFunction();
if (CheckFunctionsFilter) {
// Skip checking args of indirect calls.
if (Fn == nullptr)
return false;
if (CheckFunctionsFilter->match(Fn->getName()))
return true;
return false;
}
if (Fn == nullptr)
return true; // Always check args of indirect calls.
// Never check nsan functions, the user called them for a reason.
if (Fn->getName().starts_with("__nsan_"))
return false;
const auto ID = Fn->getIntrinsicID();
LibFunc LFunc = LibFunc::NumLibFuncs;
// Always check args of unknown functions.
if (ID == Intrinsic::ID() && !TLI.getLibFunc(*Fn, LFunc))
return true;
// Do not check args of an `fabs` call that is used for a comparison.
// This is typically used for `fabs(a-b) < tolerance`, where what matters is
// the result of the comparison, which is already caught be the fcmp checks.
if (ID == Intrinsic::fabs || LFunc == LibFunc_fabsf ||
LFunc == LibFunc_fabs || LFunc == LibFunc_fabsl)
for (const auto &U : CI.users())
if (isa<CmpInst>(U))
return false;
return true; // Default is check.
}
// Populates the shadow call stack (which contains shadow values for every
// floating-point parameter to the function).
void NumericalStabilitySanitizer::populateShadowStack(
CallBase &CI, const TargetLibraryInfo &TLI, const ValueToShadowMap &Map) {
// Do not create a shadow stack for inline asm.
if (CI.isInlineAsm())
return;
// Do not bother if there are no FP args.
if (all_of(CI.operands(), [this](const Value *Arg) {
return Config.getExtendedFPType(Arg->getType()) == nullptr;
}))
return;
IRBuilder<> Builder(&CI);
SmallVector<Value *, 8> ArgShadows;
const bool ShouldCheckArgs = shouldCheckArgs(CI, TLI, CheckFunctionsFilter);
for (auto [ArgIdx, Arg] : enumerate(CI.operands())) {
if (Config.getExtendedFPType(Arg->getType()) == nullptr)
continue; // Not an FT value.
Value *ArgShadow = Map.getShadow(Arg);
ArgShadows.push_back(ShouldCheckArgs ? emitCheck(Arg, ArgShadow, Builder,
CheckLoc::makeArg(ArgIdx))
: ArgShadow);
}
// Do not create shadow stacks for intrinsics/known lib funcs.
if (Function *Fn = CI.getCalledFunction()) {
LibFunc LFunc;
if (Fn->isIntrinsic() || TLI.getLibFunc(*Fn, LFunc))
return;
}
// Set the shadow stack tag.
Builder.CreateStore(CI.getCalledOperand(), NsanShadowArgsTag);
TypeSize ShadowArgsOffsetBytes = TypeSize::getFixed(0);
unsigned ShadowArgId = 0;
for (const Value *Arg : CI.operands()) {
Type *VT = Arg->getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
if (ExtendedVT == nullptr)
continue; // Not an FT value.
Builder.CreateAlignedStore(
ArgShadows[ShadowArgId++],
Builder.CreateConstGEP2_64(NsanShadowArgsType, NsanShadowArgsPtr, 0,
ShadowArgsOffsetBytes),
Align(1), /*isVolatile=*/false);
TypeSize SlotSize = DL.getTypeStoreSize(ExtendedVT);
assert(!SlotSize.isScalable() && "unsupported");
ShadowArgsOffsetBytes += SlotSize;
}
}
// Internal part of emitCheck(). Returns a value that indicates whether
// computation should continue with the shadow or resume by re-fextending the
// value.
enum class ContinuationType { // Keep in sync with runtime.
ContinueWithShadow = 0,
ResumeFromValue = 1,
};
Value *NumericalStabilitySanitizer::emitCheckInternal(Value *V, Value *ShadowV,
IRBuilder<> &Builder,
CheckLoc Loc) {
// Do not emit checks for constant values, this is redundant.
if (isa<Constant>(V))
return ConstantInt::get(
Builder.getInt32Ty(),
static_cast<int>(ContinuationType::ContinueWithShadow));
Type *Ty = V->getType();
if (const auto VT = ftValueTypeFromType(Ty))
return Builder.CreateCall(
NsanCheckValue[*VT],
{V, ShadowV, Loc.getType(Context), Loc.getValue(IntptrTy, Builder)});
if (Ty->isVectorTy()) {
auto *VecTy = cast<VectorType>(Ty);
// We currently skip scalable vector types in MappingConfig,
// thus we should not encounter any such types here.
assert(!VecTy->isScalableTy() &&
"Scalable vector types are not supported yet");
Value *CheckResult = nullptr;
for (int I = 0, E = VecTy->getElementCount().getFixedValue(); I < E; ++I) {
// We resume if any element resumes. Another option would be to create a
// vector shuffle with the array of ContinueWithShadow, but that is too
// complex.
Value *ExtractV = Builder.CreateExtractElement(V, I);
Value *ExtractShadowV = Builder.CreateExtractElement(ShadowV, I);
Value *ComponentCheckResult =
emitCheckInternal(ExtractV, ExtractShadowV, Builder, Loc);
CheckResult = CheckResult
? Builder.CreateOr(CheckResult, ComponentCheckResult)
: ComponentCheckResult;
}
return CheckResult;
}
if (Ty->isArrayTy()) {
Value *CheckResult = nullptr;
for (auto I : seq(Ty->getArrayNumElements())) {
Value *ExtractV = Builder.CreateExtractElement(V, I);
Value *ExtractShadowV = Builder.CreateExtractElement(ShadowV, I);
Value *ComponentCheckResult =
emitCheckInternal(ExtractV, ExtractShadowV, Builder, Loc);
CheckResult = CheckResult
? Builder.CreateOr(CheckResult, ComponentCheckResult)
: ComponentCheckResult;
}
return CheckResult;
}
if (Ty->isStructTy()) {
Value *CheckResult = nullptr;
for (auto I : seq(Ty->getStructNumElements())) {
if (Config.getExtendedFPType(Ty->getStructElementType(I)) == nullptr)
continue; // Only check FT values.
Value *ExtractV = Builder.CreateExtractValue(V, I);
Value *ExtractShadowV = Builder.CreateExtractElement(ShadowV, I);
Value *ComponentCheckResult =
emitCheckInternal(ExtractV, ExtractShadowV, Builder, Loc);
CheckResult = CheckResult
? Builder.CreateOr(CheckResult, ComponentCheckResult)
: ComponentCheckResult;
}
if (!CheckResult)
return ConstantInt::get(
Builder.getInt32Ty(),
static_cast<int>(ContinuationType::ContinueWithShadow));
return CheckResult;
}
llvm_unreachable("not implemented");
}
// Inserts a runtime check of V against its shadow value ShadowV.
// We check values whenever they escape: on return, call, stores, and
// insertvalue.
// Returns the shadow value that should be used to continue the computations,
// depending on the answer from the runtime.
// TODO: Should we check on select ? phi ?
Value *NumericalStabilitySanitizer::emitCheck(Value *V, Value *ShadowV,
IRBuilder<> &Builder,
CheckLoc Loc) {
// Do not emit checks for constant values, this is redundant.
if (isa<Constant>(V))
return ShadowV;
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
Function *F = Inst->getFunction();
if (CheckFunctionsFilter && !CheckFunctionsFilter->match(F->getName())) {
return ShadowV;
}
}
Value *CheckResult = emitCheckInternal(V, ShadowV, Builder, Loc);
Value *ICmpEQ = Builder.CreateICmpEQ(
CheckResult,
ConstantInt::get(Builder.getInt32Ty(),
static_cast<int>(ContinuationType::ResumeFromValue)));
return Builder.CreateSelect(
ICmpEQ, Builder.CreateFPExt(V, Config.getExtendedFPType(V->getType())),
ShadowV);
}
// Inserts a check that fcmp on shadow values are consistent with that on base
// values.
void NumericalStabilitySanitizer::emitFCmpCheck(FCmpInst &FCmp,
const ValueToShadowMap &Map) {
if (!ClInstrumentFCmp)
return;
Function *F = FCmp.getFunction();
if (CheckFunctionsFilter && !CheckFunctionsFilter->match(F->getName()))
return;
Value *LHS = FCmp.getOperand(0);
if (Config.getExtendedFPType(LHS->getType()) == nullptr)
return;
Value *RHS = FCmp.getOperand(1);
// Split the basic block. On mismatch, we'll jump to the new basic block with
// a call to the runtime for error reporting.
BasicBlock *FCmpBB = FCmp.getParent();
BasicBlock *NextBB = FCmpBB->splitBasicBlock(FCmp.getNextNode());
// Remove the newly created terminator unconditional branch.
FCmpBB->back().eraseFromParent();
BasicBlock *FailBB =
BasicBlock::Create(Context, "", FCmpBB->getParent(), NextBB);
// Create the shadow fcmp and comparison between the fcmps.
IRBuilder<> FCmpBuilder(FCmpBB);
FCmpBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc());
Value *ShadowLHS = Map.getShadow(LHS);
Value *ShadowRHS = Map.getShadow(RHS);
// See comment on ClTruncateFCmpEq.
if (FCmp.isEquality() && ClTruncateFCmpEq) {
Type *Ty = ShadowLHS->getType();
ShadowLHS = FCmpBuilder.CreateFPExt(
FCmpBuilder.CreateFPTrunc(ShadowLHS, LHS->getType()), Ty);
ShadowRHS = FCmpBuilder.CreateFPExt(
FCmpBuilder.CreateFPTrunc(ShadowRHS, RHS->getType()), Ty);
}
Value *ShadowFCmp =
FCmpBuilder.CreateFCmp(FCmp.getPredicate(), ShadowLHS, ShadowRHS);
Value *OriginalAndShadowFcmpMatch =
FCmpBuilder.CreateICmpEQ(&FCmp, ShadowFCmp);
if (OriginalAndShadowFcmpMatch->getType()->isVectorTy()) {
// If we have a vector type, `OriginalAndShadowFcmpMatch` is a vector of i1,
// where an element is true if the corresponding elements in original and
// shadow are the same. We want all elements to be 1.
OriginalAndShadowFcmpMatch =
FCmpBuilder.CreateAndReduce(OriginalAndShadowFcmpMatch);
}
// Use MDBuilder(*C).createLikelyBranchWeights() because "match" is the common
// case.
FCmpBuilder.CreateCondBr(OriginalAndShadowFcmpMatch, NextBB, FailBB,
MDBuilder(Context).createLikelyBranchWeights());
// Fill in FailBB.
IRBuilder<> FailBuilder(FailBB);
FailBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc());
const auto EmitFailCall = [this, &FCmp, &FCmpBuilder,
&FailBuilder](Value *L, Value *R, Value *ShadowL,
Value *ShadowR, Value *Result,
Value *ShadowResult) {
Type *FT = L->getType();
FunctionCallee *Callee = nullptr;
if (FT->isFloatTy()) {
Callee = &(NsanFCmpFail[kFloat]);
} else if (FT->isDoubleTy()) {
Callee = &(NsanFCmpFail[kDouble]);
} else if (FT->isX86_FP80Ty()) {
// TODO: make NsanFCmpFailLongDouble work.
Callee = &(NsanFCmpFail[kDouble]);
L = FailBuilder.CreateFPTrunc(L, Type::getDoubleTy(Context));
R = FailBuilder.CreateFPTrunc(L, Type::getDoubleTy(Context));
} else {
llvm_unreachable("not implemented");
}
FailBuilder.CreateCall(*Callee, {L, R, ShadowL, ShadowR,
ConstantInt::get(FCmpBuilder.getInt32Ty(),
FCmp.getPredicate()),
Result, ShadowResult});
};
if (LHS->getType()->isVectorTy()) {
for (int I = 0, E = cast<VectorType>(LHS->getType())
->getElementCount()
.getFixedValue();
I < E; ++I) {
Value *ExtractLHS = FailBuilder.CreateExtractElement(LHS, I);
Value *ExtractRHS = FailBuilder.CreateExtractElement(RHS, I);
Value *ExtractShaodwLHS = FailBuilder.CreateExtractElement(ShadowLHS, I);
Value *ExtractShaodwRHS = FailBuilder.CreateExtractElement(ShadowRHS, I);
Value *ExtractFCmp = FailBuilder.CreateExtractElement(&FCmp, I);
Value *ExtractShadowFCmp =
FailBuilder.CreateExtractElement(ShadowFCmp, I);
EmitFailCall(ExtractLHS, ExtractRHS, ExtractShaodwLHS, ExtractShaodwRHS,
ExtractFCmp, ExtractShadowFCmp);
}
} else {
EmitFailCall(LHS, RHS, ShadowLHS, ShadowRHS, &FCmp, ShadowFCmp);
}
FailBuilder.CreateBr(NextBB);
++NumInstrumentedFCmp;
}
// Creates a shadow phi value for any phi that defines a value of FT type.
PHINode *NumericalStabilitySanitizer::maybeCreateShadowPhi(
PHINode &Phi, const TargetLibraryInfo &TLI) {
Type *VT = Phi.getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
if (ExtendedVT == nullptr)
return nullptr; // Not an FT value.
// The phi operands are shadow values and are not available when the phi is
// created. They will be populated in a final phase, once all shadow values
// have been created.
PHINode *Shadow = PHINode::Create(ExtendedVT, Phi.getNumIncomingValues());
Shadow->insertAfter(&Phi);
return Shadow;
}
Value *NumericalStabilitySanitizer::handleLoad(LoadInst &Load, Type *VT,
Type *ExtendedVT) {
IRBuilder<> Builder(Load.getNextNode());
Builder.SetCurrentDebugLocation(Load.getDebugLoc());
if (addrPointsToConstantData(Load.getPointerOperand())) {
// No need to look into the shadow memory, the value is a constant. Just
// convert from FT to 2FT.
return Builder.CreateFPExt(&Load, ExtendedVT);
}
// if (%shadowptr == &)
// %shadow = fpext %v
// else
// %shadow = load (ptrcast %shadow_ptr))
// Considered options here:
// - Have `NsanGetShadowPtrForLoad` return a fixed address
// &__nsan_unknown_value_shadow_address that is valid to load from, and
// use a select. This has the advantage that the generated IR is simpler.
// - Have `NsanGetShadowPtrForLoad` return nullptr. Because `select` does
// not short-circuit, dereferencing the returned pointer is no longer an
// option, have to split and create a separate basic block. This has the
// advantage of being easier to debug because it crashes if we ever mess
// up.
const auto Extents = getMemoryExtentsOrDie(VT);
Value *ShadowPtr = Builder.CreateCall(
NsanGetShadowPtrForLoad[Extents.ValueType],
{Load.getPointerOperand(), ConstantInt::get(IntptrTy, Extents.NumElts)});
++NumInstrumentedFTLoads;
// Split the basic block.
BasicBlock *LoadBB = Load.getParent();
BasicBlock *NextBB = LoadBB->splitBasicBlock(Builder.GetInsertPoint());
// Create the two options for creating the shadow value.
BasicBlock *ShadowLoadBB =
BasicBlock::Create(Context, "", LoadBB->getParent(), NextBB);
BasicBlock *FExtBB =
BasicBlock::Create(Context, "", LoadBB->getParent(), NextBB);
// Replace the newly created terminator unconditional branch by a conditional
// branch to one of the options.
{
LoadBB->back().eraseFromParent();
IRBuilder<> LoadBBBuilder(LoadBB); // The old builder has been invalidated.
LoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
LoadBBBuilder.CreateCondBr(LoadBBBuilder.CreateIsNull(ShadowPtr), FExtBB,
ShadowLoadBB);
}
// Fill in ShadowLoadBB.
IRBuilder<> ShadowLoadBBBuilder(ShadowLoadBB);
ShadowLoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
Value *ShadowLoad = ShadowLoadBBBuilder.CreateAlignedLoad(
ExtendedVT, ShadowPtr, Align(1), Load.isVolatile());
if (ClCheckLoads) {
ShadowLoad = emitCheck(&Load, ShadowLoad, ShadowLoadBBBuilder,
CheckLoc::makeLoad(Load.getPointerOperand()));
}
ShadowLoadBBBuilder.CreateBr(NextBB);
// Fill in FExtBB.
IRBuilder<> FExtBBBuilder(FExtBB);
FExtBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
Value *FExt = FExtBBBuilder.CreateFPExt(&Load, ExtendedVT);
FExtBBBuilder.CreateBr(NextBB);
// The shadow value come from any of the options.
IRBuilder<> NextBBBuilder(&*NextBB->begin());
NextBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
PHINode *ShadowPhi = NextBBBuilder.CreatePHI(ExtendedVT, 2);
ShadowPhi->addIncoming(ShadowLoad, ShadowLoadBB);
ShadowPhi->addIncoming(FExt, FExtBB);
return ShadowPhi;
}
Value *NumericalStabilitySanitizer::handleTrunc(const FPTruncInst &Trunc,
Type *VT, Type *ExtendedVT,
const ValueToShadowMap &Map,
IRBuilder<> &Builder) {
Value *OrigSource = Trunc.getOperand(0);
Type *OrigSourceTy = OrigSource->getType();
Type *ExtendedSourceTy = Config.getExtendedFPType(OrigSourceTy);
// When truncating:
// - (A) If the source has a shadow, we truncate from the shadow, else we
// truncate from the original source.
// - (B) If the shadow of the source is larger than the shadow of the dest,
// we still need a truncate. Else, the shadow of the source is the same
// type as the shadow of the dest (because mappings are non-decreasing), so
// we don't need to emit a truncate.
// Examples,
// with a mapping of {f32->f64;f64->f80;f80->f128}
// fptrunc double %1 to float -> fptrunc x86_fp80 s(%1) to double
// fptrunc x86_fp80 %1 to float -> fptrunc fp128 s(%1) to double
// fptrunc fp128 %1 to float -> fptrunc fp128 %1 to double
// fptrunc x86_fp80 %1 to double -> x86_fp80 s(%1)
// fptrunc fp128 %1 to double -> fptrunc fp128 %1 to x86_fp80
// fptrunc fp128 %1 to x86_fp80 -> fp128 %1
// with a mapping of {f32->f64;f64->f128;f80->f128}
// fptrunc double %1 to float -> fptrunc fp128 s(%1) to double
// fptrunc x86_fp80 %1 to float -> fptrunc fp128 s(%1) to double
// fptrunc fp128 %1 to float -> fptrunc fp128 %1 to double
// fptrunc x86_fp80 %1 to double -> fp128 %1
// fptrunc fp128 %1 to double -> fp128 %1
// fptrunc fp128 %1 to x86_fp80 -> fp128 %1
// with a mapping of {f32->f32;f64->f32;f80->f64}
// fptrunc double %1 to float -> float s(%1)
// fptrunc x86_fp80 %1 to float -> fptrunc double s(%1) to float
// fptrunc fp128 %1 to float -> fptrunc fp128 %1 to float
// fptrunc x86_fp80 %1 to double -> fptrunc double s(%1) to float
// fptrunc fp128 %1 to double -> fptrunc fp128 %1 to float
// fptrunc fp128 %1 to x86_fp80 -> fptrunc fp128 %1 to double
// See (A) above.
Value *Source = ExtendedSourceTy ? Map.getShadow(OrigSource) : OrigSource;
Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy;
// See (B) above.
if (SourceTy == ExtendedVT)
return Source;
return Builder.CreateFPTrunc(Source, ExtendedVT);
}
Value *NumericalStabilitySanitizer::handleExt(const FPExtInst &Ext, Type *VT,
Type *ExtendedVT,
const ValueToShadowMap &Map,
IRBuilder<> &Builder) {
Value *OrigSource = Ext.getOperand(0);
Type *OrigSourceTy = OrigSource->getType();
Type *ExtendedSourceTy = Config.getExtendedFPType(OrigSourceTy);
// When extending:
// - (A) If the source has a shadow, we extend from the shadow, else we
// extend from the original source.
// - (B) If the shadow of the dest is larger than the shadow of the source,
// we still need an extend. Else, the shadow of the source is the same
// type as the shadow of the dest (because mappings are non-decreasing), so
// we don't need to emit an extend.
// Examples,
// with a mapping of {f32->f64;f64->f80;f80->f128}
// fpext half %1 to float -> fpext half %1 to double
// fpext half %1 to double -> fpext half %1 to x86_fp80
// fpext half %1 to x86_fp80 -> fpext half %1 to fp128
// fpext float %1 to double -> double s(%1)
// fpext float %1 to x86_fp80 -> fpext double s(%1) to fp128
// fpext double %1 to x86_fp80 -> fpext x86_fp80 s(%1) to fp128
// with a mapping of {f32->f64;f64->f128;f80->f128}
// fpext half %1 to float -> fpext half %1 to double
// fpext half %1 to double -> fpext half %1 to fp128
// fpext half %1 to x86_fp80 -> fpext half %1 to fp128
// fpext float %1 to double -> fpext double s(%1) to fp128
// fpext float %1 to x86_fp80 -> fpext double s(%1) to fp128
// fpext double %1 to x86_fp80 -> fp128 s(%1)
// with a mapping of {f32->f32;f64->f32;f80->f64}
// fpext half %1 to float -> fpext half %1 to float
// fpext half %1 to double -> fpext half %1 to float
// fpext half %1 to x86_fp80 -> fpext half %1 to double
// fpext float %1 to double -> s(%1)
// fpext float %1 to x86_fp80 -> fpext float s(%1) to double
// fpext double %1 to x86_fp80 -> fpext float s(%1) to double
// See (A) above.
Value *Source = ExtendedSourceTy ? Map.getShadow(OrigSource) : OrigSource;
Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy;
// See (B) above.
if (SourceTy == ExtendedVT)
return Source;
return Builder.CreateFPExt(Source, ExtendedVT);
}
namespace {
// TODO: This should be tablegen-ed.
struct KnownIntrinsic {
struct WidenedIntrinsic {
const char *NarrowName;
Intrinsic::ID ID; // wide id.
using FnTypeFactory = FunctionType *(*)(LLVMContext &);
FnTypeFactory MakeFnTy;
};
static const char *get(LibFunc LFunc);
// Given an intrinsic with an `FT` argument, try to find a wider intrinsic
// that applies the same operation on the shadow argument.
// Options are:
// - pass in the ID and full function type,
// - pass in the name, which includes the function type through mangling.
static const WidenedIntrinsic *widen(StringRef Name);
private:
struct LFEntry {
LibFunc LFunc;
const char *IntrinsicName;
};
static const LFEntry kLibfuncIntrinsics[];
static const WidenedIntrinsic kWidenedIntrinsics[];
};
} // namespace
static FunctionType *makeDoubleDouble(LLVMContext &C) {
return FunctionType::get(Type::getDoubleTy(C), {Type::getDoubleTy(C)}, false);
}
static FunctionType *makeX86FP80X86FP80(LLVMContext &C) {
return FunctionType::get(Type::getX86_FP80Ty(C), {Type::getX86_FP80Ty(C)},
false);
}
static FunctionType *makeDoubleDoubleI32(LLVMContext &C) {
return FunctionType::get(Type::getDoubleTy(C),
{Type::getDoubleTy(C), Type::getInt32Ty(C)}, false);
}
static FunctionType *makeX86FP80X86FP80I32(LLVMContext &C) {
return FunctionType::get(Type::getX86_FP80Ty(C),
{Type::getX86_FP80Ty(C), Type::getInt32Ty(C)},
false);
}
static FunctionType *makeDoubleDoubleDouble(LLVMContext &C) {
return FunctionType::get(Type::getDoubleTy(C),
{Type::getDoubleTy(C), Type::getDoubleTy(C)}, false);
}
static FunctionType *makeX86FP80X86FP80X86FP80(LLVMContext &C) {
return FunctionType::get(Type::getX86_FP80Ty(C),
{Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)},
false);
}
static FunctionType *makeDoubleDoubleDoubleDouble(LLVMContext &C) {
return FunctionType::get(
Type::getDoubleTy(C),
{Type::getDoubleTy(C), Type::getDoubleTy(C), Type::getDoubleTy(C)},
false);
}
static FunctionType *makeX86FP80X86FP80X86FP80X86FP80(LLVMContext &C) {
return FunctionType::get(
Type::getX86_FP80Ty(C),
{Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)},
false);
}
const KnownIntrinsic::WidenedIntrinsic KnownIntrinsic::kWidenedIntrinsics[] = {
// TODO: Right now we ignore vector intrinsics.
// This is hard because we have to model the semantics of the intrinsics,
// e.g. llvm.x86.sse2.min.sd means extract first element, min, insert back.
// Intrinsics that take any non-vector FT types:
// NOTE: Right now because of
// https://github.com/llvm/llvm-project/issues/44744
// for f128 we need to use makeX86FP80X86FP80 (go to a lower precision and
// come back).
{"llvm.sqrt.f32", Intrinsic::sqrt, makeDoubleDouble},
{"llvm.sqrt.f64", Intrinsic::sqrt, makeX86FP80X86FP80},
{"llvm.sqrt.f80", Intrinsic::sqrt, makeX86FP80X86FP80},
{"llvm.powi.f32", Intrinsic::powi, makeDoubleDoubleI32},
{"llvm.powi.f64", Intrinsic::powi, makeX86FP80X86FP80I32},
{"llvm.powi.f80", Intrinsic::powi, makeX86FP80X86FP80I32},
{"llvm.sin.f32", Intrinsic::sin, makeDoubleDouble},
{"llvm.sin.f64", Intrinsic::sin, makeX86FP80X86FP80},
{"llvm.sin.f80", Intrinsic::sin, makeX86FP80X86FP80},
{"llvm.cos.f32", Intrinsic::cos, makeDoubleDouble},
{"llvm.cos.f64", Intrinsic::cos, makeX86FP80X86FP80},
{"llvm.cos.f80", Intrinsic::cos, makeX86FP80X86FP80},
{"llvm.pow.f32", Intrinsic::pow, makeDoubleDoubleDouble},
{"llvm.pow.f64", Intrinsic::pow, makeX86FP80X86FP80X86FP80},
{"llvm.pow.f80", Intrinsic::pow, makeX86FP80X86FP80X86FP80},
{"llvm.exp.f32", Intrinsic::exp, makeDoubleDouble},
{"llvm.exp.f64", Intrinsic::exp, makeX86FP80X86FP80},
{"llvm.exp.f80", Intrinsic::exp, makeX86FP80X86FP80},
{"llvm.exp2.f32", Intrinsic::exp2, makeDoubleDouble},
{"llvm.exp2.f64", Intrinsic::exp2, makeX86FP80X86FP80},
{"llvm.exp2.f80", Intrinsic::exp2, makeX86FP80X86FP80},
{"llvm.log.f32", Intrinsic::log, makeDoubleDouble},
{"llvm.log.f64", Intrinsic::log, makeX86FP80X86FP80},
{"llvm.log.f80", Intrinsic::log, makeX86FP80X86FP80},
{"llvm.log10.f32", Intrinsic::log10, makeDoubleDouble},
{"llvm.log10.f64", Intrinsic::log10, makeX86FP80X86FP80},
{"llvm.log10.f80", Intrinsic::log10, makeX86FP80X86FP80},
{"llvm.log2.f32", Intrinsic::log2, makeDoubleDouble},
{"llvm.log2.f64", Intrinsic::log2, makeX86FP80X86FP80},
{"llvm.log2.f80", Intrinsic::log2, makeX86FP80X86FP80},
{"llvm.fma.f32", Intrinsic::fma, makeDoubleDoubleDoubleDouble},
{"llvm.fmuladd.f32", Intrinsic::fmuladd, makeDoubleDoubleDoubleDouble},
{"llvm.fma.f64", Intrinsic::fma, makeX86FP80X86FP80X86FP80X86FP80},
{"llvm.fmuladd.f64", Intrinsic::fma, makeX86FP80X86FP80X86FP80X86FP80},
{"llvm.fma.f80", Intrinsic::fma, makeX86FP80X86FP80X86FP80X86FP80},
{"llvm.fabs.f32", Intrinsic::fabs, makeDoubleDouble},
{"llvm.fabs.f64", Intrinsic::fabs, makeX86FP80X86FP80},
{"llvm.fabs.f80", Intrinsic::fabs, makeX86FP80X86FP80},
{"llvm.minnum.f32", Intrinsic::minnum, makeDoubleDoubleDouble},
{"llvm.minnum.f64", Intrinsic::minnum, makeX86FP80X86FP80X86FP80},
{"llvm.minnum.f80", Intrinsic::minnum, makeX86FP80X86FP80X86FP80},
{"llvm.maxnum.f32", Intrinsic::maxnum, makeDoubleDoubleDouble},
{"llvm.maxnum.f64", Intrinsic::maxnum, makeX86FP80X86FP80X86FP80},
{"llvm.maxnum.f80", Intrinsic::maxnum, makeX86FP80X86FP80X86FP80},
{"llvm.minimum.f32", Intrinsic::minimum, makeDoubleDoubleDouble},
{"llvm.minimum.f64", Intrinsic::minimum, makeX86FP80X86FP80X86FP80},
{"llvm.minimum.f80", Intrinsic::minimum, makeX86FP80X86FP80X86FP80},
{"llvm.maximum.f32", Intrinsic::maximum, makeDoubleDoubleDouble},
{"llvm.maximum.f64", Intrinsic::maximum, makeX86FP80X86FP80X86FP80},
{"llvm.maximum.f80", Intrinsic::maximum, makeX86FP80X86FP80X86FP80},
{"llvm.copysign.f32", Intrinsic::copysign, makeDoubleDoubleDouble},
{"llvm.copysign.f64", Intrinsic::copysign, makeX86FP80X86FP80X86FP80},
{"llvm.copysign.f80", Intrinsic::copysign, makeX86FP80X86FP80X86FP80},
{"llvm.floor.f32", Intrinsic::floor, makeDoubleDouble},
{"llvm.floor.f64", Intrinsic::floor, makeX86FP80X86FP80},
{"llvm.floor.f80", Intrinsic::floor, makeX86FP80X86FP80},
{"llvm.ceil.f32", Intrinsic::ceil, makeDoubleDouble},
{"llvm.ceil.f64", Intrinsic::ceil, makeX86FP80X86FP80},
{"llvm.ceil.f80", Intrinsic::ceil, makeX86FP80X86FP80},
{"llvm.trunc.f32", Intrinsic::trunc, makeDoubleDouble},
{"llvm.trunc.f64", Intrinsic::trunc, makeX86FP80X86FP80},
{"llvm.trunc.f80", Intrinsic::trunc, makeX86FP80X86FP80},
{"llvm.rint.f32", Intrinsic::rint, makeDoubleDouble},
{"llvm.rint.f64", Intrinsic::rint, makeX86FP80X86FP80},
{"llvm.rint.f80", Intrinsic::rint, makeX86FP80X86FP80},
{"llvm.nearbyint.f32", Intrinsic::nearbyint, makeDoubleDouble},
{"llvm.nearbyint.f64", Intrinsic::nearbyint, makeX86FP80X86FP80},
{"llvm.nearbyin80f64", Intrinsic::nearbyint, makeX86FP80X86FP80},
{"llvm.round.f32", Intrinsic::round, makeDoubleDouble},
{"llvm.round.f64", Intrinsic::round, makeX86FP80X86FP80},
{"llvm.round.f80", Intrinsic::round, makeX86FP80X86FP80},
{"llvm.lround.f32", Intrinsic::lround, makeDoubleDouble},
{"llvm.lround.f64", Intrinsic::lround, makeX86FP80X86FP80},
{"llvm.lround.f80", Intrinsic::lround, makeX86FP80X86FP80},
{"llvm.llround.f32", Intrinsic::llround, makeDoubleDouble},
{"llvm.llround.f64", Intrinsic::llround, makeX86FP80X86FP80},
{"llvm.llround.f80", Intrinsic::llround, makeX86FP80X86FP80},
{"llvm.lrint.f32", Intrinsic::lrint, makeDoubleDouble},
{"llvm.lrint.f64", Intrinsic::lrint, makeX86FP80X86FP80},
{"llvm.lrint.f80", Intrinsic::lrint, makeX86FP80X86FP80},
{"llvm.llrint.f32", Intrinsic::llrint, makeDoubleDouble},
{"llvm.llrint.f64", Intrinsic::llrint, makeX86FP80X86FP80},
{"llvm.llrint.f80", Intrinsic::llrint, makeX86FP80X86FP80},
};
const KnownIntrinsic::LFEntry KnownIntrinsic::kLibfuncIntrinsics[] = {
{LibFunc_sqrtf, "llvm.sqrt.f32"},
{LibFunc_sqrt, "llvm.sqrt.f64"},
{LibFunc_sqrtl, "llvm.sqrt.f80"},
{LibFunc_sinf, "llvm.sin.f32"},
{LibFunc_sin, "llvm.sin.f64"},
{LibFunc_sinl, "llvm.sin.f80"},
{LibFunc_cosf, "llvm.cos.f32"},
{LibFunc_cos, "llvm.cos.f64"},
{LibFunc_cosl, "llvm.cos.f80"},
{LibFunc_powf, "llvm.pow.f32"},
{LibFunc_pow, "llvm.pow.f64"},
{LibFunc_powl, "llvm.pow.f80"},
{LibFunc_expf, "llvm.exp.f32"},
{LibFunc_exp, "llvm.exp.f64"},
{LibFunc_expl, "llvm.exp.f80"},
{LibFunc_exp2f, "llvm.exp2.f32"},
{LibFunc_exp2, "llvm.exp2.f64"},
{LibFunc_exp2l, "llvm.exp2.f80"},
{LibFunc_logf, "llvm.log.f32"},
{LibFunc_log, "llvm.log.f64"},
{LibFunc_logl, "llvm.log.f80"},
{LibFunc_log10f, "llvm.log10.f32"},
{LibFunc_log10, "llvm.log10.f64"},
{LibFunc_log10l, "llvm.log10.f80"},
{LibFunc_log2f, "llvm.log2.f32"},
{LibFunc_log2, "llvm.log2.f64"},
{LibFunc_log2l, "llvm.log2.f80"},
{LibFunc_fabsf, "llvm.fabs.f32"},
{LibFunc_fabs, "llvm.fabs.f64"},
{LibFunc_fabsl, "llvm.fabs.f80"},
{LibFunc_copysignf, "llvm.copysign.f32"},
{LibFunc_copysign, "llvm.copysign.f64"},
{LibFunc_copysignl, "llvm.copysign.f80"},
{LibFunc_floorf, "llvm.floor.f32"},
{LibFunc_floor, "llvm.floor.f64"},
{LibFunc_floorl, "llvm.floor.f80"},
{LibFunc_fmaxf, "llvm.maxnum.f32"},
{LibFunc_fmax, "llvm.maxnum.f64"},
{LibFunc_fmaxl, "llvm.maxnum.f80"},
{LibFunc_fminf, "llvm.minnum.f32"},
{LibFunc_fmin, "llvm.minnum.f64"},
{LibFunc_fminl, "llvm.minnum.f80"},
{LibFunc_ceilf, "llvm.ceil.f32"},
{LibFunc_ceil, "llvm.ceil.f64"},
{LibFunc_ceill, "llvm.ceil.f80"},
{LibFunc_truncf, "llvm.trunc.f32"},
{LibFunc_trunc, "llvm.trunc.f64"},
{LibFunc_truncl, "llvm.trunc.f80"},
{LibFunc_rintf, "llvm.rint.f32"},
{LibFunc_rint, "llvm.rint.f64"},
{LibFunc_rintl, "llvm.rint.f80"},
{LibFunc_nearbyintf, "llvm.nearbyint.f32"},
{LibFunc_nearbyint, "llvm.nearbyint.f64"},
{LibFunc_nearbyintl, "llvm.nearbyint.f80"},
{LibFunc_roundf, "llvm.round.f32"},
{LibFunc_round, "llvm.round.f64"},
{LibFunc_roundl, "llvm.round.f80"},
};
const char *KnownIntrinsic::get(LibFunc LFunc) {
for (const auto &E : kLibfuncIntrinsics) {
if (E.LFunc == LFunc)
return E.IntrinsicName;
}
return nullptr;
}
const KnownIntrinsic::WidenedIntrinsic *KnownIntrinsic::widen(StringRef Name) {
for (const auto &E : kWidenedIntrinsics) {
if (E.NarrowName == Name)
return &E;
}
return nullptr;
}
// Returns the name of the LLVM intrinsic corresponding to the given function.
static const char *getIntrinsicFromLibfunc(Function &Fn, Type *VT,
const TargetLibraryInfo &TLI) {
LibFunc LFunc;
if (!TLI.getLibFunc(Fn, LFunc))
return nullptr;
if (const char *Name = KnownIntrinsic::get(LFunc))
return Name;
LLVM_DEBUG(errs() << "TODO: LibFunc: " << TLI.getName(LFunc) << "\n");
return nullptr;
}
// Try to handle a known function call.
Value *NumericalStabilitySanitizer::maybeHandleKnownCallBase(
CallBase &Call, Type *VT, Type *ExtendedVT, const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map, IRBuilder<> &Builder) {
Function *Fn = Call.getCalledFunction();
if (Fn == nullptr)
return nullptr;
Intrinsic::ID WidenedId = Intrinsic::ID();
FunctionType *WidenedFnTy = nullptr;
if (const auto ID = Fn->getIntrinsicID()) {
const auto *Widened = KnownIntrinsic::widen(Fn->getName());
if (Widened) {
WidenedId = Widened->ID;
WidenedFnTy = Widened->MakeFnTy(Context);
} else {
// If we don't know how to widen the intrinsic, we have no choice but to
// call the non-wide version on a truncated shadow and extend again
// afterwards.
WidenedId = ID;
WidenedFnTy = Fn->getFunctionType();
}
} else if (const char *Name = getIntrinsicFromLibfunc(*Fn, VT, TLI)) {
// We might have a call to a library function that we can replace with a
// wider Intrinsic.
const auto *Widened = KnownIntrinsic::widen(Name);
assert(Widened && "make sure KnownIntrinsic entries are consistent");
WidenedId = Widened->ID;
WidenedFnTy = Widened->MakeFnTy(Context);
} else {
// This is not a known library function or intrinsic.
return nullptr;
}
// Check that the widened intrinsic is valid.
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(WidenedId, Table);
SmallVector<Type *, 4> ArgTys;
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
[[maybe_unused]] Intrinsic::MatchIntrinsicTypesResult MatchResult =
Intrinsic::matchIntrinsicSignature(WidenedFnTy, TableRef, ArgTys);
assert(MatchResult == Intrinsic::MatchIntrinsicTypes_Match &&
"invalid widened intrinsic");
// For known intrinsic functions, we create a second call to the same
// intrinsic with a different type.
SmallVector<Value *, 4> Args;
// The last operand is the intrinsic itself, skip it.
for (unsigned I = 0, E = Call.getNumOperands() - 1; I < E; ++I) {
Value *Arg = Call.getOperand(I);
Type *OrigArgTy = Arg->getType();
Type *IntrinsicArgTy = WidenedFnTy->getParamType(I);
if (OrigArgTy == IntrinsicArgTy) {
Args.push_back(Arg); // The arg is passed as is.
continue;
}
Type *ShadowArgTy = Config.getExtendedFPType(Arg->getType());
assert(ShadowArgTy &&
"don't know how to get the shadow value for a non-FT");
Value *Shadow = Map.getShadow(Arg);
if (ShadowArgTy == IntrinsicArgTy) {
// The shadow is the right type for the intrinsic.
assert(Shadow->getType() == ShadowArgTy);
Args.push_back(Shadow);
continue;
}
// There is no intrinsic with his level of precision, truncate the shadow.
Args.push_back(Builder.CreateFPTrunc(Shadow, IntrinsicArgTy));
}
Value *IntrinsicCall = Builder.CreateIntrinsic(WidenedId, ArgTys, Args);
return WidenedFnTy->getReturnType() == ExtendedVT
? IntrinsicCall
: Builder.CreateFPExt(IntrinsicCall, ExtendedVT);
}
// Handle a CallBase, i.e. a function call, an inline asm sequence, or an
// invoke.
Value *NumericalStabilitySanitizer::handleCallBase(CallBase &Call, Type *VT,
Type *ExtendedVT,
const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map,
IRBuilder<> &Builder) {
// We cannot look inside inline asm, just expand the result again.
if (Call.isInlineAsm())
return Builder.CreateFPExt(&Call, ExtendedVT);
// Intrinsics and library functions (e.g. sin, exp) are handled
// specifically, because we know their semantics and can do better than
// blindly calling them (e.g. compute the sinus in the actual shadow domain).
if (Value *V =
maybeHandleKnownCallBase(Call, VT, ExtendedVT, TLI, Map, Builder))
return V;
// If the return tag matches that of the called function, read the extended
// return value from the shadow ret ptr. Else, just extend the return value.
Value *L =
Builder.CreateLoad(IntptrTy, NsanShadowRetTag, /*isVolatile=*/false);
Value *HasShadowRet = Builder.CreateICmpEQ(
L, Builder.CreatePtrToInt(Call.getCalledOperand(), IntptrTy));
Value *ShadowRetVal = Builder.CreateLoad(
ExtendedVT,
Builder.CreateConstGEP2_64(NsanShadowRetType, NsanShadowRetPtr, 0, 0),
/*isVolatile=*/false);
Value *Shadow = Builder.CreateSelect(HasShadowRet, ShadowRetVal,
Builder.CreateFPExt(&Call, ExtendedVT));
++NumInstrumentedFTCalls;
return Shadow;
}
// Creates a shadow value for the given FT value. At that point all operands are
// guaranteed to be available.
Value *NumericalStabilitySanitizer::createShadowValueWithOperandsAvailable(
Instruction &Inst, const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map) {
Type *VT = Inst.getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
assert(ExtendedVT != nullptr && "trying to create a shadow for a non-FT");
if (auto *Load = dyn_cast<LoadInst>(&Inst))
return handleLoad(*Load, VT, ExtendedVT);
if (auto *Call = dyn_cast<CallInst>(&Inst)) {
// Insert after the call.
BasicBlock::iterator It(Inst);
IRBuilder<> Builder(Call->getParent(), ++It);
Builder.SetCurrentDebugLocation(Call->getDebugLoc());
return handleCallBase(*Call, VT, ExtendedVT, TLI, Map, Builder);
}
if (auto *Invoke = dyn_cast<InvokeInst>(&Inst)) {
// The Invoke terminates the basic block, create a new basic block in
// between the successful invoke and the next block.
BasicBlock *InvokeBB = Invoke->getParent();
BasicBlock *NextBB = Invoke->getNormalDest();
BasicBlock *NewBB =
BasicBlock::Create(Context, "", NextBB->getParent(), NextBB);
Inst.replaceSuccessorWith(NextBB, NewBB);
IRBuilder<> Builder(NewBB);
Builder.SetCurrentDebugLocation(Invoke->getDebugLoc());
Value *Shadow = handleCallBase(*Invoke, VT, ExtendedVT, TLI, Map, Builder);
Builder.CreateBr(NextBB);
NewBB->replaceSuccessorsPhiUsesWith(InvokeBB, NewBB);
return Shadow;
}
IRBuilder<> Builder(Inst.getNextNode());
Builder.SetCurrentDebugLocation(Inst.getDebugLoc());
if (auto *Trunc = dyn_cast<FPTruncInst>(&Inst))
return handleTrunc(*Trunc, VT, ExtendedVT, Map, Builder);
if (auto *Ext = dyn_cast<FPExtInst>(&Inst))
return handleExt(*Ext, VT, ExtendedVT, Map, Builder);
if (auto *UnaryOp = dyn_cast<UnaryOperator>(&Inst))
return Builder.CreateUnOp(UnaryOp->getOpcode(),
Map.getShadow(UnaryOp->getOperand(0)));
if (auto *BinOp = dyn_cast<BinaryOperator>(&Inst))
return Builder.CreateBinOp(BinOp->getOpcode(),
Map.getShadow(BinOp->getOperand(0)),
Map.getShadow(BinOp->getOperand(1)));
if (isa<UIToFPInst>(&Inst) || isa<SIToFPInst>(&Inst)) {
auto *Cast = dyn_cast<CastInst>(&Inst);
return Builder.CreateCast(Cast->getOpcode(), Cast->getOperand(0),
ExtendedVT);
}
if (auto *S = dyn_cast<SelectInst>(&Inst))
return Builder.CreateSelect(S->getCondition(),
Map.getShadow(S->getTrueValue()),
Map.getShadow(S->getFalseValue()));
if (auto *Extract = dyn_cast<ExtractElementInst>(&Inst))
return Builder.CreateExtractElement(
Map.getShadow(Extract->getVectorOperand()), Extract->getIndexOperand());
if (auto *Insert = dyn_cast<InsertElementInst>(&Inst))
return Builder.CreateInsertElement(Map.getShadow(Insert->getOperand(0)),
Map.getShadow(Insert->getOperand(1)),
Insert->getOperand(2));
if (auto *Shuffle = dyn_cast<ShuffleVectorInst>(&Inst))
return Builder.CreateShuffleVector(Map.getShadow(Shuffle->getOperand(0)),
Map.getShadow(Shuffle->getOperand(1)),
Shuffle->getShuffleMask());
// TODO: We could make aggregate object first class citizens. For now we
// just extend the extracted value.
if (auto *Extract = dyn_cast<ExtractValueInst>(&Inst))
return Builder.CreateFPExt(Extract, ExtendedVT);
if (auto *BC = dyn_cast<BitCastInst>(&Inst))
return Builder.CreateFPExt(BC, ExtendedVT);
report_fatal_error("Unimplemented support for " +
Twine(Inst.getOpcodeName()));
}
// Creates a shadow value for an instruction that defines a value of FT type.
// FT operands that do not already have shadow values are created recursively.
// The DFS is guaranteed to not loop as phis and arguments already have
// shadows.
void NumericalStabilitySanitizer::maybeCreateShadowValue(
Instruction &Root, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) {
Type *VT = Root.getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
if (ExtendedVT == nullptr)
return; // Not an FT value.
if (Map.hasShadow(&Root))
return; // Shadow already exists.
assert(!isa<PHINode>(Root) && "phi nodes should already have shadows");
std::vector<Instruction *> DfsStack(1, &Root);
while (!DfsStack.empty()) {
// Ensure that all operands to the instruction have shadows before
// proceeding.
Instruction *I = DfsStack.back();
// The shadow for the instruction might have been created deeper in the DFS,
// see `forward_use_with_two_uses` test.
if (Map.hasShadow(I)) {
DfsStack.pop_back();
continue;
}
bool MissingShadow = false;
for (Value *Op : I->operands()) {
Type *VT = Op->getType();
if (!Config.getExtendedFPType(VT))
continue; // Not an FT value.
if (Map.hasShadow(Op))
continue; // Shadow is already available.
MissingShadow = true;
DfsStack.push_back(cast<Instruction>(Op));
}
if (MissingShadow)
continue; // Process operands and come back to this instruction later.
// All operands have shadows. Create a shadow for the current value.
Value *Shadow = createShadowValueWithOperandsAvailable(*I, TLI, Map);
Map.setShadow(*I, *Shadow);
DfsStack.pop_back();
}
}
// A floating-point store needs its value and type written to shadow memory.
void NumericalStabilitySanitizer::propagateFTStore(
StoreInst &Store, Type *VT, Type *ExtendedVT, const ValueToShadowMap &Map) {
Value *StoredValue = Store.getValueOperand();
IRBuilder<> Builder(&Store);
Builder.SetCurrentDebugLocation(Store.getDebugLoc());
const auto Extents = getMemoryExtentsOrDie(VT);
Value *ShadowPtr = Builder.CreateCall(
NsanGetShadowPtrForStore[Extents.ValueType],
{Store.getPointerOperand(), ConstantInt::get(IntptrTy, Extents.NumElts)});
Value *StoredShadow = Map.getShadow(StoredValue);
if (!Store.getParent()->getParent()->hasOptNone()) {
// Only check stores when optimizing, because non-optimized code generates
// too many stores to the stack, creating false positives.
if (ClCheckStores) {
StoredShadow = emitCheck(StoredValue, StoredShadow, Builder,
CheckLoc::makeStore(Store.getPointerOperand()));
++NumInstrumentedFTStores;
}
}
Builder.CreateAlignedStore(StoredShadow, ShadowPtr, Align(1),
Store.isVolatile());
}
// A non-ft store needs to invalidate shadow memory. Exceptions are:
// - memory transfers of floating-point data through other pointer types (llvm
// optimization passes transform `*(float*)a = *(float*)b` into
// `*(i32*)a = *(i32*)b` ). These have the same semantics as memcpy.
// - Writes of FT-sized constants. LLVM likes to do float stores as bitcasted
// ints. Note that this is not really necessary because if the value is
// unknown the framework will re-extend it on load anyway. It just felt
// easier to debug tests with vectors of FTs.
void NumericalStabilitySanitizer::propagateNonFTStore(
StoreInst &Store, Type *VT, const ValueToShadowMap &Map) {
Value *PtrOp = Store.getPointerOperand();
IRBuilder<> Builder(Store.getNextNode());
Builder.SetCurrentDebugLocation(Store.getDebugLoc());
Value *Dst = PtrOp;
TypeSize SlotSize = DL.getTypeStoreSize(VT);
assert(!SlotSize.isScalable() && "unsupported");
const auto LoadSizeBytes = SlotSize.getFixedValue();
Value *ValueSize = Constant::getIntegerValue(
IntptrTy, APInt(IntptrTy->getPrimitiveSizeInBits(), LoadSizeBytes));
++NumInstrumentedNonFTStores;
Value *StoredValue = Store.getValueOperand();
if (LoadInst *Load = dyn_cast<LoadInst>(StoredValue)) {
// TODO: Handle the case when the value is from a phi.
// This is a memory transfer with memcpy semantics. Copy the type and
// value from the source. Note that we cannot use __nsan_copy_values()
// here, because that will not work when there is a write to memory in
// between the load and the store, e.g. in the case of a swap.
Type *ShadowTypeIntTy = Type::getIntNTy(Context, 8 * LoadSizeBytes);
Type *ShadowValueIntTy =
Type::getIntNTy(Context, 8 * kShadowScale * LoadSizeBytes);
IRBuilder<> LoadBuilder(Load->getNextNode());
Builder.SetCurrentDebugLocation(Store.getDebugLoc());
Value *LoadSrc = Load->getPointerOperand();
// Read the shadow type and value at load time. The type has the same size
// as the FT value, the value has twice its size.
// TODO: cache them to avoid re-creating them when a load is used by
// several stores. Maybe create them like the FT shadows when a load is
// encountered.
Value *RawShadowType = LoadBuilder.CreateAlignedLoad(
ShadowTypeIntTy,
LoadBuilder.CreateCall(NsanGetRawShadowTypePtr, {LoadSrc}), Align(1),
/*isVolatile=*/false);
Value *RawShadowValue = LoadBuilder.CreateAlignedLoad(
ShadowValueIntTy,
LoadBuilder.CreateCall(NsanGetRawShadowPtr, {LoadSrc}), Align(1),
/*isVolatile=*/false);
// Write back the shadow type and value at store time.
Builder.CreateAlignedStore(
RawShadowType, Builder.CreateCall(NsanGetRawShadowTypePtr, {Dst}),
Align(1),
/*isVolatile=*/false);
Builder.CreateAlignedStore(RawShadowValue,
Builder.CreateCall(NsanGetRawShadowPtr, {Dst}),
Align(1),
/*isVolatile=*/false);
++NumInstrumentedNonFTMemcpyStores;
return;
}
// ClPropagateNonFTConstStoresAsFT is by default false.
if (Constant *C; ClPropagateNonFTConstStoresAsFT &&
(C = dyn_cast<Constant>(StoredValue))) {
// This might be a fp constant stored as an int. Bitcast and store if it has
// appropriate size.
Type *BitcastTy = nullptr; // The FT type to bitcast to.
if (auto *CInt = dyn_cast<ConstantInt>(C)) {
switch (CInt->getType()->getScalarSizeInBits()) {
case 32:
BitcastTy = Type::getFloatTy(Context);
break;
case 64:
BitcastTy = Type::getDoubleTy(Context);
break;
case 80:
BitcastTy = Type::getX86_FP80Ty(Context);
break;
default:
break;
}
} else if (auto *CDV = dyn_cast<ConstantDataVector>(C)) {
const int NumElements =
cast<VectorType>(CDV->getType())->getElementCount().getFixedValue();
switch (CDV->getType()->getScalarSizeInBits()) {
case 32:
BitcastTy =
VectorType::get(Type::getFloatTy(Context), NumElements, false);
break;
case 64:
BitcastTy =
VectorType::get(Type::getDoubleTy(Context), NumElements, false);
break;
case 80:
BitcastTy =
VectorType::get(Type::getX86_FP80Ty(Context), NumElements, false);
break;
default:
break;
}
}
if (BitcastTy) {
const MemoryExtents Extents = getMemoryExtentsOrDie(BitcastTy);
Value *ShadowPtr = Builder.CreateCall(
NsanGetShadowPtrForStore[Extents.ValueType],
{PtrOp, ConstantInt::get(IntptrTy, Extents.NumElts)});
// Bitcast the integer value to the appropriate FT type and extend to 2FT.
Type *ExtVT = Config.getExtendedFPType(BitcastTy);
Value *Shadow =
Builder.CreateFPExt(Builder.CreateBitCast(C, BitcastTy), ExtVT);
Builder.CreateAlignedStore(Shadow, ShadowPtr, Align(1),
Store.isVolatile());
return;
}
}
// All other stores just reset the shadow value to unknown.
Builder.CreateCall(NsanSetValueUnknown, {Dst, ValueSize});
}
void NumericalStabilitySanitizer::propagateShadowValues(
Instruction &Inst, const TargetLibraryInfo &TLI,
const ValueToShadowMap &Map) {
if (auto *Store = dyn_cast<StoreInst>(&Inst)) {
Value *StoredValue = Store->getValueOperand();
Type *VT = StoredValue->getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
if (ExtendedVT == nullptr)
return propagateNonFTStore(*Store, VT, Map);
return propagateFTStore(*Store, VT, ExtendedVT, Map);
}
if (auto *FCmp = dyn_cast<FCmpInst>(&Inst)) {
emitFCmpCheck(*FCmp, Map);
return;
}
if (auto *CB = dyn_cast<CallBase>(&Inst)) {
maybeAddSuffixForNsanInterface(CB);
if (CallInst *CI = dyn_cast<CallInst>(&Inst))
maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
instrumentMemIntrinsic(MI);
return;
}
populateShadowStack(*CB, TLI, Map);
return;
}
if (auto *RetInst = dyn_cast<ReturnInst>(&Inst)) {
if (!ClCheckRet)
return;
Value *RV = RetInst->getReturnValue();
if (RV == nullptr)
return; // This is a `ret void`.
Type *VT = RV->getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
if (ExtendedVT == nullptr)
return; // Not an FT ret.
Value *RVShadow = Map.getShadow(RV);
IRBuilder<> Builder(RetInst);
RVShadow = emitCheck(RV, RVShadow, Builder, CheckLoc::makeRet());
++NumInstrumentedFTRets;
// Store tag.
Value *FnAddr =
Builder.CreatePtrToInt(Inst.getParent()->getParent(), IntptrTy);
Builder.CreateStore(FnAddr, NsanShadowRetTag);
// Store value.
Value *ShadowRetValPtr =
Builder.CreateConstGEP2_64(NsanShadowRetType, NsanShadowRetPtr, 0, 0);
Builder.CreateStore(RVShadow, ShadowRetValPtr);
return;
}
if (InsertValueInst *Insert = dyn_cast<InsertValueInst>(&Inst)) {
Value *V = Insert->getOperand(1);
Type *VT = V->getType();
Type *ExtendedVT = Config.getExtendedFPType(VT);
if (ExtendedVT == nullptr)
return;
IRBuilder<> Builder(Insert);
emitCheck(V, Map.getShadow(V), Builder, CheckLoc::makeInsert());
return;
}
}
// Moves fast math flags from the function to individual instructions, and
// removes the attribute from the function.
// TODO: Make this controllable with a flag.
static void moveFastMathFlags(Function &F,
std::vector<Instruction *> &Instructions) {
FastMathFlags FMF;
#define MOVE_FLAG(attr, setter) \
if (F.getFnAttribute(attr).getValueAsString() == "true") { \
F.removeFnAttr(attr); \
FMF.set##setter(); \
}
MOVE_FLAG("unsafe-fp-math", Fast)
MOVE_FLAG("no-infs-fp-math", NoInfs)
MOVE_FLAG("no-nans-fp-math", NoNaNs)
MOVE_FLAG("no-signed-zeros-fp-math", NoSignedZeros)
#undef MOVE_FLAG
for (Instruction *I : Instructions)
if (isa<FPMathOperator>(I))
I->setFastMathFlags(FMF);
}
bool NumericalStabilitySanitizer::sanitizeFunction(
Function &F, const TargetLibraryInfo &TLI) {
if (!F.hasFnAttribute(Attribute::SanitizeNumericalStability))
return false;
// This is required to prevent instrumenting call to __nsan_init from within
// the module constructor.
if (F.getName() == kNsanModuleCtorName)
return false;
SmallVector<Instruction *, 8> AllLoadsAndStores;
SmallVector<Instruction *, 8> LocalLoadsAndStores;
// The instrumentation maintains:
// - for each IR value `v` of floating-point (or vector floating-point) type
// FT, a shadow IR value `s(v)` with twice the precision 2FT (e.g.
// double for float and f128 for double).
// - A shadow memory, which stores `s(v)` for any `v` that has been stored,
// along with a shadow memory tag, which stores whether the value in the
// corresponding shadow memory is valid. Note that this might be
// incorrect if a non-instrumented function stores to memory, or if
// memory is stored to through a char pointer.
// - A shadow stack, which holds `s(v)` for any floating-point argument `v`
// of a call to an instrumented function. This allows
// instrumented functions to retrieve the shadow values for their
// arguments.
// Because instrumented functions can be called from non-instrumented
// functions, the stack needs to include a tag so that the instrumented
// function knows whether shadow values are available for their
// parameters (i.e. whether is was called by an instrumented function).
// When shadow arguments are not available, they have to be recreated by
// extending the precision of the non-shadow arguments to the non-shadow
// value. Non-instrumented functions do not modify (or even know about) the
// shadow stack. The shadow stack pointer is __nsan_shadow_args. The shadow
// stack tag is __nsan_shadow_args_tag. The tag is any unique identifier
// for the function (we use the address of the function). Both variables
// are thread local.
// Example:
// calls shadow stack tag shadow stack
// =======================================================================
// non_instrumented_1() 0 0
// |
// v
// instrumented_2(float a) 0 0
// |
// v
// instrumented_3(float b, double c) &instrumented_3 s(b),s(c)
// |
// v
// instrumented_4(float d) &instrumented_4 s(d)
// |
// v
// non_instrumented_5(float e) &non_instrumented_5 s(e)
// |
// v
// instrumented_6(float f) &non_instrumented_5 s(e)
//
// On entry, instrumented_2 checks whether the tag corresponds to its
// function ptr.
// Note that functions reset the tag to 0 after reading shadow parameters.
// This ensures that the function does not erroneously read invalid data if
// called twice in the same stack, once from an instrumented function and
// once from an uninstrumented one. For example, in the following example,
// resetting the tag in (A) ensures that (B) does not reuse the same the
// shadow arguments (which would be incorrect).
// instrumented_1(float a)
// |
// v
// instrumented_2(float b) (A)
// |
// v
// non_instrumented_3()
// |
// v
// instrumented_2(float b) (B)
//
// - A shadow return slot. Any function that returns a floating-point value
// places a shadow return value in __nsan_shadow_ret_val. Again, because
// we might be calling non-instrumented functions, this value is guarded
// by __nsan_shadow_ret_tag marker indicating which instrumented function
// placed the value in __nsan_shadow_ret_val, so that the caller can check
// that this corresponds to the callee. Both variables are thread local.
//
// For example, in the following example, the instrumentation in
// `instrumented_1` rejects the shadow return value from `instrumented_3`
// because is is not tagged as expected (`&instrumented_3` instead of
// `non_instrumented_2`):
//
// instrumented_1()
// |
// v
// float non_instrumented_2()
// |
// v
// float instrumented_3()
//
// Calls of known math functions (sin, cos, exp, ...) are duplicated to call
// their overload on the shadow type.
// Collect all instructions before processing, as creating shadow values
// creates new instructions inside the function.
std::vector<Instruction *> OriginalInstructions;
for (BasicBlock &BB : F)
for (Instruction &Inst : BB)
OriginalInstructions.emplace_back(&Inst);
moveFastMathFlags(F, OriginalInstructions);
ValueToShadowMap ValueToShadow(Config);
// In the first pass, we create shadow values for all FT function arguments
// and all phis. This ensures that the DFS of the next pass does not have
// any loops.
std::vector<PHINode *> OriginalPhis;
createShadowArguments(F, TLI, ValueToShadow);
for (Instruction *I : OriginalInstructions) {
if (PHINode *Phi = dyn_cast<PHINode>(I)) {
if (PHINode *Shadow = maybeCreateShadowPhi(*Phi, TLI)) {
OriginalPhis.push_back(Phi);
ValueToShadow.setShadow(*Phi, *Shadow);
}
}
}
// Create shadow values for all instructions creating FT values.
for (Instruction *I : OriginalInstructions)
maybeCreateShadowValue(*I, TLI, ValueToShadow);
// Propagate shadow values across stores, calls and rets.
for (Instruction *I : OriginalInstructions)
propagateShadowValues(*I, TLI, ValueToShadow);
// The last pass populates shadow phis with shadow values.
for (PHINode *Phi : OriginalPhis) {
PHINode *ShadowPhi = dyn_cast<PHINode>(ValueToShadow.getShadow(Phi));
for (unsigned I : seq(Phi->getNumOperands())) {
Value *V = Phi->getOperand(I);
Value *Shadow = ValueToShadow.getShadow(V);
BasicBlock *IncomingBB = Phi->getIncomingBlock(I);
// For some instructions (e.g. invoke), we create the shadow in a separate
// block, different from the block where the original value is created.
// In that case, the shadow phi might need to refer to this block instead
// of the original block.
// Note that this can only happen for instructions as constant shadows are
// always created in the same block.
ShadowPhi->addIncoming(Shadow, IncomingBB);
}
}
return !ValueToShadow.empty();
}
// Instrument the memory intrinsics so that they properly modify the shadow
// memory.
bool NumericalStabilitySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
IRBuilder<> Builder(MI);
if (auto *M = dyn_cast<MemSetInst>(MI)) {
Builder.CreateCall(
NsanSetValueUnknown,
{/*Address=*/M->getArgOperand(0),
/*Size=*/Builder.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
} else if (auto *M = dyn_cast<MemTransferInst>(MI)) {
Builder.CreateCall(
NsanCopyValues,
{/*Destination=*/M->getArgOperand(0),
/*Source=*/M->getArgOperand(1),
/*Size=*/Builder.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
}
return false;
}
void NumericalStabilitySanitizer::maybeAddSuffixForNsanInterface(CallBase *CI) {
Function *Fn = CI->getCalledFunction();
if (Fn == nullptr)
return;
if (!Fn->getName().starts_with("__nsan_"))
return;
if (Fn->getName() == "__nsan_dump_shadow_mem") {
assert(CI->arg_size() == 4 &&
"invalid prototype for __nsan_dump_shadow_mem");
// __nsan_dump_shadow_mem requires an extra parameter with the dynamic
// configuration:
// (shadow_type_id_for_long_double << 16) | (shadow_type_id_for_double << 8)
// | shadow_type_id_for_double
const uint64_t shadow_value_type_ids =
(static_cast<size_t>(Config.byValueType(kLongDouble).getNsanTypeId())
<< 16) |
(static_cast<size_t>(Config.byValueType(kDouble).getNsanTypeId())
<< 8) |
static_cast<size_t>(Config.byValueType(kFloat).getNsanTypeId());
CI->setArgOperand(3, ConstantInt::get(IntptrTy, shadow_value_type_ids));
}
}
|