1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
|
//===- InductiveRangeCheckElimination.cpp - -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
// three disjoint ranges. It does that in a way such that the loop running in
// the middle loop provably does not need range checks. As an example, it will
// convert
//
// len = < known positive >
// for (i = 0; i < n; i++) {
// if (0 <= i && i < len) {
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
//
// to
//
// len = < known positive >
// limit = smin(n, len)
// // no first segment
// for (i = 0; i < limit; i++) {
// if (0 <= i && i < len) { // this check is fully redundant
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
// for (i = limit; i < n; i++) {
// if (0 <= i && i < len) {
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopConstrainer.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <optional>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
cl::init(64));
static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
cl::init(false));
static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
cl::init(false));
static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
cl::Hidden, cl::init(false));
static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
cl::Hidden, cl::init(10));
static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
cl::Hidden, cl::init(true));
static cl::opt<bool> AllowNarrowLatchCondition(
"irce-allow-narrow-latch", cl::Hidden, cl::init(true),
cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
"with narrow latch condition."));
static cl::opt<unsigned> MaxTypeSizeForOverflowCheck(
"irce-max-type-size-for-overflow-check", cl::Hidden, cl::init(32),
cl::desc(
"Maximum size of range check type for which can be produced runtime "
"overflow check of its limit's computation"));
static cl::opt<bool>
PrintScaledBoundaryRangeChecks("irce-print-scaled-boundary-range-checks",
cl::Hidden, cl::init(false));
#define DEBUG_TYPE "irce"
namespace {
/// An inductive range check is conditional branch in a loop with
///
/// 1. a very cold successor (i.e. the branch jumps to that successor very
/// rarely)
///
/// and
///
/// 2. a condition that is provably true for some contiguous range of values
/// taken by the containing loop's induction variable.
///
class InductiveRangeCheck {
const SCEV *Begin = nullptr;
const SCEV *Step = nullptr;
const SCEV *End = nullptr;
Use *CheckUse = nullptr;
static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End);
static void
extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
SmallVectorImpl<InductiveRangeCheck> &Checks,
SmallPtrSetImpl<Value *> &Visited);
static bool parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
ICmpInst::Predicate Pred, ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End);
static bool reassociateSubLHS(Loop *L, Value *VariantLHS, Value *InvariantRHS,
ICmpInst::Predicate Pred, ScalarEvolution &SE,
const SCEVAddRecExpr *&Index, const SCEV *&End);
public:
const SCEV *getBegin() const { return Begin; }
const SCEV *getStep() const { return Step; }
const SCEV *getEnd() const { return End; }
void print(raw_ostream &OS) const {
OS << "InductiveRangeCheck:\n";
OS << " Begin: ";
Begin->print(OS);
OS << " Step: ";
Step->print(OS);
OS << " End: ";
End->print(OS);
OS << "\n CheckUse: ";
getCheckUse()->getUser()->print(OS);
OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
}
LLVM_DUMP_METHOD
void dump() {
print(dbgs());
}
Use *getCheckUse() const { return CheckUse; }
/// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
/// R.getEnd() le R.getBegin(), then R denotes the empty range.
class Range {
const SCEV *Begin;
const SCEV *End;
public:
Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
assert(Begin->getType() == End->getType() && "ill-typed range!");
}
Type *getType() const { return Begin->getType(); }
const SCEV *getBegin() const { return Begin; }
const SCEV *getEnd() const { return End; }
bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
if (Begin == End)
return true;
if (IsSigned)
return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
else
return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
}
};
/// This is the value the condition of the branch needs to evaluate to for the
/// branch to take the hot successor (see (1) above).
bool getPassingDirection() { return true; }
/// Computes a range for the induction variable (IndVar) in which the range
/// check is redundant and can be constant-folded away. The induction
/// variable is not required to be the canonical {0,+,1} induction variable.
std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
const SCEVAddRecExpr *IndVar,
bool IsLatchSigned) const;
/// Parse out a set of inductive range checks from \p BI and append them to \p
/// Checks.
///
/// NB! There may be conditions feeding into \p BI that aren't inductive range
/// checks, and hence don't end up in \p Checks.
static void extractRangeChecksFromBranch(
BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed);
};
class InductiveRangeCheckElimination {
ScalarEvolution &SE;
BranchProbabilityInfo *BPI;
DominatorTree &DT;
LoopInfo &LI;
using GetBFIFunc =
std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>;
GetBFIFunc GetBFI;
// Returns true if it is profitable to do a transform basing on estimation of
// number of iterations.
bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
public:
InductiveRangeCheckElimination(ScalarEvolution &SE,
BranchProbabilityInfo *BPI, DominatorTree &DT,
LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt)
: SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
};
} // end anonymous namespace
/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
/// be interpreted as a range check, return false. Otherwise set `Index` to the
/// SCEV being range checked, and set `End` to the upper or lower limit `Index`
/// is being range checked.
bool InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End) {
auto IsLoopInvariant = [&SE, L](Value *V) {
return SE.isLoopInvariant(SE.getSCEV(V), L);
};
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
if (!LHS->getType()->isIntegerTy())
return false;
// Canonicalize to the `Index Pred Invariant` comparison
if (IsLoopInvariant(LHS)) {
std::swap(LHS, RHS);
Pred = CmpInst::getSwappedPredicate(Pred);
} else if (!IsLoopInvariant(RHS))
// Both LHS and RHS are loop variant
return false;
if (parseIvAgaisntLimit(L, LHS, RHS, Pred, SE, Index, End))
return true;
if (reassociateSubLHS(L, LHS, RHS, Pred, SE, Index, End))
return true;
// TODO: support ReassociateAddLHS
return false;
}
// Try to parse range check in the form of "IV vs Limit"
bool InductiveRangeCheck::parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
ICmpInst::Predicate Pred,
ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End) {
auto SIntMaxSCEV = [&](Type *T) {
unsigned BitWidth = cast<IntegerType>(T)->getBitWidth();
return SE.getConstant(APInt::getSignedMaxValue(BitWidth));
};
const auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(LHS));
if (!AddRec)
return false;
// We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
// We can potentially do much better here.
// If we want to adjust upper bound for the unsigned range check as we do it
// for signed one, we will need to pick Unsigned max
switch (Pred) {
default:
return false;
case ICmpInst::ICMP_SGE:
if (match(RHS, m_ConstantInt<0>())) {
Index = AddRec;
End = SIntMaxSCEV(Index->getType());
return true;
}
return false;
case ICmpInst::ICMP_SGT:
if (match(RHS, m_ConstantInt<-1>())) {
Index = AddRec;
End = SIntMaxSCEV(Index->getType());
return true;
}
return false;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT:
Index = AddRec;
End = SE.getSCEV(RHS);
return true;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE:
const SCEV *One = SE.getOne(RHS->getType());
const SCEV *RHSS = SE.getSCEV(RHS);
bool Signed = Pred == ICmpInst::ICMP_SLE;
if (SE.willNotOverflow(Instruction::BinaryOps::Add, Signed, RHSS, One)) {
Index = AddRec;
End = SE.getAddExpr(RHSS, One);
return true;
}
return false;
}
llvm_unreachable("default clause returns!");
}
// Try to parse range check in the form of "IV - Offset vs Limit" or "Offset -
// IV vs Limit"
bool InductiveRangeCheck::reassociateSubLHS(
Loop *L, Value *VariantLHS, Value *InvariantRHS, ICmpInst::Predicate Pred,
ScalarEvolution &SE, const SCEVAddRecExpr *&Index, const SCEV *&End) {
Value *LHS, *RHS;
if (!match(VariantLHS, m_Sub(m_Value(LHS), m_Value(RHS))))
return false;
const SCEV *IV = SE.getSCEV(LHS);
const SCEV *Offset = SE.getSCEV(RHS);
const SCEV *Limit = SE.getSCEV(InvariantRHS);
bool OffsetSubtracted = false;
if (SE.isLoopInvariant(IV, L))
// "Offset - IV vs Limit"
std::swap(IV, Offset);
else if (SE.isLoopInvariant(Offset, L))
// "IV - Offset vs Limit"
OffsetSubtracted = true;
else
return false;
const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IV);
if (!AddRec)
return false;
// In order to turn "IV - Offset < Limit" into "IV < Limit + Offset", we need
// to be able to freely move values from left side of inequality to right side
// (just as in normal linear arithmetics). Overflows make things much more
// complicated, so we want to avoid this.
//
// Let's prove that the initial subtraction doesn't overflow with all IV's
// values from the safe range constructed for that check.
//
// [Case 1] IV - Offset < Limit
// It doesn't overflow if:
// SINT_MIN <= IV - Offset <= SINT_MAX
// In terms of scaled SINT we need to prove:
// SINT_MIN + Offset <= IV <= SINT_MAX + Offset
// Safe range will be constructed:
// 0 <= IV < Limit + Offset
// It means that 'IV - Offset' doesn't underflow, because:
// SINT_MIN + Offset < 0 <= IV
// and doesn't overflow:
// IV < Limit + Offset <= SINT_MAX + Offset
//
// [Case 2] Offset - IV > Limit
// It doesn't overflow if:
// SINT_MIN <= Offset - IV <= SINT_MAX
// In terms of scaled SINT we need to prove:
// -SINT_MIN >= IV - Offset >= -SINT_MAX
// Offset - SINT_MIN >= IV >= Offset - SINT_MAX
// Safe range will be constructed:
// 0 <= IV < Offset - Limit
// It means that 'Offset - IV' doesn't underflow, because
// Offset - SINT_MAX < 0 <= IV
// and doesn't overflow:
// IV < Offset - Limit <= Offset - SINT_MIN
//
// For the computed upper boundary of the IV's range (Offset +/- Limit) we
// don't know exactly whether it overflows or not. So if we can't prove this
// fact at compile time, we scale boundary computations to a wider type with
// the intention to add runtime overflow check.
auto getExprScaledIfOverflow = [&](Instruction::BinaryOps BinOp,
const SCEV *LHS,
const SCEV *RHS) -> const SCEV * {
const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
SCEV::NoWrapFlags, unsigned);
switch (BinOp) {
default:
llvm_unreachable("Unsupported binary op");
case Instruction::Add:
Operation = &ScalarEvolution::getAddExpr;
break;
case Instruction::Sub:
Operation = &ScalarEvolution::getMinusSCEV;
break;
}
if (SE.willNotOverflow(BinOp, ICmpInst::isSigned(Pred), LHS, RHS,
cast<Instruction>(VariantLHS)))
return (SE.*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0);
// We couldn't prove that the expression does not overflow.
// Than scale it to a wider type to check overflow at runtime.
auto *Ty = cast<IntegerType>(LHS->getType());
if (Ty->getBitWidth() > MaxTypeSizeForOverflowCheck)
return nullptr;
auto WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
return (SE.*Operation)(SE.getSignExtendExpr(LHS, WideTy),
SE.getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap,
0);
};
if (OffsetSubtracted)
// "IV - Offset < Limit" -> "IV" < Offset + Limit
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Offset, Limit);
else {
// "Offset - IV > Limit" -> "IV" < Offset - Limit
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Sub, Offset, Limit);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
// "Expr <= Limit" -> "Expr < Limit + 1"
if (Pred == ICmpInst::ICMP_SLE && Limit)
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Limit,
SE.getOne(Limit->getType()));
if (Limit) {
Index = AddRec;
End = Limit;
return true;
}
}
return false;
}
void InductiveRangeCheck::extractRangeChecksFromCond(
Loop *L, ScalarEvolution &SE, Use &ConditionUse,
SmallVectorImpl<InductiveRangeCheck> &Checks,
SmallPtrSetImpl<Value *> &Visited) {
Value *Condition = ConditionUse.get();
if (!Visited.insert(Condition).second)
return;
// TODO: Do the same for OR, XOR, NOT etc?
if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
Checks, Visited);
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
Checks, Visited);
return;
}
ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
if (!ICI)
return;
const SCEV *End = nullptr;
const SCEVAddRecExpr *IndexAddRec = nullptr;
if (!parseRangeCheckICmp(L, ICI, SE, IndexAddRec, End))
return;
assert(IndexAddRec && "IndexAddRec was not computed");
assert(End && "End was not computed");
if ((IndexAddRec->getLoop() != L) || !IndexAddRec->isAffine())
return;
InductiveRangeCheck IRC;
IRC.End = End;
IRC.Begin = IndexAddRec->getStart();
IRC.Step = IndexAddRec->getStepRecurrence(SE);
IRC.CheckUse = &ConditionUse;
Checks.push_back(IRC);
}
void InductiveRangeCheck::extractRangeChecksFromBranch(
BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed) {
if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
return;
unsigned IndexLoopSucc = L->contains(BI->getSuccessor(0)) ? 0 : 1;
assert(L->contains(BI->getSuccessor(IndexLoopSucc)) &&
"No edges coming to loop?");
BranchProbability LikelyTaken(15, 16);
if (!SkipProfitabilityChecks && BPI &&
BPI->getEdgeProbability(BI->getParent(), IndexLoopSucc) < LikelyTaken)
return;
// IRCE expects branch's true edge comes to loop. Invert branch for opposite
// case.
if (IndexLoopSucc != 0) {
IRBuilder<> Builder(BI);
InvertBranch(BI, Builder);
if (BPI)
BPI->swapSuccEdgesProbabilities(BI->getParent());
Changed = true;
}
SmallPtrSet<Value *, 8> Visited;
InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
Checks, Visited);
}
/// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
/// signed or unsigned extension of \p S to type \p Ty.
static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
bool Signed) {
return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
}
// Compute a safe set of limits for the main loop to run in -- effectively the
// intersection of `Range' and the iteration space of the original loop.
// Return std::nullopt if unable to compute the set of subranges.
static std::optional<LoopConstrainer::SubRanges>
calculateSubRanges(ScalarEvolution &SE, const Loop &L,
InductiveRangeCheck::Range &Range,
const LoopStructure &MainLoopStructure) {
auto *RTy = cast<IntegerType>(Range.getType());
// We only support wide range checks and narrow latches.
if (!AllowNarrowLatchCondition && RTy != MainLoopStructure.ExitCountTy)
return std::nullopt;
if (RTy->getBitWidth() < MainLoopStructure.ExitCountTy->getBitWidth())
return std::nullopt;
LoopConstrainer::SubRanges Result;
bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
// I think we can be more aggressive here and make this nuw / nsw if the
// addition that feeds into the icmp for the latch's terminating branch is nuw
// / nsw. In any case, a wrapping 2's complement addition is safe.
const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
RTy, SE, IsSignedPredicate);
const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
SE, IsSignedPredicate);
bool Increasing = MainLoopStructure.IndVarIncreasing;
// We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
// [Smallest, GreatestSeen] is the range of values the induction variable
// takes.
const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
const SCEV *One = SE.getOne(RTy);
if (Increasing) {
Smallest = Start;
Greatest = End;
// No overflow, because the range [Smallest, GreatestSeen] is not empty.
GreatestSeen = SE.getMinusSCEV(End, One);
} else {
// These two computations may sign-overflow. Here is why that is okay:
//
// We know that the induction variable does not sign-overflow on any
// iteration except the last one, and it starts at `Start` and ends at
// `End`, decrementing by one every time.
//
// * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
// induction variable is decreasing we know that the smallest value
// the loop body is actually executed with is `INT_SMIN` == `Smallest`.
//
// * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
// that case, `Clamp` will always return `Smallest` and
// [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
// will be an empty range. Returning an empty range is always safe.
Smallest = SE.getAddExpr(End, One);
Greatest = SE.getAddExpr(Start, One);
GreatestSeen = Start;
}
auto Clamp = [&SE, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
return IsSignedPredicate
? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
: SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
};
// In some cases we can prove that we don't need a pre or post loop.
ICmpInst::Predicate PredLE =
IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
ICmpInst::Predicate PredLT =
IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
bool ProvablyNoPreloop =
SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
if (!ProvablyNoPreloop)
Result.LowLimit = Clamp(Range.getBegin());
bool ProvablyNoPostLoop =
SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
if (!ProvablyNoPostLoop)
Result.HighLimit = Clamp(Range.getEnd());
return Result;
}
/// Computes and returns a range of values for the induction variable (IndVar)
/// in which the range check can be safely elided. If it cannot compute such a
/// range, returns std::nullopt.
std::optional<InductiveRangeCheck::Range>
InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
const SCEVAddRecExpr *IndVar,
bool IsLatchSigned) const {
// We can deal when types of latch check and range checks don't match in case
// if latch check is more narrow.
auto *IVType = dyn_cast<IntegerType>(IndVar->getType());
auto *RCType = dyn_cast<IntegerType>(getBegin()->getType());
auto *EndType = dyn_cast<IntegerType>(getEnd()->getType());
// Do not work with pointer types.
if (!IVType || !RCType)
return std::nullopt;
if (IVType->getBitWidth() > RCType->getBitWidth())
return std::nullopt;
// IndVar is of the form "A + B * I" (where "I" is the canonical induction
// variable, that may or may not exist as a real llvm::Value in the loop) and
// this inductive range check is a range check on the "C + D * I" ("C" is
// getBegin() and "D" is getStep()). We rewrite the value being range
// checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
//
// The actual inequalities we solve are of the form
//
// 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
//
// Here L stands for upper limit of the safe iteration space.
// The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
// overflows when calculating (0 - M) and (L - M) we, depending on type of
// IV's iteration space, limit the calculations by borders of the iteration
// space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
// If we figured out that "anything greater than (-M) is safe", we strengthen
// this to "everything greater than 0 is safe", assuming that values between
// -M and 0 just do not exist in unsigned iteration space, and we don't want
// to deal with overflown values.
if (!IndVar->isAffine())
return std::nullopt;
const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
const SCEVConstant *B = dyn_cast<SCEVConstant>(
NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
if (!B)
return std::nullopt;
assert(!B->isZero() && "Recurrence with zero step?");
const SCEV *C = getBegin();
const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
if (D != B)
return std::nullopt;
assert(!D->getValue()->isZero() && "Recurrence with zero step?");
unsigned BitWidth = RCType->getBitWidth();
const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
const SCEV *SIntMin = SE.getConstant(APInt::getSignedMinValue(BitWidth));
// Subtract Y from X so that it does not go through border of the IV
// iteration space. Mathematically, it is equivalent to:
//
// ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
//
// In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
// any width of bit grid). But after we take min/max, the result is
// guaranteed to be within [INT_MIN, INT_MAX].
//
// In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
// values, depending on type of latch condition that defines IV iteration
// space.
auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
// FIXME: The current implementation assumes that X is in [0, SINT_MAX].
// This is required to ensure that SINT_MAX - X does not overflow signed and
// that X - Y does not overflow unsigned if Y is negative. Can we lift this
// restriction and make it work for negative X either?
if (IsLatchSigned) {
// X is a number from signed range, Y is interpreted as signed.
// Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
// thing we should care about is that we didn't cross SINT_MAX.
// So, if Y is positive, we subtract Y safely.
// Rule 1: Y > 0 ---> Y.
// If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
// Rule 2: Y >=s (X - SINT_MAX) ---> Y.
// If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
// Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
// It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
SCEV::FlagNSW);
} else
// X is a number from unsigned range, Y is interpreted as signed.
// Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
// thing we should care about is that we didn't cross zero.
// So, if Y is negative, we subtract Y safely.
// Rule 1: Y <s 0 ---> Y.
// If 0 <= Y <= X, we subtract Y safely.
// Rule 2: Y <=s X ---> Y.
// If 0 <= X < Y, we should stop at 0 and can only subtract X.
// Rule 3: Y >s X ---> X.
// It gives us smin(X, Y) to subtract in all cases.
return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
};
const SCEV *M = SE.getMinusSCEV(C, A);
const SCEV *Zero = SE.getZero(M->getType());
// This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
auto SCEVCheckNonNegative = [&](const SCEV *X) {
const Loop *L = IndVar->getLoop();
const SCEV *Zero = SE.getZero(X->getType());
const SCEV *One = SE.getOne(X->getType());
// Can we trivially prove that X is a non-negative or negative value?
if (isKnownNonNegativeInLoop(X, L, SE))
return One;
else if (isKnownNegativeInLoop(X, L, SE))
return Zero;
// If not, we will have to figure it out during the execution.
// Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
const SCEV *NegOne = SE.getNegativeSCEV(One);
return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
};
// This function returns SCEV equal to 1 if X will not overflow in terms of
// range check type, 0 otherwise.
auto SCEVCheckWillNotOverflow = [&](const SCEV *X) {
// X doesn't overflow if SINT_MAX >= X.
// Then if (SINT_MAX - X) >= 0, X doesn't overflow
const SCEV *SIntMaxExt = SE.getSignExtendExpr(SIntMax, X->getType());
const SCEV *OverflowCheck =
SCEVCheckNonNegative(SE.getMinusSCEV(SIntMaxExt, X));
// X doesn't underflow if X >= SINT_MIN.
// Then if (X - SINT_MIN) >= 0, X doesn't underflow
const SCEV *SIntMinExt = SE.getSignExtendExpr(SIntMin, X->getType());
const SCEV *UnderflowCheck =
SCEVCheckNonNegative(SE.getMinusSCEV(X, SIntMinExt));
return SE.getMulExpr(OverflowCheck, UnderflowCheck);
};
// FIXME: Current implementation of ClampedSubtract implicitly assumes that
// X is non-negative (in sense of a signed value). We need to re-implement
// this function in a way that it will correctly handle negative X as well.
// We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
// end up with a negative X and produce wrong results. So currently we ensure
// that if getEnd() is negative then both ends of the safe range are zero.
// Note that this may pessimize elimination of unsigned range checks against
// negative values.
const SCEV *REnd = getEnd();
const SCEV *EndWillNotOverflow = SE.getOne(RCType);
auto PrintRangeCheck = [&](raw_ostream &OS) {
auto L = IndVar->getLoop();
OS << "irce: in function ";
OS << L->getHeader()->getParent()->getName();
OS << ", in ";
L->print(OS);
OS << "there is range check with scaled boundary:\n";
print(OS);
};
if (EndType->getBitWidth() > RCType->getBitWidth()) {
assert(EndType->getBitWidth() == RCType->getBitWidth() * 2);
if (PrintScaledBoundaryRangeChecks)
PrintRangeCheck(errs());
// End is computed with extended type but will be truncated to a narrow one
// type of range check. Therefore we need a check that the result will not
// overflow in terms of narrow type.
EndWillNotOverflow =
SE.getTruncateExpr(SCEVCheckWillNotOverflow(REnd), RCType);
REnd = SE.getTruncateExpr(REnd, RCType);
}
const SCEV *RuntimeChecks =
SE.getMulExpr(SCEVCheckNonNegative(REnd), EndWillNotOverflow);
const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), RuntimeChecks);
const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), RuntimeChecks);
return InductiveRangeCheck::Range(Begin, End);
}
static std::optional<InductiveRangeCheck::Range>
IntersectSignedRange(ScalarEvolution &SE,
const std::optional<InductiveRangeCheck::Range> &R1,
const InductiveRangeCheck::Range &R2) {
if (R2.isEmpty(SE, /* IsSigned */ true))
return std::nullopt;
if (!R1)
return R2;
auto &R1Value = *R1;
// We never return empty ranges from this function, and R1 is supposed to be
// a result of intersection. Thus, R1 is never empty.
assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
"We should never have empty R1!");
// TODO: we could widen the smaller range and have this work; but for now we
// bail out to keep things simple.
if (R1Value.getType() != R2.getType())
return std::nullopt;
const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
// If the resulting range is empty, just return std::nullopt.
auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
if (Ret.isEmpty(SE, /* IsSigned */ true))
return std::nullopt;
return Ret;
}
static std::optional<InductiveRangeCheck::Range>
IntersectUnsignedRange(ScalarEvolution &SE,
const std::optional<InductiveRangeCheck::Range> &R1,
const InductiveRangeCheck::Range &R2) {
if (R2.isEmpty(SE, /* IsSigned */ false))
return std::nullopt;
if (!R1)
return R2;
auto &R1Value = *R1;
// We never return empty ranges from this function, and R1 is supposed to be
// a result of intersection. Thus, R1 is never empty.
assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
"We should never have empty R1!");
// TODO: we could widen the smaller range and have this work; but for now we
// bail out to keep things simple.
if (R1Value.getType() != R2.getType())
return std::nullopt;
const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
// If the resulting range is empty, just return std::nullopt.
auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
if (Ret.isEmpty(SE, /* IsSigned */ false))
return std::nullopt;
return Ret;
}
PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
// There are no loops in the function. Return before computing other expensive
// analyses.
if (LI.empty())
return PreservedAnalyses::all();
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
// Get BFI analysis result on demand. Please note that modification of
// CFG invalidates this analysis and we should handle it.
auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
return AM.getResult<BlockFrequencyAnalysis>(F);
};
InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
bool Changed = false;
{
bool CFGChanged = false;
for (const auto &L : LI) {
CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
/*PreserveLCSSA=*/false);
Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
}
Changed |= CFGChanged;
if (CFGChanged && !SkipProfitabilityChecks) {
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<BlockFrequencyAnalysis>();
AM.invalidate(F, PA);
}
}
SmallPriorityWorklist<Loop *, 4> Worklist;
appendLoopsToWorklist(LI, Worklist);
auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
if (!IsSubloop)
appendLoopsToWorklist(*NL, Worklist);
};
while (!Worklist.empty()) {
Loop *L = Worklist.pop_back_val();
if (IRCE.run(L, LPMAddNewLoop)) {
Changed = true;
if (!SkipProfitabilityChecks) {
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<BlockFrequencyAnalysis>();
AM.invalidate(F, PA);
}
}
}
if (!Changed)
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
bool
InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
LoopStructure &LS) {
if (SkipProfitabilityChecks)
return true;
if (GetBFI) {
BlockFrequencyInfo &BFI = (*GetBFI)();
uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
<< "the estimated number of iterations basing on "
"frequency info is " << (hFreq / phFreq) << "\n";);
return false;
}
return true;
}
if (!BPI)
return true;
BranchProbability ExitProbability =
BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
<< "the exit probability is too big " << ExitProbability
<< "\n";);
return false;
}
return true;
}
bool InductiveRangeCheckElimination::run(
Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
if (L->getBlocks().size() >= LoopSizeCutoff) {
LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
return false;
}
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
return false;
}
LLVMContext &Context = Preheader->getContext();
SmallVector<InductiveRangeCheck, 16> RangeChecks;
bool Changed = false;
for (auto *BBI : L->getBlocks())
if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
RangeChecks, Changed);
if (RangeChecks.empty())
return Changed;
auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
OS << "irce: looking at loop "; L->print(OS);
OS << "irce: loop has " << RangeChecks.size()
<< " inductive range checks: \n";
for (InductiveRangeCheck &IRC : RangeChecks)
IRC.print(OS);
};
LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
if (PrintRangeChecks)
PrintRecognizedRangeChecks(errs());
const char *FailureReason = nullptr;
std::optional<LoopStructure> MaybeLoopStructure =
LoopStructure::parseLoopStructure(SE, *L, AllowUnsignedLatchCondition,
FailureReason);
if (!MaybeLoopStructure) {
LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
<< FailureReason << "\n";);
return Changed;
}
LoopStructure LS = *MaybeLoopStructure;
if (!isProfitableToTransform(*L, LS))
return Changed;
const SCEVAddRecExpr *IndVar =
cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
std::optional<InductiveRangeCheck::Range> SafeIterRange;
SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
// Basing on the type of latch predicate, we interpret the IV iteration range
// as signed or unsigned range. We use different min/max functions (signed or
// unsigned) when intersecting this range with safe iteration ranges implied
// by range checks.
auto IntersectRange =
LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
for (InductiveRangeCheck &IRC : RangeChecks) {
auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
LS.IsSignedPredicate);
if (Result) {
auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result);
if (MaybeSafeIterRange) {
assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) &&
"We should never return empty ranges!");
RangeChecksToEliminate.push_back(IRC);
SafeIterRange = *MaybeSafeIterRange;
}
}
}
if (!SafeIterRange)
return Changed;
std::optional<LoopConstrainer::SubRanges> MaybeSR =
calculateSubRanges(SE, *L, *SafeIterRange, LS);
if (!MaybeSR) {
LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
return false;
}
LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
SafeIterRange->getBegin()->getType(), *MaybeSR);
if (LC.run()) {
Changed = true;
auto PrintConstrainedLoopInfo = [L]() {
dbgs() << "irce: in function ";
dbgs() << L->getHeader()->getParent()->getName() << ": ";
dbgs() << "constrained ";
L->print(dbgs());
};
LLVM_DEBUG(PrintConstrainedLoopInfo());
if (PrintChangedLoops)
PrintConstrainedLoopInfo();
// Optimize away the now-redundant range checks.
for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
? ConstantInt::getTrue(Context)
: ConstantInt::getFalse(Context);
IRC.getCheckUse()->set(FoldedRangeCheck);
}
}
return Changed;
}
|