File: PGOCtxProfLowering.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (351 lines) | stat: -rw-r--r-- 15,440 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
//===- PGOCtxProfLowering.cpp - Contextual PGO Instr. Lowering ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//

#include "llvm/Transforms/Instrumentation/PGOCtxProfLowering.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/Analysis.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "ctx-instr-lower"

static cl::list<std::string> ContextRoots(
    "profile-context-root", cl::Hidden,
    cl::desc(
        "A function name, assumed to be global, which will be treated as the "
        "root of an interesting graph, which will be profiled independently "
        "from other similar graphs."));

bool PGOCtxProfLoweringPass::isContextualIRPGOEnabled() {
  return !ContextRoots.empty();
}

// the names of symbols we expect in compiler-rt. Using a namespace for
// readability.
namespace CompilerRtAPINames {
static auto StartCtx = "__llvm_ctx_profile_start_context";
static auto ReleaseCtx = "__llvm_ctx_profile_release_context";
static auto GetCtx = "__llvm_ctx_profile_get_context";
static auto ExpectedCalleeTLS = "__llvm_ctx_profile_expected_callee";
static auto CallsiteTLS = "__llvm_ctx_profile_callsite";
} // namespace CompilerRtAPINames

namespace {
// The lowering logic and state.
class CtxInstrumentationLowerer final {
  Module &M;
  ModuleAnalysisManager &MAM;
  Type *ContextNodeTy = nullptr;
  Type *ContextRootTy = nullptr;

  DenseMap<const Function *, Constant *> ContextRootMap;
  Function *StartCtx = nullptr;
  Function *GetCtx = nullptr;
  Function *ReleaseCtx = nullptr;
  GlobalVariable *ExpectedCalleeTLS = nullptr;
  GlobalVariable *CallsiteInfoTLS = nullptr;

public:
  CtxInstrumentationLowerer(Module &M, ModuleAnalysisManager &MAM);
  // return true if lowering happened (i.e. a change was made)
  bool lowerFunction(Function &F);
};

// llvm.instrprof.increment[.step] captures the total number of counters as one
// of its parameters, and llvm.instrprof.callsite captures the total number of
// callsites. Those values are the same for instances of those intrinsics in
// this function. Find the first instance of each and return them.
std::pair<uint32_t, uint32_t> getNrCountersAndCallsites(const Function &F) {
  uint32_t NrCounters = 0;
  uint32_t NrCallsites = 0;
  for (const auto &BB : F) {
    for (const auto &I : BB) {
      if (const auto *Incr = dyn_cast<InstrProfIncrementInst>(&I)) {
        uint32_t V =
            static_cast<uint32_t>(Incr->getNumCounters()->getZExtValue());
        assert((!NrCounters || V == NrCounters) &&
               "expected all llvm.instrprof.increment[.step] intrinsics to "
               "have the same total nr of counters parameter");
        NrCounters = V;
      } else if (const auto *CSIntr = dyn_cast<InstrProfCallsite>(&I)) {
        uint32_t V =
            static_cast<uint32_t>(CSIntr->getNumCounters()->getZExtValue());
        assert((!NrCallsites || V == NrCallsites) &&
               "expected all llvm.instrprof.callsite intrinsics to have the "
               "same total nr of callsites parameter");
        NrCallsites = V;
      }
#if NDEBUG
      if (NrCounters && NrCallsites)
        return std::make_pair(NrCounters, NrCallsites);
#endif
    }
  }
  return {NrCounters, NrCallsites};
}
} // namespace

// set up tie-in with compiler-rt.
// NOTE!!!
// These have to match compiler-rt/lib/ctx_profile/CtxInstrProfiling.h
CtxInstrumentationLowerer::CtxInstrumentationLowerer(Module &M,
                                                     ModuleAnalysisManager &MAM)
    : M(M), MAM(MAM) {
  auto *PointerTy = PointerType::get(M.getContext(), 0);
  auto *SanitizerMutexType = Type::getInt8Ty(M.getContext());
  auto *I32Ty = Type::getInt32Ty(M.getContext());
  auto *I64Ty = Type::getInt64Ty(M.getContext());

  // The ContextRoot type
  ContextRootTy =
      StructType::get(M.getContext(), {
                                          PointerTy,          /*FirstNode*/
                                          PointerTy,          /*FirstMemBlock*/
                                          PointerTy,          /*CurrentMem*/
                                          SanitizerMutexType, /*Taken*/
                                      });
  // The Context header.
  ContextNodeTy = StructType::get(M.getContext(), {
                                                      I64Ty,     /*Guid*/
                                                      PointerTy, /*Next*/
                                                      I32Ty,     /*NrCounters*/
                                                      I32Ty,     /*NrCallsites*/
                                                  });

  // Define a global for each entrypoint. We'll reuse the entrypoint's name as
  // prefix. We assume the entrypoint names to be unique.
  for (const auto &Fname : ContextRoots) {
    if (const auto *F = M.getFunction(Fname)) {
      if (F->isDeclaration())
        continue;
      auto *G = M.getOrInsertGlobal(Fname + "_ctx_root", ContextRootTy);
      cast<GlobalVariable>(G)->setInitializer(
          Constant::getNullValue(ContextRootTy));
      ContextRootMap.insert(std::make_pair(F, G));
      for (const auto &BB : *F)
        for (const auto &I : BB)
          if (const auto *CB = dyn_cast<CallBase>(&I))
            if (CB->isMustTailCall()) {
              M.getContext().emitError(
                  "The function " + Fname +
                  " was indicated as a context root, but it features musttail "
                  "calls, which is not supported.");
            }
    }
  }

  // Declare the functions we will call.
  StartCtx = cast<Function>(
      M.getOrInsertFunction(
           CompilerRtAPINames::StartCtx,
           FunctionType::get(ContextNodeTy->getPointerTo(),
                             {ContextRootTy->getPointerTo(), /*ContextRoot*/
                              I64Ty, /*Guid*/ I32Ty,
                              /*NrCounters*/ I32Ty /*NrCallsites*/},
                             false))
          .getCallee());
  GetCtx = cast<Function>(
      M.getOrInsertFunction(CompilerRtAPINames::GetCtx,
                            FunctionType::get(ContextNodeTy->getPointerTo(),
                                              {PointerTy, /*Callee*/
                                               I64Ty,     /*Guid*/
                                               I32Ty,     /*NrCounters*/
                                               I32Ty},    /*NrCallsites*/
                                              false))
          .getCallee());
  ReleaseCtx = cast<Function>(
      M.getOrInsertFunction(
           CompilerRtAPINames::ReleaseCtx,
           FunctionType::get(Type::getVoidTy(M.getContext()),
                             {
                                 ContextRootTy->getPointerTo(), /*ContextRoot*/
                             },
                             false))
          .getCallee());

  // Declare the TLSes we will need to use.
  CallsiteInfoTLS =
      new GlobalVariable(M, PointerTy, false, GlobalValue::ExternalLinkage,
                         nullptr, CompilerRtAPINames::CallsiteTLS);
  CallsiteInfoTLS->setThreadLocal(true);
  CallsiteInfoTLS->setVisibility(llvm::GlobalValue::HiddenVisibility);
  ExpectedCalleeTLS =
      new GlobalVariable(M, PointerTy, false, GlobalValue::ExternalLinkage,
                         nullptr, CompilerRtAPINames::ExpectedCalleeTLS);
  ExpectedCalleeTLS->setThreadLocal(true);
  ExpectedCalleeTLS->setVisibility(llvm::GlobalValue::HiddenVisibility);
}

PreservedAnalyses PGOCtxProfLoweringPass::run(Module &M,
                                              ModuleAnalysisManager &MAM) {
  CtxInstrumentationLowerer Lowerer(M, MAM);
  bool Changed = false;
  for (auto &F : M)
    Changed |= Lowerer.lowerFunction(F);
  return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}

bool CtxInstrumentationLowerer::lowerFunction(Function &F) {
  if (F.isDeclaration())
    return false;
  auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  Value *Guid = nullptr;
  auto [NrCounters, NrCallsites] = getNrCountersAndCallsites(F);

  Value *Context = nullptr;
  Value *RealContext = nullptr;

  StructType *ThisContextType = nullptr;
  Value *TheRootContext = nullptr;
  Value *ExpectedCalleeTLSAddr = nullptr;
  Value *CallsiteInfoTLSAddr = nullptr;

  auto &Head = F.getEntryBlock();
  for (auto &I : Head) {
    // Find the increment intrinsic in the entry basic block.
    if (auto *Mark = dyn_cast<InstrProfIncrementInst>(&I)) {
      assert(Mark->getIndex()->isZero());

      IRBuilder<> Builder(Mark);
      // FIXME(mtrofin): use InstrProfSymtab::getCanonicalName
      Guid = Builder.getInt64(F.getGUID());
      // The type of the context of this function is now knowable since we have
      // NrCallsites and NrCounters. We delcare it here because it's more
      // convenient - we have the Builder.
      ThisContextType = StructType::get(
          F.getContext(),
          {ContextNodeTy, ArrayType::get(Builder.getInt64Ty(), NrCounters),
           ArrayType::get(Builder.getPtrTy(), NrCallsites)});
      // Figure out which way we obtain the context object for this function -
      // if it's an entrypoint, then we call StartCtx, otherwise GetCtx. In the
      // former case, we also set TheRootContext since we need to release it
      // at the end (plus it can be used to know if we have an entrypoint or a
      // regular function)
      auto Iter = ContextRootMap.find(&F);
      if (Iter != ContextRootMap.end()) {
        TheRootContext = Iter->second;
        Context = Builder.CreateCall(StartCtx, {TheRootContext, Guid,
                                                Builder.getInt32(NrCounters),
                                                Builder.getInt32(NrCallsites)});
        ORE.emit(
            [&] { return OptimizationRemark(DEBUG_TYPE, "Entrypoint", &F); });
      } else {
        Context =
            Builder.CreateCall(GetCtx, {&F, Guid, Builder.getInt32(NrCounters),
                                        Builder.getInt32(NrCallsites)});
        ORE.emit([&] {
          return OptimizationRemark(DEBUG_TYPE, "RegularFunction", &F);
        });
      }
      // The context could be scratch.
      auto *CtxAsInt = Builder.CreatePtrToInt(Context, Builder.getInt64Ty());
      if (NrCallsites > 0) {
        // Figure out which index of the TLS 2-element buffers to use.
        // Scratch context => we use index == 1. Real contexts => index == 0.
        auto *Index = Builder.CreateAnd(CtxAsInt, Builder.getInt64(1));
        // The GEPs corresponding to that index, in the respective TLS.
        ExpectedCalleeTLSAddr = Builder.CreateGEP(
            Builder.getInt8Ty()->getPointerTo(),
            Builder.CreateThreadLocalAddress(ExpectedCalleeTLS), {Index});
        CallsiteInfoTLSAddr = Builder.CreateGEP(
            Builder.getInt32Ty(),
            Builder.CreateThreadLocalAddress(CallsiteInfoTLS), {Index});
      }
      // Because the context pointer may have LSB set (to indicate scratch),
      // clear it for the value we use as base address for the counter vector.
      // This way, if later we want to have "real" (not clobbered) buffers
      // acting as scratch, the lowering (at least this part of it that deals
      // with counters) stays the same.
      RealContext = Builder.CreateIntToPtr(
          Builder.CreateAnd(CtxAsInt, Builder.getInt64(-2)),
          ThisContextType->getPointerTo());
      I.eraseFromParent();
      break;
    }
  }
  if (!Context) {
    ORE.emit([&] {
      return OptimizationRemarkMissed(DEBUG_TYPE, "Skip", &F)
             << "Function doesn't have instrumentation, skipping";
    });
    return false;
  }

  bool ContextWasReleased = false;
  for (auto &BB : F) {
    for (auto &I : llvm::make_early_inc_range(BB)) {
      if (auto *Instr = dyn_cast<InstrProfCntrInstBase>(&I)) {
        IRBuilder<> Builder(Instr);
        switch (Instr->getIntrinsicID()) {
        case llvm::Intrinsic::instrprof_increment:
        case llvm::Intrinsic::instrprof_increment_step: {
          // Increments (or increment-steps) are just a typical load - increment
          // - store in the RealContext.
          auto *AsStep = cast<InstrProfIncrementInst>(Instr);
          auto *GEP = Builder.CreateGEP(
              ThisContextType, RealContext,
              {Builder.getInt32(0), Builder.getInt32(1), AsStep->getIndex()});
          Builder.CreateStore(
              Builder.CreateAdd(Builder.CreateLoad(Builder.getInt64Ty(), GEP),
                                AsStep->getStep()),
              GEP);
        } break;
        case llvm::Intrinsic::instrprof_callsite:
          // callsite lowering: write the called value in the expected callee
          // TLS we treat the TLS as volatile because of signal handlers and to
          // avoid these being moved away from the callsite they decorate.
          auto *CSIntrinsic = dyn_cast<InstrProfCallsite>(Instr);
          Builder.CreateStore(CSIntrinsic->getCallee(), ExpectedCalleeTLSAddr,
                              true);
          // write the GEP of the slot in the sub-contexts portion of the
          // context in TLS. Now, here, we use the actual Context value - as
          // returned from compiler-rt - which may have the LSB set if the
          // Context was scratch. Since the header of the context object and
          // then the values are all 8-aligned (or, really, insofar as we care,
          // they are even) - if the context is scratch (meaning, an odd value),
          // so will the GEP. This is important because this is then visible to
          // compiler-rt which will produce scratch contexts for callers that
          // have a scratch context.
          Builder.CreateStore(
              Builder.CreateGEP(ThisContextType, Context,
                                {Builder.getInt32(0), Builder.getInt32(2),
                                 CSIntrinsic->getIndex()}),
              CallsiteInfoTLSAddr, true);
          break;
        }
        I.eraseFromParent();
      } else if (TheRootContext && isa<ReturnInst>(I)) {
        // Remember to release the context if we are an entrypoint.
        IRBuilder<> Builder(&I);
        Builder.CreateCall(ReleaseCtx, {TheRootContext});
        ContextWasReleased = true;
      }
    }
  }
  // FIXME: This would happen if the entrypoint tailcalls. A way to fix would be
  // to disallow this, (so this then stays as an error), another is to detect
  // that and then do a wrapper or disallow the tail call. This only affects
  // instrumentation, when we want to detect the call graph.
  if (TheRootContext && !ContextWasReleased)
    F.getContext().emitError(
        "[ctx_prof] An entrypoint was instrumented but it has no `ret` "
        "instructions above which to release the context: " +
        F.getName());
  return true;
}