File: MemCpyOptimizer.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (2135 lines) | stat: -rw-r--r-- 83,495 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs various transformations related to eliminating memcpy
// calls, or transforming sets of stores into memset's.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <optional>

using namespace llvm;

#define DEBUG_TYPE "memcpyopt"

static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
    "enable-memcpyopt-without-libcalls", cl::Hidden,
    cl::desc("Enable memcpyopt even when libcalls are disabled"));

STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
STATISTIC(NumStackMove, "Number of stack-move optimizations performed");

namespace {

/// Represents a range of memset'd bytes with the ByteVal value.
/// This allows us to analyze stores like:
///   store 0 -> P+1
///   store 0 -> P+0
///   store 0 -> P+3
///   store 0 -> P+2
/// which sometimes happens with stores to arrays of structs etc.  When we see
/// the first store, we make a range [1, 2).  The second store extends the range
/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
/// two ranges into [0, 3) which is memset'able.
struct MemsetRange {
  // Start/End - A semi range that describes the span that this range covers.
  // The range is closed at the start and open at the end: [Start, End).
  int64_t Start, End;

  /// StartPtr - The getelementptr instruction that points to the start of the
  /// range.
  Value *StartPtr;

  /// Alignment - The known alignment of the first store.
  MaybeAlign Alignment;

  /// TheStores - The actual stores that make up this range.
  SmallVector<Instruction *, 16> TheStores;

  bool isProfitableToUseMemset(const DataLayout &DL) const;
};

} // end anonymous namespace

bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
  // If we found more than 4 stores to merge or 16 bytes, use memset.
  if (TheStores.size() >= 4 || End - Start >= 16)
    return true;

  // If there is nothing to merge, don't do anything.
  if (TheStores.size() < 2)
    return false;

  // If any of the stores are a memset, then it is always good to extend the
  // memset.
  for (Instruction *SI : TheStores)
    if (!isa<StoreInst>(SI))
      return true;

  // Assume that the code generator is capable of merging pairs of stores
  // together if it wants to.
  if (TheStores.size() == 2)
    return false;

  // If we have fewer than 8 stores, it can still be worthwhile to do this.
  // For example, merging 4 i8 stores into an i32 store is useful almost always.
  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
  // memset will be split into 2 32-bit stores anyway) and doing so can
  // pessimize the llvm optimizer.
  //
  // Since we don't have perfect knowledge here, make some assumptions: assume
  // the maximum GPR width is the same size as the largest legal integer
  // size. If so, check to see whether we will end up actually reducing the
  // number of stores used.
  unsigned Bytes = unsigned(End - Start);
  unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
  if (MaxIntSize == 0)
    MaxIntSize = 1;
  unsigned NumPointerStores = Bytes / MaxIntSize;

  // Assume the remaining bytes if any are done a byte at a time.
  unsigned NumByteStores = Bytes % MaxIntSize;

  // If we will reduce the # stores (according to this heuristic), do the
  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
  // etc.
  return TheStores.size() > NumPointerStores + NumByteStores;
}

namespace {

class MemsetRanges {
  using range_iterator = SmallVectorImpl<MemsetRange>::iterator;

  /// A sorted list of the memset ranges.
  SmallVector<MemsetRange, 8> Ranges;

  const DataLayout &DL;

public:
  MemsetRanges(const DataLayout &DL) : DL(DL) {}

  using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;

  const_iterator begin() const { return Ranges.begin(); }
  const_iterator end() const { return Ranges.end(); }
  bool empty() const { return Ranges.empty(); }

  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
    if (auto *SI = dyn_cast<StoreInst>(Inst))
      addStore(OffsetFromFirst, SI);
    else
      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
  }

  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
    TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
    assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
    addRange(OffsetFromFirst, StoreSize.getFixedValue(),
             SI->getPointerOperand(), SI->getAlign(), SI);
  }

  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
  }

  void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
                Instruction *Inst);
};

} // end anonymous namespace

/// Add a new store to the MemsetRanges data structure.  This adds a
/// new range for the specified store at the specified offset, merging into
/// existing ranges as appropriate.
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
                            MaybeAlign Alignment, Instruction *Inst) {
  int64_t End = Start + Size;

  range_iterator I = partition_point(
      Ranges, [=](const MemsetRange &O) { return O.End < Start; });

  // We now know that I == E, in which case we didn't find anything to merge
  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
  // to insert a new range.  Handle this now.
  if (I == Ranges.end() || End < I->Start) {
    MemsetRange &R = *Ranges.insert(I, MemsetRange());
    R.Start = Start;
    R.End = End;
    R.StartPtr = Ptr;
    R.Alignment = Alignment;
    R.TheStores.push_back(Inst);
    return;
  }

  // This store overlaps with I, add it.
  I->TheStores.push_back(Inst);

  // At this point, we may have an interval that completely contains our store.
  // If so, just add it to the interval and return.
  if (I->Start <= Start && I->End >= End)
    return;

  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
  // but is not entirely contained within the range.

  // See if the range extends the start of the range.  In this case, it couldn't
  // possibly cause it to join the prior range, because otherwise we would have
  // stopped on *it*.
  if (Start < I->Start) {
    I->Start = Start;
    I->StartPtr = Ptr;
    I->Alignment = Alignment;
  }

  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
  // End.
  if (End > I->End) {
    I->End = End;
    range_iterator NextI = I;
    while (++NextI != Ranges.end() && End >= NextI->Start) {
      // Merge the range in.
      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
      if (NextI->End > I->End)
        I->End = NextI->End;
      Ranges.erase(NextI);
      NextI = I;
    }
  }
}

//===----------------------------------------------------------------------===//
//                         MemCpyOptLegacyPass Pass
//===----------------------------------------------------------------------===//

// Check that V is either not accessible by the caller, or unwinding cannot
// occur between Start and End.
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
                                         Instruction *End) {
  assert(Start->getParent() == End->getParent() && "Must be in same block");
  // Function can't unwind, so it also can't be visible through unwinding.
  if (Start->getFunction()->doesNotThrow())
    return false;

  // Object is not visible on unwind.
  // TODO: Support RequiresNoCaptureBeforeUnwind case.
  bool RequiresNoCaptureBeforeUnwind;
  if (isNotVisibleOnUnwind(getUnderlyingObject(V),
                           RequiresNoCaptureBeforeUnwind) &&
      !RequiresNoCaptureBeforeUnwind)
    return false;

  // Check whether there are any unwinding instructions in the range.
  return any_of(make_range(Start->getIterator(), End->getIterator()),
                [](const Instruction &I) { return I.mayThrow(); });
}

void MemCpyOptPass::eraseInstruction(Instruction *I) {
  MSSAU->removeMemoryAccess(I);
  I->eraseFromParent();
}

// Check for mod or ref of Loc between Start and End, excluding both boundaries.
// Start and End must be in the same block.
// If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
// intrinsic and store it inside SkippedLifetimeStart.
static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc,
                            const MemoryUseOrDef *Start,
                            const MemoryUseOrDef *End,
                            Instruction **SkippedLifetimeStart = nullptr) {
  assert(Start->getBlock() == End->getBlock() && "Only local supported");
  for (const MemoryAccess &MA :
       make_range(++Start->getIterator(), End->getIterator())) {
    Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst();
    if (isModOrRefSet(AA.getModRefInfo(I, Loc))) {
      auto *II = dyn_cast<IntrinsicInst>(I);
      if (II && II->getIntrinsicID() == Intrinsic::lifetime_start &&
          SkippedLifetimeStart && !*SkippedLifetimeStart) {
        *SkippedLifetimeStart = I;
        continue;
      }

      return true;
    }
  }
  return false;
}

// Check for mod of Loc between Start and End, excluding both boundaries.
// Start and End can be in different blocks.
static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA,
                           MemoryLocation Loc, const MemoryUseOrDef *Start,
                           const MemoryUseOrDef *End) {
  if (isa<MemoryUse>(End)) {
    // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
    // Manually check read accesses between Start and End, if they are in the
    // same block, for clobbers. Otherwise assume Loc is clobbered.
    return Start->getBlock() != End->getBlock() ||
           any_of(
               make_range(std::next(Start->getIterator()), End->getIterator()),
               [&AA, Loc](const MemoryAccess &Acc) {
                 if (isa<MemoryUse>(&Acc))
                   return false;
                 Instruction *AccInst =
                     cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
                 return isModSet(AA.getModRefInfo(AccInst, Loc));
               });
  }

  // TODO: Only walk until we hit Start.
  MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
      End->getDefiningAccess(), Loc, AA);
  return !MSSA->dominates(Clobber, Start);
}

// Update AA metadata
static void combineAAMetadata(Instruction *ReplInst, Instruction *I) {
  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
  // handled here, but combineMetadata doesn't support them yet
  unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
                         LLVMContext::MD_noalias,
                         LLVMContext::MD_invariant_group,
                         LLVMContext::MD_access_group};
  combineMetadata(ReplInst, I, KnownIDs, true);
}

/// When scanning forward over instructions, we look for some other patterns to
/// fold away. In particular, this looks for stores to neighboring locations of
/// memory. If it sees enough consecutive ones, it attempts to merge them
/// together into a memcpy/memset.
Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
                                                 Value *StartPtr,
                                                 Value *ByteVal) {
  const DataLayout &DL = StartInst->getDataLayout();

  // We can't track scalable types
  if (auto *SI = dyn_cast<StoreInst>(StartInst))
    if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
      return nullptr;

  // Okay, so we now have a single store that can be splatable.  Scan to find
  // all subsequent stores of the same value to offset from the same pointer.
  // Join these together into ranges, so we can decide whether contiguous blocks
  // are stored.
  MemsetRanges Ranges(DL);

  BasicBlock::iterator BI(StartInst);

  // Keeps track of the last memory use or def before the insertion point for
  // the new memset. The new MemoryDef for the inserted memsets will be inserted
  // after MemInsertPoint.
  MemoryUseOrDef *MemInsertPoint = nullptr;
  for (++BI; !BI->isTerminator(); ++BI) {
    auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
        MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
    if (CurrentAcc)
      MemInsertPoint = CurrentAcc;

    // Calls that only access inaccessible memory do not block merging
    // accessible stores.
    if (auto *CB = dyn_cast<CallBase>(BI)) {
      if (CB->onlyAccessesInaccessibleMemory())
        continue;
    }

    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
      // If the instruction is readnone, ignore it, otherwise bail out.  We
      // don't even allow readonly here because we don't want something like:
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
        break;
      continue;
    }

    if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
      // If this is a store, see if we can merge it in.
      if (!NextStore->isSimple())
        break;

      Value *StoredVal = NextStore->getValueOperand();

      // Don't convert stores of non-integral pointer types to memsets (which
      // stores integers).
      if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
        break;

      // We can't track ranges involving scalable types.
      if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
        break;

      // Check to see if this stored value is of the same byte-splattable value.
      Value *StoredByte = isBytewiseValue(StoredVal, DL);
      if (isa<UndefValue>(ByteVal) && StoredByte)
        ByteVal = StoredByte;
      if (ByteVal != StoredByte)
        break;

      // Check to see if this store is to a constant offset from the start ptr.
      std::optional<int64_t> Offset =
          NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, DL);
      if (!Offset)
        break;

      Ranges.addStore(*Offset, NextStore);
    } else {
      auto *MSI = cast<MemSetInst>(BI);

      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
          !isa<ConstantInt>(MSI->getLength()))
        break;

      // Check to see if this store is to a constant offset from the start ptr.
      std::optional<int64_t> Offset =
          MSI->getDest()->getPointerOffsetFrom(StartPtr, DL);
      if (!Offset)
        break;

      Ranges.addMemSet(*Offset, MSI);
    }
  }

  // If we have no ranges, then we just had a single store with nothing that
  // could be merged in.  This is a very common case of course.
  if (Ranges.empty())
    return nullptr;

  // If we had at least one store that could be merged in, add the starting
  // store as well.  We try to avoid this unless there is at least something
  // interesting as a small compile-time optimization.
  Ranges.addInst(0, StartInst);

  // If we create any memsets, we put it right before the first instruction that
  // isn't part of the memset block.  This ensure that the memset is dominated
  // by any addressing instruction needed by the start of the block.
  IRBuilder<> Builder(&*BI);

  // Now that we have full information about ranges, loop over the ranges and
  // emit memset's for anything big enough to be worthwhile.
  Instruction *AMemSet = nullptr;
  for (const MemsetRange &Range : Ranges) {
    if (Range.TheStores.size() == 1)
      continue;

    // If it is profitable to lower this range to memset, do so now.
    if (!Range.isProfitableToUseMemset(DL))
      continue;

    // Otherwise, we do want to transform this!  Create a new memset.
    // Get the starting pointer of the block.
    StartPtr = Range.StartPtr;

    AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
                                   Range.Alignment);
    AMemSet->mergeDIAssignID(Range.TheStores);

    LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
                                                   : Range.TheStores) dbgs()
                                              << *SI << '\n';
               dbgs() << "With: " << *AMemSet << '\n');
    if (!Range.TheStores.empty())
      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());

    auto *NewDef = cast<MemoryDef>(
        MemInsertPoint->getMemoryInst() == &*BI
            ? MSSAU->createMemoryAccessBefore(AMemSet, nullptr, MemInsertPoint)
            : MSSAU->createMemoryAccessAfter(AMemSet, nullptr, MemInsertPoint));
    MSSAU->insertDef(NewDef, /*RenameUses=*/true);
    MemInsertPoint = NewDef;

    // Zap all the stores.
    for (Instruction *SI : Range.TheStores)
      eraseInstruction(SI);

    ++NumMemSetInfer;
  }

  return AMemSet;
}

// This method try to lift a store instruction before position P.
// It will lift the store and its argument + that anything that
// may alias with these.
// The method returns true if it was successful.
bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
  // If the store alias this position, early bail out.
  MemoryLocation StoreLoc = MemoryLocation::get(SI);
  if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
    return false;

  // Keep track of the arguments of all instruction we plan to lift
  // so we can make sure to lift them as well if appropriate.
  DenseSet<Instruction *> Args;
  auto AddArg = [&](Value *Arg) {
    auto *I = dyn_cast<Instruction>(Arg);
    if (I && I->getParent() == SI->getParent()) {
      // Cannot hoist user of P above P
      if (I == P)
        return false;
      Args.insert(I);
    }
    return true;
  };
  if (!AddArg(SI->getPointerOperand()))
    return false;

  // Instruction to lift before P.
  SmallVector<Instruction *, 8> ToLift{SI};

  // Memory locations of lifted instructions.
  SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};

  // Lifted calls.
  SmallVector<const CallBase *, 8> Calls;

  const MemoryLocation LoadLoc = MemoryLocation::get(LI);

  for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
    auto *C = &*I;

    // Make sure hoisting does not perform a store that was not guaranteed to
    // happen.
    if (!isGuaranteedToTransferExecutionToSuccessor(C))
      return false;

    bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt));

    bool NeedLift = false;
    if (Args.erase(C))
      NeedLift = true;
    else if (MayAlias) {
      NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
        return isModOrRefSet(AA->getModRefInfo(C, ML));
      });

      if (!NeedLift)
        NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
          return isModOrRefSet(AA->getModRefInfo(C, Call));
        });
    }

    if (!NeedLift)
      continue;

    if (MayAlias) {
      // Since LI is implicitly moved downwards past the lifted instructions,
      // none of them may modify its source.
      if (isModSet(AA->getModRefInfo(C, LoadLoc)))
        return false;
      else if (const auto *Call = dyn_cast<CallBase>(C)) {
        // If we can't lift this before P, it's game over.
        if (isModOrRefSet(AA->getModRefInfo(P, Call)))
          return false;

        Calls.push_back(Call);
      } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
        // If we can't lift this before P, it's game over.
        auto ML = MemoryLocation::get(C);
        if (isModOrRefSet(AA->getModRefInfo(P, ML)))
          return false;

        MemLocs.push_back(ML);
      } else
        // We don't know how to lift this instruction.
        return false;
    }

    ToLift.push_back(C);
    for (Value *Op : C->operands())
      if (!AddArg(Op))
        return false;
  }

  // Find MSSA insertion point. Normally P will always have a corresponding
  // memory access before which we can insert. However, with non-standard AA
  // pipelines, there may be a mismatch between AA and MSSA, in which case we
  // will scan for a memory access before P. In either case, we know for sure
  // that at least the load will have a memory access.
  // TODO: Simplify this once P will be determined by MSSA, in which case the
  // discrepancy can no longer occur.
  MemoryUseOrDef *MemInsertPoint = nullptr;
  if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
    MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
  } else {
    const Instruction *ConstP = P;
    for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
                                           ++LI->getReverseIterator())) {
      if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
        MemInsertPoint = MA;
        break;
      }
    }
  }

  // We made it, we need to lift.
  for (auto *I : llvm::reverse(ToLift)) {
    LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
    I->moveBefore(P);
    assert(MemInsertPoint && "Must have found insert point");
    if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
      MSSAU->moveAfter(MA, MemInsertPoint);
      MemInsertPoint = MA;
    }
  }

  return true;
}

bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI,
                                       const DataLayout &DL,
                                       BasicBlock::iterator &BBI) {
  if (!LI->isSimple() || !LI->hasOneUse() || LI->getParent() != SI->getParent())
    return false;

  auto *T = LI->getType();
  // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
  // the corresponding libcalls are not available.
  // TODO: We should really distinguish between libcall availability and
  // our ability to introduce intrinsics.
  if (T->isAggregateType() &&
      (EnableMemCpyOptWithoutLibcalls ||
       (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
    MemoryLocation LoadLoc = MemoryLocation::get(LI);

    // We use alias analysis to check if an instruction may store to
    // the memory we load from in between the load and the store. If
    // such an instruction is found, we try to promote there instead
    // of at the store position.
    // TODO: Can use MSSA for this.
    Instruction *P = SI;
    for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
      if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
        P = &I;
        break;
      }
    }

    // We found an instruction that may write to the loaded memory.
    // We can try to promote at this position instead of the store
    // position if nothing aliases the store memory after this and the store
    // destination is not in the range.
    if (P && P != SI) {
      if (!moveUp(SI, P, LI))
        P = nullptr;
    }

    // If a valid insertion position is found, then we can promote
    // the load/store pair to a memcpy.
    if (P) {
      // If we load from memory that may alias the memory we store to,
      // memmove must be used to preserve semantic. If not, memcpy can
      // be used. Also, if we load from constant memory, memcpy can be used
      // as the constant memory won't be modified.
      bool UseMemMove = false;
      if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
        UseMemMove = true;

      IRBuilder<> Builder(P);
      Value *Size =
          Builder.CreateTypeSize(Builder.getInt64Ty(), DL.getTypeStoreSize(T));
      Instruction *M;
      if (UseMemMove)
        M = Builder.CreateMemMove(SI->getPointerOperand(), SI->getAlign(),
                                  LI->getPointerOperand(), LI->getAlign(),
                                  Size);
      else
        M = Builder.CreateMemCpy(SI->getPointerOperand(), SI->getAlign(),
                                 LI->getPointerOperand(), LI->getAlign(), Size);
      M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);

      LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " << *M
                        << "\n");

      auto *LastDef =
          cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
      auto *NewAccess = MSSAU->createMemoryAccessAfter(M, nullptr, LastDef);
      MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);

      eraseInstruction(SI);
      eraseInstruction(LI);
      ++NumMemCpyInstr;

      // Make sure we do not invalidate the iterator.
      BBI = M->getIterator();
      return true;
    }
  }

  // Detect cases where we're performing call slot forwarding, but
  // happen to be using a load-store pair to implement it, rather than
  // a memcpy.
  BatchAAResults BAA(*AA);
  auto GetCall = [&]() -> CallInst * {
    // We defer this expensive clobber walk until the cheap checks
    // have been done on the source inside performCallSlotOptzn.
    if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
            MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA)))
      return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
    return nullptr;
  };

  bool Changed = performCallSlotOptzn(
      LI, SI, SI->getPointerOperand()->stripPointerCasts(),
      LI->getPointerOperand()->stripPointerCasts(),
      DL.getTypeStoreSize(SI->getOperand(0)->getType()),
      std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall);
  if (Changed) {
    eraseInstruction(SI);
    eraseInstruction(LI);
    ++NumMemCpyInstr;
    return true;
  }

  // If this is a load-store pair from a stack slot to a stack slot, we
  // might be able to perform the stack-move optimization just as we do for
  // memcpys from an alloca to an alloca.
  if (auto *DestAlloca = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
    if (auto *SrcAlloca = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
      if (performStackMoveOptzn(LI, SI, DestAlloca, SrcAlloca,
                                DL.getTypeStoreSize(T), BAA)) {
        // Avoid invalidating the iterator.
        BBI = SI->getNextNonDebugInstruction()->getIterator();
        eraseInstruction(SI);
        eraseInstruction(LI);
        ++NumMemCpyInstr;
        return true;
      }
    }
  }

  return false;
}

bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
  if (!SI->isSimple())
    return false;

  // Avoid merging nontemporal stores since the resulting
  // memcpy/memset would not be able to preserve the nontemporal hint.
  // In theory we could teach how to propagate the !nontemporal metadata to
  // memset calls. However, that change would force the backend to
  // conservatively expand !nontemporal memset calls back to sequences of
  // store instructions (effectively undoing the merging).
  if (SI->getMetadata(LLVMContext::MD_nontemporal))
    return false;

  const DataLayout &DL = SI->getDataLayout();

  Value *StoredVal = SI->getValueOperand();

  // Not all the transforms below are correct for non-integral pointers, bail
  // until we've audited the individual pieces.
  if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
    return false;

  // Load to store forwarding can be interpreted as memcpy.
  if (auto *LI = dyn_cast<LoadInst>(StoredVal))
    return processStoreOfLoad(SI, LI, DL, BBI);

  // The following code creates memset intrinsics out of thin air. Don't do
  // this if the corresponding libfunc is not available.
  // TODO: We should really distinguish between libcall availability and
  // our ability to introduce intrinsics.
  if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
    return false;

  // There are two cases that are interesting for this code to handle: memcpy
  // and memset.  Right now we only handle memset.

  // Ensure that the value being stored is something that can be memset'able a
  // byte at a time like "0" or "-1" or any width, as well as things like
  // 0xA0A0A0A0 and 0.0.
  auto *V = SI->getOperand(0);
  if (Value *ByteVal = isBytewiseValue(V, DL)) {
    if (Instruction *I =
            tryMergingIntoMemset(SI, SI->getPointerOperand(), ByteVal)) {
      BBI = I->getIterator(); // Don't invalidate iterator.
      return true;
    }

    // If we have an aggregate, we try to promote it to memset regardless
    // of opportunity for merging as it can expose optimization opportunities
    // in subsequent passes.
    auto *T = V->getType();
    if (T->isAggregateType()) {
      uint64_t Size = DL.getTypeStoreSize(T);
      IRBuilder<> Builder(SI);
      auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
                                     SI->getAlign());
      M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);

      LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");

      // The newly inserted memset is immediately overwritten by the original
      // store, so we do not need to rename uses.
      auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
      auto *NewAccess = MSSAU->createMemoryAccessBefore(M, nullptr, StoreDef);
      MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);

      eraseInstruction(SI);
      NumMemSetInfer++;

      // Make sure we do not invalidate the iterator.
      BBI = M->getIterator();
      return true;
    }
  }

  return false;
}

bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
  // See if there is another memset or store neighboring this memset which
  // allows us to widen out the memset to do a single larger store.
  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
    if (Instruction *I =
            tryMergingIntoMemset(MSI, MSI->getDest(), MSI->getValue())) {
      BBI = I->getIterator(); // Don't invalidate iterator.
      return true;
    }
  return false;
}

/// Takes a memcpy and a call that it depends on,
/// and checks for the possibility of a call slot optimization by having
/// the call write its result directly into the destination of the memcpy.
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
                                         Instruction *cpyStore, Value *cpyDest,
                                         Value *cpySrc, TypeSize cpySize,
                                         Align cpyDestAlign,
                                         BatchAAResults &BAA,
                                         std::function<CallInst *()> GetC) {
  // The general transformation to keep in mind is
  //
  //   call @func(..., src, ...)
  //   memcpy(dest, src, ...)
  //
  // ->
  //
  //   memcpy(dest, src, ...)
  //   call @func(..., dest, ...)
  //
  // Since moving the memcpy is technically awkward, we additionally check that
  // src only holds uninitialized values at the moment of the call, meaning that
  // the memcpy can be discarded rather than moved.

  // We can't optimize scalable types.
  if (cpySize.isScalable())
    return false;

  // Require that src be an alloca.  This simplifies the reasoning considerably.
  auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
  if (!srcAlloca)
    return false;

  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
  if (!srcArraySize)
    return false;

  const DataLayout &DL = cpyLoad->getDataLayout();
  TypeSize SrcAllocaSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType());
  // We can't optimize scalable types.
  if (SrcAllocaSize.isScalable())
    return false;
  uint64_t srcSize = SrcAllocaSize * srcArraySize->getZExtValue();

  if (cpySize < srcSize)
    return false;

  CallInst *C = GetC();
  if (!C)
    return false;

  // Lifetime marks shouldn't be operated on.
  if (Function *F = C->getCalledFunction())
    if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
      return false;

  if (C->getParent() != cpyStore->getParent()) {
    LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
    return false;
  }

  MemoryLocation DestLoc =
      isa<StoreInst>(cpyStore)
          ? MemoryLocation::get(cpyStore)
          : MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));

  // Check that nothing touches the dest of the copy between
  // the call and the store/memcpy.
  Instruction *SkippedLifetimeStart = nullptr;
  if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C),
                      MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
    LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
    return false;
  }

  // If we need to move a lifetime.start above the call, make sure that we can
  // actually do so. If the argument is bitcasted for example, we would have to
  // move the bitcast as well, which we don't handle.
  if (SkippedLifetimeStart) {
    auto *LifetimeArg =
        dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(1));
    if (LifetimeArg && LifetimeArg->getParent() == C->getParent() &&
        C->comesBefore(LifetimeArg))
      return false;
  }

  // Check that storing to the first srcSize bytes of dest will not cause a
  // trap or data race.
  bool ExplicitlyDereferenceableOnly;
  if (!isWritableObject(getUnderlyingObject(cpyDest),
                        ExplicitlyDereferenceableOnly) ||
      !isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
                                          DL, C, AC, DT)) {
    LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
    return false;
  }

  // Make sure that nothing can observe cpyDest being written early. There are
  // a number of cases to consider:
  //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
  //     the transform.
  //  2. C itself may not access cpyDest (prior to the transform). This is
  //     checked further below.
  //  3. If cpyDest is accessible to the caller of this function (potentially
  //     captured and not based on an alloca), we need to ensure that we cannot
  //     unwind between C and cpyStore. This is checked here.
  //  4. If cpyDest is potentially captured, there may be accesses to it from
  //     another thread. In this case, we need to check that cpyStore is
  //     guaranteed to be executed if C is. As it is a non-atomic access, it
  //     renders accesses from other threads undefined.
  //     TODO: This is currently not checked.
  if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
    LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
    return false;
  }

  // Check that dest points to memory that is at least as aligned as src.
  Align srcAlign = srcAlloca->getAlign();
  bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
  // If dest is not aligned enough and we can't increase its alignment then
  // bail out.
  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
    LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
    return false;
  }

  // Check that src is not accessed except via the call and the memcpy.  This
  // guarantees that it holds only undefined values when passed in (so the final
  // memcpy can be dropped), that it is not read or written between the call and
  // the memcpy, and that writing beyond the end of it is undefined.
  SmallVector<User *, 8> srcUseList(srcAlloca->users());
  while (!srcUseList.empty()) {
    User *U = srcUseList.pop_back_val();

    if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
      append_range(srcUseList, U->users());
      continue;
    }
    if (const auto *G = dyn_cast<GetElementPtrInst>(U);
        G && G->hasAllZeroIndices()) {
      append_range(srcUseList, U->users());
      continue;
    }
    if (const auto *IT = dyn_cast<IntrinsicInst>(U))
      if (IT->isLifetimeStartOrEnd())
        continue;

    if (U != C && U != cpyLoad) {
      LLVM_DEBUG(dbgs() << "Call slot: Source accessed by " << *U << "\n");
      return false;
    }
  }

  // Check whether src is captured by the called function, in which case there
  // may be further indirect uses of src.
  bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
    return U->stripPointerCasts() == cpySrc &&
           !C->doesNotCapture(C->getArgOperandNo(&U));
  });

  // If src is captured, then check whether there are any potential uses of
  // src through the captured pointer before the lifetime of src ends, either
  // due to a lifetime.end or a return from the function.
  if (SrcIsCaptured) {
    // Check that dest is not captured before/at the call. We have already
    // checked that src is not captured before it. If either had been captured,
    // then the call might be comparing the argument against the captured dest
    // or src pointer.
    Value *DestObj = getUnderlyingObject(cpyDest);
    if (!isIdentifiedFunctionLocal(DestObj) ||
        PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true,
                                   /* StoreCaptures */ true, C, DT,
                                   /* IncludeI */ true))
      return false;

    MemoryLocation SrcLoc =
        MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
    for (Instruction &I :
         make_range(++C->getIterator(), C->getParent()->end())) {
      // Lifetime of srcAlloca ends at lifetime.end.
      if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
        if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
            II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
            cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize))
          break;
      }

      // Lifetime of srcAlloca ends at return.
      if (isa<ReturnInst>(&I))
        break;

      // Ignore the direct read of src in the load.
      if (&I == cpyLoad)
        continue;

      // Check whether this instruction may mod/ref src through the captured
      // pointer (we have already any direct mod/refs in the loop above).
      // Also bail if we hit a terminator, as we don't want to scan into other
      // blocks.
      if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator())
        return false;
    }
  }

  // Since we're changing the parameter to the callsite, we need to make sure
  // that what would be the new parameter dominates the callsite.
  bool NeedMoveGEP = false;
  if (!DT->dominates(cpyDest, C)) {
    // Support moving a constant index GEP before the call.
    auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
    if (GEP && GEP->hasAllConstantIndices() &&
        DT->dominates(GEP->getPointerOperand(), C))
      NeedMoveGEP = true;
    else
      return false;
  }

  // In addition to knowing that the call does not access src in some
  // unexpected manner, for example via a global, which we deduce from
  // the use analysis, we also need to know that it does not sneakily
  // access dest.  We rely on AA to figure this out for us.
  MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize));
  ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize);
  // If necessary, perform additional analysis.
  if (isModOrRefSet(MR))
    MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT);
  if (isModOrRefSet(MR))
    return false;

  // We can't create address space casts here because we don't know if they're
  // safe for the target.
  if (cpySrc->getType() != cpyDest->getType())
    return false;
  for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
    if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
        cpySrc->getType() != C->getArgOperand(ArgI)->getType())
      return false;

  // All the checks have passed, so do the transformation.
  bool changedArgument = false;
  for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
    if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
      changedArgument = true;
      C->setArgOperand(ArgI, cpyDest);
    }

  if (!changedArgument)
    return false;

  // If the destination wasn't sufficiently aligned then increase its alignment.
  if (!isDestSufficientlyAligned) {
    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
    cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
  }

  if (NeedMoveGEP) {
    auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
    GEP->moveBefore(C);
  }

  if (SkippedLifetimeStart) {
    SkippedLifetimeStart->moveBefore(C);
    MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
                      MSSA->getMemoryAccess(C));
  }

  combineAAMetadata(C, cpyLoad);
  if (cpyLoad != cpyStore)
    combineAAMetadata(C, cpyStore);

  ++NumCallSlot;
  return true;
}

/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
                                                  MemCpyInst *MDep,
                                                  BatchAAResults &BAA) {
  // If dep instruction is reading from our current input, then it is a noop
  // transfer and substituting the input won't change this instruction. Just
  // ignore the input and let someone else zap MDep. This handles cases like:
  //    memcpy(a <- a)
  //    memcpy(b <- a)
  if (M->getSource() == MDep->getSource())
    return false;

  // We can only optimize non-volatile memcpy's.
  if (MDep->isVolatile())
    return false;

  int64_t MForwardOffset = 0;
  const DataLayout &DL = M->getModule()->getDataLayout();
  // We can only transforms memcpy's where the dest of one is the source of the
  // other, or they have an offset in a range.
  if (M->getSource() != MDep->getDest()) {
    std::optional<int64_t> Offset =
        M->getSource()->getPointerOffsetFrom(MDep->getDest(), DL);
    if (!Offset || *Offset < 0)
      return false;
    MForwardOffset = *Offset;
  }

  // The length of the memcpy's must be the same, or the preceding one
  // must be larger than the following one.
  if (MForwardOffset != 0 || MDep->getLength() != M->getLength()) {
    auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
    auto *MLen = dyn_cast<ConstantInt>(M->getLength());
    if (!MDepLen || !MLen ||
        MDepLen->getZExtValue() < MLen->getZExtValue() + MForwardOffset)
      return false;
  }

  IRBuilder<> Builder(M);
  auto *CopySource = MDep->getSource();
  Instruction *NewCopySource = nullptr;
  auto CleanupOnRet = llvm::make_scope_exit([&NewCopySource] {
    if (NewCopySource && NewCopySource->use_empty())
      // Safety: It's safe here because we will only allocate more instructions
      // after finishing all BatchAA queries, but we have to be careful if we
      // want to do something like this in another place. Then we'd probably
      // have to delay instruction removal until all transforms on an
      // instruction finished.
      NewCopySource->eraseFromParent();
  });
  MaybeAlign CopySourceAlign = MDep->getSourceAlign();
  // We just need to calculate the actual size of the copy.
  auto MCopyLoc = MemoryLocation::getForSource(MDep).getWithNewSize(
      MemoryLocation::getForSource(M).Size);

  // When the forwarding offset is greater than 0, we transform
  //    memcpy(d1 <- s1)
  //    memcpy(d2 <- d1+o)
  // to
  //    memcpy(d2 <- s1+o)
  if (MForwardOffset > 0) {
    // The copy destination of `M` maybe can serve as the source of copying.
    std::optional<int64_t> MDestOffset =
        M->getRawDest()->getPointerOffsetFrom(MDep->getRawSource(), DL);
    if (MDestOffset == MForwardOffset)
      CopySource = M->getDest();
    else {
      CopySource = Builder.CreateInBoundsPtrAdd(
          CopySource, Builder.getInt64(MForwardOffset));
      NewCopySource = dyn_cast<Instruction>(CopySource);
    }
    // We need to update `MCopyLoc` if an offset exists.
    MCopyLoc = MCopyLoc.getWithNewPtr(CopySource);
    if (CopySourceAlign)
      CopySourceAlign = commonAlignment(*CopySourceAlign, MForwardOffset);
  }

  // Verify that the copied-from memory doesn't change in between the two
  // transfers.  For example, in:
  //    memcpy(a <- b)
  //    *b = 42;
  //    memcpy(c <- a)
  // It would be invalid to transform the second memcpy into memcpy(c <- b).
  //
  // TODO: If the code between M and MDep is transparent to the destination "c",
  // then we could still perform the xform by moving M up to the first memcpy.
  if (writtenBetween(MSSA, BAA, MCopyLoc, MSSA->getMemoryAccess(MDep),
                     MSSA->getMemoryAccess(M)))
    return false;

  // No need to create `memcpy(a <- a)`.
  if (BAA.isMustAlias(M->getDest(), CopySource)) {
    // Remove the instruction we're replacing.
    eraseInstruction(M);
    ++NumMemCpyInstr;
    return true;
  }

  // If the dest of the second might alias the source of the first, then the
  // source and dest might overlap. In addition, if the source of the first
  // points to constant memory, they won't overlap by definition. Otherwise, we
  // still want to eliminate the intermediate value, but we have to generate a
  // memmove instead of memcpy.
  bool UseMemMove = false;
  if (isModSet(BAA.getModRefInfo(M, MemoryLocation::getForSource(MDep)))) {
    // Don't convert llvm.memcpy.inline into memmove because memmove can be
    // lowered as a call, and that is not allowed for llvm.memcpy.inline (and
    // there is no inline version of llvm.memmove)
    if (isa<MemCpyInlineInst>(M))
      return false;
    UseMemMove = true;
  }

  // If all checks passed, then we can transform M.
  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
                    << *MDep << '\n'
                    << *M << '\n');

  // TODO: Is this worth it if we're creating a less aligned memcpy? For
  // example we could be moving from movaps -> movq on x86.
  Instruction *NewM;
  if (UseMemMove)
    NewM =
        Builder.CreateMemMove(M->getDest(), M->getDestAlign(), CopySource,
                              CopySourceAlign, M->getLength(), M->isVolatile());
  else if (isa<MemCpyInlineInst>(M)) {
    // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
    // never allowed since that would allow the latter to be lowered as a call
    // to an external function.
    NewM = Builder.CreateMemCpyInline(M->getDest(), M->getDestAlign(),
                                      CopySource, CopySourceAlign,
                                      M->getLength(), M->isVolatile());
  } else
    NewM =
        Builder.CreateMemCpy(M->getDest(), M->getDestAlign(), CopySource,
                             CopySourceAlign, M->getLength(), M->isVolatile());
  NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID);

  assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
  auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
  auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
  MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);

  // Remove the instruction we're replacing.
  eraseInstruction(M);
  ++NumMemCpyInstr;
  return true;
}

/// We've found that the (upward scanning) memory dependence of \p MemCpy is
/// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
/// weren't copied over by \p MemCpy.
///
/// In other words, transform:
/// \code
///   memset(dst, c, dst_size);
///   ...
///   memcpy(dst, src, src_size);
/// \endcode
/// into:
/// \code
///   ...
///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
///   memcpy(dst, src, src_size);
/// \endcode
///
/// The memset is sunk to just before the memcpy to ensure that src_size is
/// present when emitting the simplified memset.
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
                                                  MemSetInst *MemSet,
                                                  BatchAAResults &BAA) {
  // We can only transform memset/memcpy with the same destination.
  if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest()))
    return false;

  // Don't perform the transform if src_size may be zero. In that case, the
  // transform is essentially a complex no-op and may lead to an infinite
  // loop if BasicAA is smart enough to understand that dst and dst + src_size
  // are still MustAlias after the transform.
  Value *SrcSize = MemCpy->getLength();
  if (!isKnownNonZero(SrcSize,
                      SimplifyQuery(MemCpy->getDataLayout(), DT, AC, MemCpy)))
    return false;

  // Check that src and dst of the memcpy aren't the same. While memcpy
  // operands cannot partially overlap, exact equality is allowed.
  if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
    return false;

  // We know that dst up to src_size is not written. We now need to make sure
  // that dst up to dst_size is not accessed. (If we did not move the memset,
  // checking for reads would be sufficient.)
  if (accessedBetween(BAA, MemoryLocation::getForDest(MemSet),
                      MSSA->getMemoryAccess(MemSet),
                      MSSA->getMemoryAccess(MemCpy)))
    return false;

  // Use the same i8* dest as the memcpy, killing the memset dest if different.
  Value *Dest = MemCpy->getRawDest();
  Value *DestSize = MemSet->getLength();

  if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
    return false;

  // If the sizes are the same, simply drop the memset instead of generating
  // a replacement with zero size.
  if (DestSize == SrcSize) {
    eraseInstruction(MemSet);
    return true;
  }

  // By default, create an unaligned memset.
  Align Alignment = Align(1);
  // If Dest is aligned, and SrcSize is constant, use the minimum alignment
  // of the sum.
  const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
                                   MemCpy->getDestAlign().valueOrOne());
  if (DestAlign > 1)
    if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
      Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());

  IRBuilder<> Builder(MemCpy);

  // Preserve the debug location of the old memset for the code emitted here
  // related to the new memset. This is correct according to the rules in
  // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an
  // instruction location", given that we move the memset within the basic
  // block.
  assert(MemSet->getParent() == MemCpy->getParent() &&
         "Preserving debug location based on moving memset within BB.");
  Builder.SetCurrentDebugLocation(MemSet->getDebugLoc());

  // If the sizes have different types, zext the smaller one.
  if (DestSize->getType() != SrcSize->getType()) {
    if (DestSize->getType()->getIntegerBitWidth() >
        SrcSize->getType()->getIntegerBitWidth())
      SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
    else
      DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
  }

  Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
  Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
  Value *MemsetLen = Builder.CreateSelect(
      Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
  Instruction *NewMemSet =
      Builder.CreateMemSet(Builder.CreatePtrAdd(Dest, SrcSize),
                           MemSet->getOperand(1), MemsetLen, Alignment);

  assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
         "MemCpy must be a MemoryDef");
  // The new memset is inserted before the memcpy, and it is known that the
  // memcpy's defining access is the memset about to be removed.
  auto *LastDef =
      cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
  auto *NewAccess =
      MSSAU->createMemoryAccessBefore(NewMemSet, nullptr, LastDef);
  MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);

  eraseInstruction(MemSet);
  return true;
}

/// Determine whether the instruction has undefined content for the given Size,
/// either because it was freshly alloca'd or started its lifetime.
static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V,
                             MemoryDef *Def, Value *Size) {
  if (MSSA->isLiveOnEntryDef(Def))
    return isa<AllocaInst>(getUnderlyingObject(V));

  if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
      auto *LTSize = cast<ConstantInt>(II->getArgOperand(0));

      if (auto *CSize = dyn_cast<ConstantInt>(Size)) {
        if (AA.isMustAlias(V, II->getArgOperand(1)) &&
            LTSize->getZExtValue() >= CSize->getZExtValue())
          return true;
      }

      // If the lifetime.start covers a whole alloca (as it almost always
      // does) and we're querying a pointer based on that alloca, then we know
      // the memory is definitely undef, regardless of how exactly we alias.
      // The size also doesn't matter, as an out-of-bounds access would be UB.
      if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) {
        if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
          const DataLayout &DL = Alloca->getDataLayout();
          if (std::optional<TypeSize> AllocaSize =
                  Alloca->getAllocationSize(DL))
            if (*AllocaSize == LTSize->getValue())
              return true;
        }
      }
    }
  }

  return false;
}

/// Transform memcpy to memset when its source was just memset.
/// In other words, turn:
/// \code
///   memset(dst1, c, dst1_size);
///   memcpy(dst2, dst1, dst2_size);
/// \endcode
/// into:
/// \code
///   memset(dst1, c, dst1_size);
///   memset(dst2, c, dst2_size);
/// \endcode
/// When dst2_size <= dst1_size.
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
                                               MemSetInst *MemSet,
                                               BatchAAResults &BAA) {
  // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
  // memcpying from the same address. Otherwise it is hard to reason about.
  if (!BAA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
    return false;

  Value *MemSetSize = MemSet->getLength();
  Value *CopySize = MemCpy->getLength();

  if (MemSetSize != CopySize) {
    // Make sure the memcpy doesn't read any more than what the memset wrote.
    // Don't worry about sizes larger than i64.

    // A known memset size is required.
    auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
    if (!CMemSetSize)
      return false;

    // A known memcpy size is also required.
    auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
    if (!CCopySize)
      return false;
    if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
      // If the memcpy is larger than the memset, but the memory was undef prior
      // to the memset, we can just ignore the tail. Technically we're only
      // interested in the bytes from MemSetSize..CopySize here, but as we can't
      // easily represent this location, we use the full 0..CopySize range.
      MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
      bool CanReduceSize = false;
      MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
      MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
          MemSetAccess->getDefiningAccess(), MemCpyLoc, BAA);
      if (auto *MD = dyn_cast<MemoryDef>(Clobber))
        if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD, CopySize))
          CanReduceSize = true;

      if (!CanReduceSize)
        return false;
      CopySize = MemSetSize;
    }
  }

  IRBuilder<> Builder(MemCpy);
  Instruction *NewM =
      Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
                           CopySize, MemCpy->getDestAlign());
  auto *LastDef =
      cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
  auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
  MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);

  return true;
}

// Attempts to optimize the pattern whereby memory is copied from an alloca to
// another alloca, where the two allocas don't have conflicting mod/ref. If
// successful, the two allocas can be merged into one and the transfer can be
// deleted. This pattern is generated frequently in Rust, due to the ubiquity of
// move operations in that language.
//
// Once we determine that the optimization is safe to perform, we replace all
// uses of the destination alloca with the source alloca. We also "shrink wrap"
// the lifetime markers of the single merged alloca to before the first use
// and after the last use. Note that the "shrink wrapping" procedure is a safe
// transformation only because we restrict the scope of this optimization to
// allocas that aren't captured.
bool MemCpyOptPass::performStackMoveOptzn(Instruction *Load, Instruction *Store,
                                          AllocaInst *DestAlloca,
                                          AllocaInst *SrcAlloca, TypeSize Size,
                                          BatchAAResults &BAA) {
  LLVM_DEBUG(dbgs() << "Stack Move: Attempting to optimize:\n"
                    << *Store << "\n");

  // Make sure the two allocas are in the same address space.
  if (SrcAlloca->getAddressSpace() != DestAlloca->getAddressSpace()) {
    LLVM_DEBUG(dbgs() << "Stack Move: Address space mismatch\n");
    return false;
  }

  // Check that copy is full with static size.
  const DataLayout &DL = DestAlloca->getDataLayout();
  std::optional<TypeSize> SrcSize = SrcAlloca->getAllocationSize(DL);
  if (!SrcSize || Size != *SrcSize) {
    LLVM_DEBUG(dbgs() << "Stack Move: Source alloca size mismatch\n");
    return false;
  }
  std::optional<TypeSize> DestSize = DestAlloca->getAllocationSize(DL);
  if (!DestSize || Size != *DestSize) {
    LLVM_DEBUG(dbgs() << "Stack Move: Destination alloca size mismatch\n");
    return false;
  }

  if (!SrcAlloca->isStaticAlloca() || !DestAlloca->isStaticAlloca())
    return false;

  // Check that src and dest are never captured, unescaped allocas. Also
  // find the nearest common dominator and postdominator for all users in
  // order to shrink wrap the lifetimes, and instructions with noalias metadata
  // to remove them.

  SmallVector<Instruction *, 4> LifetimeMarkers;
  SmallSet<Instruction *, 4> NoAliasInstrs;
  bool SrcNotDom = false;

  // Recursively track the user and check whether modified alias exist.
  auto IsDereferenceableOrNull = [](Value *V, const DataLayout &DL) -> bool {
    bool CanBeNull, CanBeFreed;
    return V->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
  };

  auto CaptureTrackingWithModRef =
      [&](Instruction *AI,
          function_ref<bool(Instruction *)> ModRefCallback) -> bool {
    SmallVector<Instruction *, 8> Worklist;
    Worklist.push_back(AI);
    unsigned MaxUsesToExplore = getDefaultMaxUsesToExploreForCaptureTracking();
    Worklist.reserve(MaxUsesToExplore);
    SmallSet<const Use *, 20> Visited;
    while (!Worklist.empty()) {
      Instruction *I = Worklist.back();
      Worklist.pop_back();
      for (const Use &U : I->uses()) {
        auto *UI = cast<Instruction>(U.getUser());
        // If any use that isn't dominated by SrcAlloca exists, we move src
        // alloca to the entry before the transformation.
        if (!DT->dominates(SrcAlloca, UI))
          SrcNotDom = true;

        if (Visited.size() >= MaxUsesToExplore) {
          LLVM_DEBUG(
              dbgs()
              << "Stack Move: Exceeded max uses to see ModRef, bailing\n");
          return false;
        }
        if (!Visited.insert(&U).second)
          continue;
        switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
        case UseCaptureKind::MAY_CAPTURE:
          return false;
        case UseCaptureKind::PASSTHROUGH:
          // Instructions cannot have non-instruction users.
          Worklist.push_back(UI);
          continue;
        case UseCaptureKind::NO_CAPTURE: {
          if (UI->isLifetimeStartOrEnd()) {
            // We note the locations of these intrinsic calls so that we can
            // delete them later if the optimization succeeds, this is safe
            // since both llvm.lifetime.start and llvm.lifetime.end intrinsics
            // practically fill all the bytes of the alloca with an undefined
            // value, although conceptually marked as alive/dead.
            int64_t Size = cast<ConstantInt>(UI->getOperand(0))->getSExtValue();
            if (Size < 0 || Size == DestSize) {
              LifetimeMarkers.push_back(UI);
              continue;
            }
          }
          if (UI->hasMetadata(LLVMContext::MD_noalias))
            NoAliasInstrs.insert(UI);
          if (!ModRefCallback(UI))
            return false;
        }
        }
      }
    }
    return true;
  };

  // Check that dest has no Mod/Ref, from the alloca to the Store, except full
  // size lifetime intrinsics. And collect modref inst for the reachability
  // check.
  ModRefInfo DestModRef = ModRefInfo::NoModRef;
  MemoryLocation DestLoc(DestAlloca, LocationSize::precise(Size));
  SmallVector<BasicBlock *, 8> ReachabilityWorklist;
  auto DestModRefCallback = [&](Instruction *UI) -> bool {
    // We don't care about the store itself.
    if (UI == Store)
      return true;
    ModRefInfo Res = BAA.getModRefInfo(UI, DestLoc);
    DestModRef |= Res;
    if (isModOrRefSet(Res)) {
      // Instructions reachability checks.
      // FIXME: adding the Instruction version isPotentiallyReachableFromMany on
      // lib/Analysis/CFG.cpp (currently only for BasicBlocks) might be helpful.
      if (UI->getParent() == Store->getParent()) {
        // The same block case is special because it's the only time we're
        // looking within a single block to see which instruction comes first.
        // Once we start looking at multiple blocks, the first instruction of
        // the block is reachable, so we only need to determine reachability
        // between whole blocks.
        BasicBlock *BB = UI->getParent();

        // If A comes before B, then B is definitively reachable from A.
        if (UI->comesBefore(Store))
          return false;

        // If the user's parent block is entry, no predecessor exists.
        if (BB->isEntryBlock())
          return true;

        // Otherwise, continue doing the normal per-BB CFG walk.
        ReachabilityWorklist.append(succ_begin(BB), succ_end(BB));
      } else {
        ReachabilityWorklist.push_back(UI->getParent());
      }
    }
    return true;
  };

  if (!CaptureTrackingWithModRef(DestAlloca, DestModRefCallback))
    return false;
  // Bailout if Dest may have any ModRef before Store.
  if (!ReachabilityWorklist.empty() &&
      isPotentiallyReachableFromMany(ReachabilityWorklist, Store->getParent(),
                                     nullptr, DT, nullptr))
    return false;

  // Check that, from after the Load to the end of the BB,
  //   - if the dest has any Mod, src has no Ref, and
  //   - if the dest has any Ref, src has no Mod except full-sized lifetimes.
  MemoryLocation SrcLoc(SrcAlloca, LocationSize::precise(Size));

  auto SrcModRefCallback = [&](Instruction *UI) -> bool {
    // Any ModRef post-dominated by Load doesn't matter, also Load and Store
    // themselves can be ignored.
    if (PDT->dominates(Load, UI) || UI == Load || UI == Store)
      return true;
    ModRefInfo Res = BAA.getModRefInfo(UI, SrcLoc);
    if ((isModSet(DestModRef) && isRefSet(Res)) ||
        (isRefSet(DestModRef) && isModSet(Res)))
      return false;

    return true;
  };

  if (!CaptureTrackingWithModRef(SrcAlloca, SrcModRefCallback))
    return false;

  // We can do the transformation. First, move the SrcAlloca to the start of the
  // BB.
  if (SrcNotDom)
    SrcAlloca->moveBefore(*SrcAlloca->getParent(),
                          SrcAlloca->getParent()->getFirstInsertionPt());
  // Align the allocas appropriately.
  SrcAlloca->setAlignment(
      std::max(SrcAlloca->getAlign(), DestAlloca->getAlign()));

  // Merge the two allocas.
  DestAlloca->replaceAllUsesWith(SrcAlloca);
  eraseInstruction(DestAlloca);

  // Drop metadata on the source alloca.
  SrcAlloca->dropUnknownNonDebugMetadata();

  // TODO: Reconstruct merged lifetime markers.
  // Remove all other lifetime markers. if the original lifetime intrinsics
  // exists.
  if (!LifetimeMarkers.empty()) {
    for (Instruction *I : LifetimeMarkers)
      eraseInstruction(I);
  }

  // As this transformation can cause memory accesses that didn't previously
  // alias to begin to alias one another, we remove !noalias metadata from any
  // uses of either alloca. This is conservative, but more precision doesn't
  // seem worthwhile right now.
  for (Instruction *I : NoAliasInstrs)
    I->setMetadata(LLVMContext::MD_noalias, nullptr);

  LLVM_DEBUG(dbgs() << "Stack Move: Performed staack-move optimization\n");
  NumStackMove++;
  return true;
}

static bool isZeroSize(Value *Size) {
  if (auto *I = dyn_cast<Instruction>(Size))
    if (auto *Res = simplifyInstruction(I, I->getDataLayout()))
      Size = Res;
  // Treat undef/poison size like zero.
  if (auto *C = dyn_cast<Constant>(Size))
    return isa<UndefValue>(C) || C->isNullValue();
  return false;
}

/// Perform simplification of memcpy's.  If we have memcpy A
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
/// circumstances). This allows later passes to remove the first memcpy
/// altogether.
bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
  // We can only optimize non-volatile memcpy's.
  if (M->isVolatile())
    return false;

  // If the source and destination of the memcpy are the same, then zap it.
  if (M->getSource() == M->getDest()) {
    ++BBI;
    eraseInstruction(M);
    return true;
  }

  // If the size is zero, remove the memcpy.
  if (isZeroSize(M->getLength())) {
    ++BBI;
    eraseInstruction(M);
    return true;
  }

  MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
  if (!MA)
    // Degenerate case: memcpy marked as not accessing memory.
    return false;

  // If copying from a constant, try to turn the memcpy into a memset.
  if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
      if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
                                           M->getDataLayout())) {
        IRBuilder<> Builder(M);
        Instruction *NewM = Builder.CreateMemSet(
            M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false);
        auto *LastDef = cast<MemoryDef>(MA);
        auto *NewAccess =
            MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
        MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);

        eraseInstruction(M);
        ++NumCpyToSet;
        return true;
      }

  BatchAAResults BAA(*AA);
  // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
  MemoryAccess *AnyClobber = MA->getDefiningAccess();
  MemoryLocation DestLoc = MemoryLocation::getForDest(M);
  const MemoryAccess *DestClobber =
      MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA);

  // Try to turn a partially redundant memset + memcpy into
  // smaller memset + memcpy.  We don't need the memcpy size for this.
  // The memcpy must post-dom the memset, so limit this to the same basic
  // block. A non-local generalization is likely not worthwhile.
  if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
    if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
      if (DestClobber->getBlock() == M->getParent())
        if (processMemSetMemCpyDependence(M, MDep, BAA))
          return true;

  MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
      AnyClobber, MemoryLocation::getForSource(M), BAA);

  // There are five possible optimizations we can do for memcpy:
  //   a) memcpy-memcpy xform which exposes redundance for DSE.
  //   b) call-memcpy xform for return slot optimization.
  //   c) memcpy from freshly alloca'd space or space that has just started
  //      its lifetime copies undefined data, and we can therefore eliminate
  //      the memcpy in favor of the data that was already at the destination.
  //   d) memcpy from a just-memset'd source can be turned into memset.
  //   e) elimination of memcpy via stack-move optimization.
  if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
    if (Instruction *MI = MD->getMemoryInst()) {
      if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
        if (auto *C = dyn_cast<CallInst>(MI)) {
          if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
                                   TypeSize::getFixed(CopySize->getZExtValue()),
                                   M->getDestAlign().valueOrOne(), BAA,
                                   [C]() -> CallInst * { return C; })) {
            LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
                              << "    call: " << *C << "\n"
                              << "    memcpy: " << *M << "\n");
            eraseInstruction(M);
            ++NumMemCpyInstr;
            return true;
          }
        }
      }
      if (auto *MDep = dyn_cast<MemCpyInst>(MI))
        if (processMemCpyMemCpyDependence(M, MDep, BAA))
          return true;
      if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
        if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
          LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
          eraseInstruction(M);
          ++NumCpyToSet;
          return true;
        }
      }
    }

    if (hasUndefContents(MSSA, BAA, M->getSource(), MD, M->getLength())) {
      LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
      eraseInstruction(M);
      ++NumMemCpyInstr;
      return true;
    }
  }

  // If the transfer is from a stack slot to a stack slot, then we may be able
  // to perform the stack-move optimization. See the comments in
  // performStackMoveOptzn() for more details.
  auto *DestAlloca = dyn_cast<AllocaInst>(M->getDest());
  if (!DestAlloca)
    return false;
  auto *SrcAlloca = dyn_cast<AllocaInst>(M->getSource());
  if (!SrcAlloca)
    return false;
  ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength());
  if (Len == nullptr)
    return false;
  if (performStackMoveOptzn(M, M, DestAlloca, SrcAlloca,
                            TypeSize::getFixed(Len->getZExtValue()), BAA)) {
    // Avoid invalidating the iterator.
    BBI = M->getNextNonDebugInstruction()->getIterator();
    eraseInstruction(M);
    ++NumMemCpyInstr;
    return true;
  }

  return false;
}

/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
/// not to alias.
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
  // See if the source could be modified by this memmove potentially.
  if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
    return false;

  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
                    << "\n");

  // If not, then we know we can transform this.
  Type *ArgTys[3] = {M->getRawDest()->getType(), M->getRawSource()->getType(),
                     M->getLength()->getType()};
  M->setCalledFunction(
      Intrinsic::getDeclaration(M->getModule(), Intrinsic::memcpy, ArgTys));

  // For MemorySSA nothing really changes (except that memcpy may imply stricter
  // aliasing guarantees).

  ++NumMoveToCpy;
  return true;
}

/// This is called on every byval argument in call sites.
bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
  const DataLayout &DL = CB.getDataLayout();
  // Find out what feeds this byval argument.
  Value *ByValArg = CB.getArgOperand(ArgNo);
  Type *ByValTy = CB.getParamByValType(ArgNo);
  TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
  MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
  MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
  if (!CallAccess)
    return false;
  MemCpyInst *MDep = nullptr;
  BatchAAResults BAA(*AA);
  MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
      CallAccess->getDefiningAccess(), Loc, BAA);
  if (auto *MD = dyn_cast<MemoryDef>(Clobber))
    MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());

  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
  // a memcpy, see if we can byval from the source of the memcpy instead of the
  // result.
  if (!MDep || MDep->isVolatile() ||
      ByValArg->stripPointerCasts() != MDep->getDest())
    return false;

  // The length of the memcpy must be larger or equal to the size of the byval.
  auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
  if (!C1 || !TypeSize::isKnownGE(
                 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
    return false;

  // Get the alignment of the byval.  If the call doesn't specify the alignment,
  // then it is some target specific value that we can't know.
  MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
  if (!ByValAlign)
    return false;

  // If it is greater than the memcpy, then we check to see if we can force the
  // source of the memcpy to the alignment we need.  If we fail, we bail out.
  MaybeAlign MemDepAlign = MDep->getSourceAlign();
  if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
      getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
                                 DT) < *ByValAlign)
    return false;

  // The type of the memcpy source must match the byval argument
  if (MDep->getSource()->getType() != ByValArg->getType())
    return false;

  // Verify that the copied-from memory doesn't change in between the memcpy and
  // the byval call.
  //    memcpy(a <- b)
  //    *b = 42;
  //    foo(*a)
  // It would be invalid to transform the second memcpy into foo(*b).
  if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
                     MSSA->getMemoryAccess(MDep), CallAccess))
    return false;

  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
                    << "  " << *MDep << "\n"
                    << "  " << CB << "\n");

  // Otherwise we're good!  Update the byval argument.
  combineAAMetadata(&CB, MDep);
  CB.setArgOperand(ArgNo, MDep->getSource());
  ++NumMemCpyInstr;
  return true;
}

/// This is called on memcpy dest pointer arguments attributed as immutable
/// during call. Try to use memcpy source directly if all of the following
/// conditions are satisfied.
/// 1. The memcpy dst is neither modified during the call nor captured by the
/// call. (if readonly, noalias, nocapture attributes on call-site.)
/// 2. The memcpy dst is an alloca with known alignment & size.
///     2-1. The memcpy length == the alloca size which ensures that the new
///     pointer is dereferenceable for the required range
///     2-2. The src pointer has alignment >= the alloca alignment or can be
///     enforced so.
/// 3. The memcpy dst and src is not modified between the memcpy and the call.
/// (if MSSA clobber check is safe.)
/// 4. The memcpy src is not modified during the call. (ModRef check shows no
/// Mod.)
bool MemCpyOptPass::processImmutArgument(CallBase &CB, unsigned ArgNo) {
  // 1. Ensure passed argument is immutable during call.
  if (!(CB.paramHasAttr(ArgNo, Attribute::NoAlias) &&
        CB.paramHasAttr(ArgNo, Attribute::NoCapture)))
    return false;
  const DataLayout &DL = CB.getDataLayout();
  Value *ImmutArg = CB.getArgOperand(ArgNo);

  // 2. Check that arg is alloca
  // TODO: Even if the arg gets back to branches, we can remove memcpy if all
  // the alloca alignments can be enforced to source alignment.
  auto *AI = dyn_cast<AllocaInst>(ImmutArg->stripPointerCasts());
  if (!AI)
    return false;

  std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL);
  // Can't handle unknown size alloca.
  // (e.g. Variable Length Array, Scalable Vector)
  if (!AllocaSize || AllocaSize->isScalable())
    return false;
  MemoryLocation Loc(ImmutArg, LocationSize::precise(*AllocaSize));
  MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
  if (!CallAccess)
    return false;

  MemCpyInst *MDep = nullptr;
  BatchAAResults BAA(*AA);
  MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
      CallAccess->getDefiningAccess(), Loc, BAA);
  if (auto *MD = dyn_cast<MemoryDef>(Clobber))
    MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());

  // If the immut argument isn't fed by a memcpy, ignore it.  If it is fed by
  // a memcpy, check that the arg equals the memcpy dest.
  if (!MDep || MDep->isVolatile() || AI != MDep->getDest())
    return false;

  // The type of the memcpy source must match the immut argument
  if (MDep->getSource()->getType() != ImmutArg->getType())
    return false;

  // 2-1. The length of the memcpy must be equal to the size of the alloca.
  auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
  if (!MDepLen || AllocaSize != MDepLen->getValue())
    return false;

  // 2-2. the memcpy source align must be larger than or equal the alloca's
  // align. If not so, we check to see if we can force the source of the memcpy
  // to the alignment we need. If we fail, we bail out.
  Align MemDepAlign = MDep->getSourceAlign().valueOrOne();
  Align AllocaAlign = AI->getAlign();
  if (MemDepAlign < AllocaAlign &&
      getOrEnforceKnownAlignment(MDep->getSource(), AllocaAlign, DL, &CB, AC,
                                 DT) < AllocaAlign)
    return false;

  // 3. Verify that the source doesn't change in between the memcpy and
  // the call.
  //    memcpy(a <- b)
  //    *b = 42;
  //    foo(*a)
  // It would be invalid to transform the second memcpy into foo(*b).
  if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
                     MSSA->getMemoryAccess(MDep), CallAccess))
    return false;

  // 4. The memcpy src must not be modified during the call.
  if (isModSet(AA->getModRefInfo(&CB, MemoryLocation::getForSource(MDep))))
    return false;

  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to Immut src:\n"
                    << "  " << *MDep << "\n"
                    << "  " << CB << "\n");

  // Otherwise we're good!  Update the immut argument.
  combineAAMetadata(&CB, MDep);
  CB.setArgOperand(ArgNo, MDep->getSource());
  ++NumMemCpyInstr;
  return true;
}

/// Executes one iteration of MemCpyOptPass.
bool MemCpyOptPass::iterateOnFunction(Function &F) {
  bool MadeChange = false;

  // Walk all instruction in the function.
  for (BasicBlock &BB : F) {
    // Skip unreachable blocks. For example processStore assumes that an
    // instruction in a BB can't be dominated by a later instruction in the
    // same BB (which is a scenario that can happen for an unreachable BB that
    // has itself as a predecessor).
    if (!DT->isReachableFromEntry(&BB))
      continue;

    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
      // Avoid invalidating the iterator.
      Instruction *I = &*BI++;

      bool RepeatInstruction = false;

      if (auto *SI = dyn_cast<StoreInst>(I))
        MadeChange |= processStore(SI, BI);
      else if (auto *M = dyn_cast<MemSetInst>(I))
        RepeatInstruction = processMemSet(M, BI);
      else if (auto *M = dyn_cast<MemCpyInst>(I))
        RepeatInstruction = processMemCpy(M, BI);
      else if (auto *M = dyn_cast<MemMoveInst>(I))
        RepeatInstruction = processMemMove(M);
      else if (auto *CB = dyn_cast<CallBase>(I)) {
        for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) {
          if (CB->isByValArgument(i))
            MadeChange |= processByValArgument(*CB, i);
          else if (CB->onlyReadsMemory(i))
            MadeChange |= processImmutArgument(*CB, i);
        }
      }

      // Reprocess the instruction if desired.
      if (RepeatInstruction) {
        if (BI != BB.begin())
          --BI;
        MadeChange = true;
      }
    }
  }

  return MadeChange;
}

PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto *AA = &AM.getResult<AAManager>(F);
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  auto *PDT = &AM.getResult<PostDominatorTreeAnalysis>(F);
  auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);

  bool MadeChange = runImpl(F, &TLI, AA, AC, DT, PDT, &MSSA->getMSSA());
  if (!MadeChange)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<MemorySSAAnalysis>();
  return PA;
}

bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
                            AliasAnalysis *AA_, AssumptionCache *AC_,
                            DominatorTree *DT_, PostDominatorTree *PDT_,
                            MemorySSA *MSSA_) {
  bool MadeChange = false;
  TLI = TLI_;
  AA = AA_;
  AC = AC_;
  DT = DT_;
  PDT = PDT_;
  MSSA = MSSA_;
  MemorySSAUpdater MSSAU_(MSSA_);
  MSSAU = &MSSAU_;

  while (true) {
    if (!iterateOnFunction(F))
      break;
    MadeChange = true;
  }

  if (VerifyMemorySSA)
    MSSA_->verifyMemorySSA();

  return MadeChange;
}