1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
//===-------- LoopIdiomVectorize.cpp - Loop idiom vectorization -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a pass that recognizes certain loop idioms and
// transforms them into more optimized versions of the same loop. In cases
// where this happens, it can be a significant performance win.
//
// We currently only recognize one loop that finds the first mismatched byte
// in an array and returns the index, i.e. something like:
//
// while (++i != n) {
// if (a[i] != b[i])
// break;
// }
//
// In this example we can actually vectorize the loop despite the early exit,
// although the loop vectorizer does not support it. It requires some extra
// checks to deal with the possibility of faulting loads when crossing page
// boundaries. However, even with these checks it is still profitable to do the
// transformation.
//
//===----------------------------------------------------------------------===//
//
// NOTE: This Pass matches a really specific loop pattern because it's only
// supposed to be a temporary solution until our LoopVectorizer is powerful
// enought to vectorize it automatically.
//
// TODO List:
//
// * Add support for the inverse case where we scan for a matching element.
// * Permit 64-bit induction variable types.
// * Recognize loops that increment the IV *after* comparing bytes.
// * Allow 32-bit sign-extends of the IV used by the GEP.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopIdiomVectorize.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "loop-idiom-vectorize"
static cl::opt<bool> DisableAll("disable-loop-idiom-vectorize-all", cl::Hidden,
cl::init(false),
cl::desc("Disable Loop Idiom Vectorize Pass."));
static cl::opt<LoopIdiomVectorizeStyle>
LITVecStyle("loop-idiom-vectorize-style", cl::Hidden,
cl::desc("The vectorization style for loop idiom transform."),
cl::values(clEnumValN(LoopIdiomVectorizeStyle::Masked, "masked",
"Use masked vector intrinsics"),
clEnumValN(LoopIdiomVectorizeStyle::Predicated,
"predicated", "Use VP intrinsics")),
cl::init(LoopIdiomVectorizeStyle::Masked));
static cl::opt<bool>
DisableByteCmp("disable-loop-idiom-vectorize-bytecmp", cl::Hidden,
cl::init(false),
cl::desc("Proceed with Loop Idiom Vectorize Pass, but do "
"not convert byte-compare loop(s)."));
static cl::opt<unsigned>
ByteCmpVF("loop-idiom-vectorize-bytecmp-vf", cl::Hidden,
cl::desc("The vectorization factor for byte-compare patterns."),
cl::init(16));
static cl::opt<bool>
VerifyLoops("loop-idiom-vectorize-verify", cl::Hidden, cl::init(false),
cl::desc("Verify loops generated Loop Idiom Vectorize Pass."));
namespace {
class LoopIdiomVectorize {
LoopIdiomVectorizeStyle VectorizeStyle;
unsigned ByteCompareVF;
Loop *CurLoop = nullptr;
DominatorTree *DT;
LoopInfo *LI;
const TargetTransformInfo *TTI;
const DataLayout *DL;
// Blocks that will be used for inserting vectorized code.
BasicBlock *EndBlock = nullptr;
BasicBlock *VectorLoopPreheaderBlock = nullptr;
BasicBlock *VectorLoopStartBlock = nullptr;
BasicBlock *VectorLoopMismatchBlock = nullptr;
BasicBlock *VectorLoopIncBlock = nullptr;
public:
LoopIdiomVectorize(LoopIdiomVectorizeStyle S, unsigned VF, DominatorTree *DT,
LoopInfo *LI, const TargetTransformInfo *TTI,
const DataLayout *DL)
: VectorizeStyle(S), ByteCompareVF(VF), DT(DT), LI(LI), TTI(TTI), DL(DL) {
}
bool run(Loop *L);
private:
/// \name Countable Loop Idiom Handling
/// @{
bool runOnCountableLoop();
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
SmallVectorImpl<BasicBlock *> &ExitBlocks);
bool recognizeByteCompare();
Value *expandFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
Instruction *Index, Value *Start, Value *MaxLen);
Value *createMaskedFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart,
Value *ExtEnd);
Value *createPredicatedFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart,
Value *ExtEnd);
void transformByteCompare(GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
PHINode *IndPhi, Value *MaxLen, Instruction *Index,
Value *Start, bool IncIdx, BasicBlock *FoundBB,
BasicBlock *EndBB);
/// @}
};
} // anonymous namespace
PreservedAnalyses LoopIdiomVectorizePass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &) {
if (DisableAll)
return PreservedAnalyses::all();
const auto *DL = &L.getHeader()->getDataLayout();
LoopIdiomVectorizeStyle VecStyle = VectorizeStyle;
if (LITVecStyle.getNumOccurrences())
VecStyle = LITVecStyle;
unsigned BCVF = ByteCompareVF;
if (ByteCmpVF.getNumOccurrences())
BCVF = ByteCmpVF;
LoopIdiomVectorize LIV(VecStyle, BCVF, &AR.DT, &AR.LI, &AR.TTI, DL);
if (!LIV.run(&L))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
//===----------------------------------------------------------------------===//
//
// Implementation of LoopIdiomVectorize
//
//===----------------------------------------------------------------------===//
bool LoopIdiomVectorize::run(Loop *L) {
CurLoop = L;
Function &F = *L->getHeader()->getParent();
if (DisableAll || F.hasOptSize())
return false;
if (F.hasFnAttribute(Attribute::NoImplicitFloat)) {
LLVM_DEBUG(dbgs() << DEBUG_TYPE << " is disabled on " << F.getName()
<< " due to its NoImplicitFloat attribute");
return false;
}
// If the loop could not be converted to canonical form, it must have an
// indirectbr in it, just give up.
if (!L->getLoopPreheader())
return false;
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" << F.getName() << "] Loop %"
<< CurLoop->getHeader()->getName() << "\n");
return recognizeByteCompare();
}
bool LoopIdiomVectorize::recognizeByteCompare() {
// Currently the transformation only works on scalable vector types, although
// there is no fundamental reason why it cannot be made to work for fixed
// width too.
// We also need to know the minimum page size for the target in order to
// generate runtime memory checks to ensure the vector version won't fault.
if (!TTI->supportsScalableVectors() || !TTI->getMinPageSize().has_value() ||
DisableByteCmp)
return false;
BasicBlock *Header = CurLoop->getHeader();
// In LoopIdiomVectorize::run we have already checked that the loop
// has a preheader so we can assume it's in a canonical form.
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 2)
return false;
PHINode *PN = dyn_cast<PHINode>(&Header->front());
if (!PN || PN->getNumIncomingValues() != 2)
return false;
auto LoopBlocks = CurLoop->getBlocks();
// The first block in the loop should contain only 4 instructions, e.g.
//
// while.cond:
// %res.phi = phi i32 [ %start, %ph ], [ %inc, %while.body ]
// %inc = add i32 %res.phi, 1
// %cmp.not = icmp eq i32 %inc, %n
// br i1 %cmp.not, label %while.end, label %while.body
//
if (LoopBlocks[0]->sizeWithoutDebug() > 4)
return false;
// The second block should contain 7 instructions, e.g.
//
// while.body:
// %idx = zext i32 %inc to i64
// %idx.a = getelementptr inbounds i8, ptr %a, i64 %idx
// %load.a = load i8, ptr %idx.a
// %idx.b = getelementptr inbounds i8, ptr %b, i64 %idx
// %load.b = load i8, ptr %idx.b
// %cmp.not.ld = icmp eq i8 %load.a, %load.b
// br i1 %cmp.not.ld, label %while.cond, label %while.end
//
if (LoopBlocks[1]->sizeWithoutDebug() > 7)
return false;
// The incoming value to the PHI node from the loop should be an add of 1.
Value *StartIdx = nullptr;
Instruction *Index = nullptr;
if (!CurLoop->contains(PN->getIncomingBlock(0))) {
StartIdx = PN->getIncomingValue(0);
Index = dyn_cast<Instruction>(PN->getIncomingValue(1));
} else {
StartIdx = PN->getIncomingValue(1);
Index = dyn_cast<Instruction>(PN->getIncomingValue(0));
}
// Limit to 32-bit types for now
if (!Index || !Index->getType()->isIntegerTy(32) ||
!match(Index, m_c_Add(m_Specific(PN), m_One())))
return false;
// If we match the pattern, PN and Index will be replaced with the result of
// the cttz.elts intrinsic. If any other instructions are used outside of
// the loop, we cannot replace it.
for (BasicBlock *BB : LoopBlocks)
for (Instruction &I : *BB)
if (&I != PN && &I != Index)
for (User *U : I.users())
if (!CurLoop->contains(cast<Instruction>(U)))
return false;
// Match the branch instruction for the header
ICmpInst::Predicate Pred;
Value *MaxLen;
BasicBlock *EndBB, *WhileBB;
if (!match(Header->getTerminator(),
m_Br(m_ICmp(Pred, m_Specific(Index), m_Value(MaxLen)),
m_BasicBlock(EndBB), m_BasicBlock(WhileBB))) ||
Pred != ICmpInst::Predicate::ICMP_EQ || !CurLoop->contains(WhileBB))
return false;
// WhileBB should contain the pattern of load & compare instructions. Match
// the pattern and find the GEP instructions used by the loads.
ICmpInst::Predicate WhilePred;
BasicBlock *FoundBB;
BasicBlock *TrueBB;
Value *LoadA, *LoadB;
if (!match(WhileBB->getTerminator(),
m_Br(m_ICmp(WhilePred, m_Value(LoadA), m_Value(LoadB)),
m_BasicBlock(TrueBB), m_BasicBlock(FoundBB))) ||
WhilePred != ICmpInst::Predicate::ICMP_EQ || !CurLoop->contains(TrueBB))
return false;
Value *A, *B;
if (!match(LoadA, m_Load(m_Value(A))) || !match(LoadB, m_Load(m_Value(B))))
return false;
LoadInst *LoadAI = cast<LoadInst>(LoadA);
LoadInst *LoadBI = cast<LoadInst>(LoadB);
if (!LoadAI->isSimple() || !LoadBI->isSimple())
return false;
GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(A);
GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(B);
if (!GEPA || !GEPB)
return false;
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
// Check we are loading i8 values from two loop invariant pointers
if (!CurLoop->isLoopInvariant(PtrA) || !CurLoop->isLoopInvariant(PtrB) ||
!GEPA->getResultElementType()->isIntegerTy(8) ||
!GEPB->getResultElementType()->isIntegerTy(8) ||
!LoadAI->getType()->isIntegerTy(8) ||
!LoadBI->getType()->isIntegerTy(8) || PtrA == PtrB)
return false;
// Check that the index to the GEPs is the index we found earlier
if (GEPA->getNumIndices() > 1 || GEPB->getNumIndices() > 1)
return false;
Value *IdxA = GEPA->getOperand(GEPA->getNumIndices());
Value *IdxB = GEPB->getOperand(GEPB->getNumIndices());
if (IdxA != IdxB || !match(IdxA, m_ZExt(m_Specific(Index))))
return false;
// We only ever expect the pre-incremented index value to be used inside the
// loop.
if (!PN->hasOneUse())
return false;
// Ensure that when the Found and End blocks are identical the PHIs have the
// supported format. We don't currently allow cases like this:
// while.cond:
// ...
// br i1 %cmp.not, label %while.end, label %while.body
//
// while.body:
// ...
// br i1 %cmp.not2, label %while.cond, label %while.end
//
// while.end:
// %final_ptr = phi ptr [ %c, %while.body ], [ %d, %while.cond ]
//
// Where the incoming values for %final_ptr are unique and from each of the
// loop blocks, but not actually defined in the loop. This requires extra
// work setting up the byte.compare block, i.e. by introducing a select to
// choose the correct value.
// TODO: We could add support for this in future.
if (FoundBB == EndBB) {
for (PHINode &EndPN : EndBB->phis()) {
Value *WhileCondVal = EndPN.getIncomingValueForBlock(Header);
Value *WhileBodyVal = EndPN.getIncomingValueForBlock(WhileBB);
// The value of the index when leaving the while.cond block is always the
// same as the end value (MaxLen) so we permit either. The value when
// leaving the while.body block should only be the index. Otherwise for
// any other values we only allow ones that are same for both blocks.
if (WhileCondVal != WhileBodyVal &&
((WhileCondVal != Index && WhileCondVal != MaxLen) ||
(WhileBodyVal != Index)))
return false;
}
}
LLVM_DEBUG(dbgs() << "FOUND IDIOM IN LOOP: \n"
<< *(EndBB->getParent()) << "\n\n");
// The index is incremented before the GEP/Load pair so we need to
// add 1 to the start value.
transformByteCompare(GEPA, GEPB, PN, MaxLen, Index, StartIdx, /*IncIdx=*/true,
FoundBB, EndBB);
return true;
}
Value *LoopIdiomVectorize::createMaskedFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart, Value *ExtEnd) {
Type *I64Type = Builder.getInt64Ty();
Type *ResType = Builder.getInt32Ty();
Type *LoadType = Builder.getInt8Ty();
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
ScalableVectorType *PredVTy =
ScalableVectorType::get(Builder.getInt1Ty(), ByteCompareVF);
Value *InitialPred = Builder.CreateIntrinsic(
Intrinsic::get_active_lane_mask, {PredVTy, I64Type}, {ExtStart, ExtEnd});
Value *VecLen = Builder.CreateIntrinsic(Intrinsic::vscale, {I64Type}, {});
VecLen =
Builder.CreateMul(VecLen, ConstantInt::get(I64Type, ByteCompareVF), "",
/*HasNUW=*/true, /*HasNSW=*/true);
Value *PFalse = Builder.CreateVectorSplat(PredVTy->getElementCount(),
Builder.getInt1(false));
BranchInst *JumpToVectorLoop = BranchInst::Create(VectorLoopStartBlock);
Builder.Insert(JumpToVectorLoop);
DTU.applyUpdates({{DominatorTree::Insert, VectorLoopPreheaderBlock,
VectorLoopStartBlock}});
// Set up the first vector loop block by creating the PHIs, doing the vector
// loads and comparing the vectors.
Builder.SetInsertPoint(VectorLoopStartBlock);
PHINode *LoopPred = Builder.CreatePHI(PredVTy, 2, "mismatch_vec_loop_pred");
LoopPred->addIncoming(InitialPred, VectorLoopPreheaderBlock);
PHINode *VectorIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_vec_index");
VectorIndexPhi->addIncoming(ExtStart, VectorLoopPreheaderBlock);
Type *VectorLoadType =
ScalableVectorType::get(Builder.getInt8Ty(), ByteCompareVF);
Value *Passthru = ConstantInt::getNullValue(VectorLoadType);
Value *VectorLhsGep =
Builder.CreateGEP(LoadType, PtrA, VectorIndexPhi, "", GEPA->isInBounds());
Value *VectorLhsLoad = Builder.CreateMaskedLoad(VectorLoadType, VectorLhsGep,
Align(1), LoopPred, Passthru);
Value *VectorRhsGep =
Builder.CreateGEP(LoadType, PtrB, VectorIndexPhi, "", GEPB->isInBounds());
Value *VectorRhsLoad = Builder.CreateMaskedLoad(VectorLoadType, VectorRhsGep,
Align(1), LoopPred, Passthru);
Value *VectorMatchCmp = Builder.CreateICmpNE(VectorLhsLoad, VectorRhsLoad);
VectorMatchCmp = Builder.CreateSelect(LoopPred, VectorMatchCmp, PFalse);
Value *VectorMatchHasActiveLanes = Builder.CreateOrReduce(VectorMatchCmp);
BranchInst *VectorEarlyExit = BranchInst::Create(
VectorLoopMismatchBlock, VectorLoopIncBlock, VectorMatchHasActiveLanes);
Builder.Insert(VectorEarlyExit);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopMismatchBlock},
{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopIncBlock}});
// Increment the index counter and calculate the predicate for the next
// iteration of the loop. We branch back to the start of the loop if there
// is at least one active lane.
Builder.SetInsertPoint(VectorLoopIncBlock);
Value *NewVectorIndexPhi =
Builder.CreateAdd(VectorIndexPhi, VecLen, "",
/*HasNUW=*/true, /*HasNSW=*/true);
VectorIndexPhi->addIncoming(NewVectorIndexPhi, VectorLoopIncBlock);
Value *NewPred =
Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
{PredVTy, I64Type}, {NewVectorIndexPhi, ExtEnd});
LoopPred->addIncoming(NewPred, VectorLoopIncBlock);
Value *PredHasActiveLanes =
Builder.CreateExtractElement(NewPred, uint64_t(0));
BranchInst *VectorLoopBranchBack =
BranchInst::Create(VectorLoopStartBlock, EndBlock, PredHasActiveLanes);
Builder.Insert(VectorLoopBranchBack);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopIncBlock, VectorLoopStartBlock},
{DominatorTree::Insert, VectorLoopIncBlock, EndBlock}});
// If we found a mismatch then we need to calculate which lane in the vector
// had a mismatch and add that on to the current loop index.
Builder.SetInsertPoint(VectorLoopMismatchBlock);
PHINode *FoundPred = Builder.CreatePHI(PredVTy, 1, "mismatch_vec_found_pred");
FoundPred->addIncoming(VectorMatchCmp, VectorLoopStartBlock);
PHINode *LastLoopPred =
Builder.CreatePHI(PredVTy, 1, "mismatch_vec_last_loop_pred");
LastLoopPred->addIncoming(LoopPred, VectorLoopStartBlock);
PHINode *VectorFoundIndex =
Builder.CreatePHI(I64Type, 1, "mismatch_vec_found_index");
VectorFoundIndex->addIncoming(VectorIndexPhi, VectorLoopStartBlock);
Value *PredMatchCmp = Builder.CreateAnd(LastLoopPred, FoundPred);
Value *Ctz = Builder.CreateIntrinsic(
Intrinsic::experimental_cttz_elts, {ResType, PredMatchCmp->getType()},
{PredMatchCmp, /*ZeroIsPoison=*/Builder.getInt1(true)});
Ctz = Builder.CreateZExt(Ctz, I64Type);
Value *VectorLoopRes64 = Builder.CreateAdd(VectorFoundIndex, Ctz, "",
/*HasNUW=*/true, /*HasNSW=*/true);
return Builder.CreateTrunc(VectorLoopRes64, ResType);
}
Value *LoopIdiomVectorize::createPredicatedFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart, Value *ExtEnd) {
Type *I64Type = Builder.getInt64Ty();
Type *I32Type = Builder.getInt32Ty();
Type *ResType = I32Type;
Type *LoadType = Builder.getInt8Ty();
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
auto *JumpToVectorLoop = BranchInst::Create(VectorLoopStartBlock);
Builder.Insert(JumpToVectorLoop);
DTU.applyUpdates({{DominatorTree::Insert, VectorLoopPreheaderBlock,
VectorLoopStartBlock}});
// Set up the first Vector loop block by creating the PHIs, doing the vector
// loads and comparing the vectors.
Builder.SetInsertPoint(VectorLoopStartBlock);
auto *VectorIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_vector_index");
VectorIndexPhi->addIncoming(ExtStart, VectorLoopPreheaderBlock);
// Calculate AVL by subtracting the vector loop index from the trip count
Value *AVL = Builder.CreateSub(ExtEnd, VectorIndexPhi, "avl", /*HasNUW=*/true,
/*HasNSW=*/true);
auto *VectorLoadType = ScalableVectorType::get(LoadType, ByteCompareVF);
auto *VF = ConstantInt::get(I32Type, ByteCompareVF);
Value *VL = Builder.CreateIntrinsic(Intrinsic::experimental_get_vector_length,
{I64Type}, {AVL, VF, Builder.getTrue()});
Value *GepOffset = VectorIndexPhi;
Value *VectorLhsGep =
Builder.CreateGEP(LoadType, PtrA, GepOffset, "", GEPA->isInBounds());
VectorType *TrueMaskTy =
VectorType::get(Builder.getInt1Ty(), VectorLoadType->getElementCount());
Value *AllTrueMask = Constant::getAllOnesValue(TrueMaskTy);
Value *VectorLhsLoad = Builder.CreateIntrinsic(
Intrinsic::vp_load, {VectorLoadType, VectorLhsGep->getType()},
{VectorLhsGep, AllTrueMask, VL}, nullptr, "lhs.load");
Value *VectorRhsGep =
Builder.CreateGEP(LoadType, PtrB, GepOffset, "", GEPB->isInBounds());
Value *VectorRhsLoad = Builder.CreateIntrinsic(
Intrinsic::vp_load, {VectorLoadType, VectorLhsGep->getType()},
{VectorRhsGep, AllTrueMask, VL}, nullptr, "rhs.load");
StringRef PredicateStr = CmpInst::getPredicateName(CmpInst::ICMP_NE);
auto *PredicateMDS = MDString::get(VectorLhsLoad->getContext(), PredicateStr);
Value *Pred = MetadataAsValue::get(VectorLhsLoad->getContext(), PredicateMDS);
Value *VectorMatchCmp = Builder.CreateIntrinsic(
Intrinsic::vp_icmp, {VectorLhsLoad->getType()},
{VectorLhsLoad, VectorRhsLoad, Pred, AllTrueMask, VL}, nullptr,
"mismatch.cmp");
Value *CTZ = Builder.CreateIntrinsic(
Intrinsic::vp_cttz_elts, {ResType, VectorMatchCmp->getType()},
{VectorMatchCmp, /*ZeroIsPoison=*/Builder.getInt1(false), AllTrueMask,
VL});
Value *MismatchFound = Builder.CreateICmpNE(CTZ, VL);
auto *VectorEarlyExit = BranchInst::Create(VectorLoopMismatchBlock,
VectorLoopIncBlock, MismatchFound);
Builder.Insert(VectorEarlyExit);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopMismatchBlock},
{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopIncBlock}});
// Increment the index counter and calculate the predicate for the next
// iteration of the loop. We branch back to the start of the loop if there
// is at least one active lane.
Builder.SetInsertPoint(VectorLoopIncBlock);
Value *VL64 = Builder.CreateZExt(VL, I64Type);
Value *NewVectorIndexPhi =
Builder.CreateAdd(VectorIndexPhi, VL64, "",
/*HasNUW=*/true, /*HasNSW=*/true);
VectorIndexPhi->addIncoming(NewVectorIndexPhi, VectorLoopIncBlock);
Value *ExitCond = Builder.CreateICmpNE(NewVectorIndexPhi, ExtEnd);
auto *VectorLoopBranchBack =
BranchInst::Create(VectorLoopStartBlock, EndBlock, ExitCond);
Builder.Insert(VectorLoopBranchBack);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopIncBlock, VectorLoopStartBlock},
{DominatorTree::Insert, VectorLoopIncBlock, EndBlock}});
// If we found a mismatch then we need to calculate which lane in the vector
// had a mismatch and add that on to the current loop index.
Builder.SetInsertPoint(VectorLoopMismatchBlock);
// Add LCSSA phis for CTZ and VectorIndexPhi.
auto *CTZLCSSAPhi = Builder.CreatePHI(CTZ->getType(), 1, "ctz");
CTZLCSSAPhi->addIncoming(CTZ, VectorLoopStartBlock);
auto *VectorIndexLCSSAPhi =
Builder.CreatePHI(VectorIndexPhi->getType(), 1, "mismatch_vector_index");
VectorIndexLCSSAPhi->addIncoming(VectorIndexPhi, VectorLoopStartBlock);
Value *CTZI64 = Builder.CreateZExt(CTZLCSSAPhi, I64Type);
Value *VectorLoopRes64 = Builder.CreateAdd(VectorIndexLCSSAPhi, CTZI64, "",
/*HasNUW=*/true, /*HasNSW=*/true);
return Builder.CreateTrunc(VectorLoopRes64, ResType);
}
Value *LoopIdiomVectorize::expandFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Instruction *Index, Value *Start, Value *MaxLen) {
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
// Get the arguments and types for the intrinsic.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
LLVMContext &Ctx = PHBranch->getContext();
Type *LoadType = Type::getInt8Ty(Ctx);
Type *ResType = Builder.getInt32Ty();
// Split block in the original loop preheader.
EndBlock = SplitBlock(Preheader, PHBranch, DT, LI, nullptr, "mismatch_end");
// Create the blocks that we're going to need:
// 1. A block for checking the zero-extended length exceeds 0
// 2. A block to check that the start and end addresses of a given array
// lie on the same page.
// 3. The vector loop preheader.
// 4. The first vector loop block.
// 5. The vector loop increment block.
// 6. A block we can jump to from the vector loop when a mismatch is found.
// 7. The first block of the scalar loop itself, containing PHIs , loads
// and cmp.
// 8. A scalar loop increment block to increment the PHIs and go back
// around the loop.
BasicBlock *MinItCheckBlock = BasicBlock::Create(
Ctx, "mismatch_min_it_check", EndBlock->getParent(), EndBlock);
// Update the terminator added by SplitBlock to branch to the first block
Preheader->getTerminator()->setSuccessor(0, MinItCheckBlock);
BasicBlock *MemCheckBlock = BasicBlock::Create(
Ctx, "mismatch_mem_check", EndBlock->getParent(), EndBlock);
VectorLoopPreheaderBlock = BasicBlock::Create(
Ctx, "mismatch_vec_loop_preheader", EndBlock->getParent(), EndBlock);
VectorLoopStartBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop",
EndBlock->getParent(), EndBlock);
VectorLoopIncBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop_inc",
EndBlock->getParent(), EndBlock);
VectorLoopMismatchBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop_found",
EndBlock->getParent(), EndBlock);
BasicBlock *LoopPreHeaderBlock = BasicBlock::Create(
Ctx, "mismatch_loop_pre", EndBlock->getParent(), EndBlock);
BasicBlock *LoopStartBlock =
BasicBlock::Create(Ctx, "mismatch_loop", EndBlock->getParent(), EndBlock);
BasicBlock *LoopIncBlock = BasicBlock::Create(
Ctx, "mismatch_loop_inc", EndBlock->getParent(), EndBlock);
DTU.applyUpdates({{DominatorTree::Insert, Preheader, MinItCheckBlock},
{DominatorTree::Delete, Preheader, EndBlock}});
// Update LoopInfo with the new vector & scalar loops.
auto VectorLoop = LI->AllocateLoop();
auto ScalarLoop = LI->AllocateLoop();
if (CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->addBasicBlockToLoop(MinItCheckBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(MemCheckBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(VectorLoopPreheaderBlock,
*LI);
CurLoop->getParentLoop()->addChildLoop(VectorLoop);
CurLoop->getParentLoop()->addBasicBlockToLoop(VectorLoopMismatchBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(LoopPreHeaderBlock, *LI);
CurLoop->getParentLoop()->addChildLoop(ScalarLoop);
} else {
LI->addTopLevelLoop(VectorLoop);
LI->addTopLevelLoop(ScalarLoop);
}
// Add the new basic blocks to their associated loops.
VectorLoop->addBasicBlockToLoop(VectorLoopStartBlock, *LI);
VectorLoop->addBasicBlockToLoop(VectorLoopIncBlock, *LI);
ScalarLoop->addBasicBlockToLoop(LoopStartBlock, *LI);
ScalarLoop->addBasicBlockToLoop(LoopIncBlock, *LI);
// Set up some types and constants that we intend to reuse.
Type *I64Type = Builder.getInt64Ty();
// Check the zero-extended iteration count > 0
Builder.SetInsertPoint(MinItCheckBlock);
Value *ExtStart = Builder.CreateZExt(Start, I64Type);
Value *ExtEnd = Builder.CreateZExt(MaxLen, I64Type);
// This check doesn't really cost us very much.
Value *LimitCheck = Builder.CreateICmpULE(Start, MaxLen);
BranchInst *MinItCheckBr =
BranchInst::Create(MemCheckBlock, LoopPreHeaderBlock, LimitCheck);
MinItCheckBr->setMetadata(
LLVMContext::MD_prof,
MDBuilder(MinItCheckBr->getContext()).createBranchWeights(99, 1));
Builder.Insert(MinItCheckBr);
DTU.applyUpdates(
{{DominatorTree::Insert, MinItCheckBlock, MemCheckBlock},
{DominatorTree::Insert, MinItCheckBlock, LoopPreHeaderBlock}});
// For each of the arrays, check the start/end addresses are on the same
// page.
Builder.SetInsertPoint(MemCheckBlock);
// The early exit in the original loop means that when performing vector
// loads we are potentially reading ahead of the early exit. So we could
// fault if crossing a page boundary. Therefore, we create runtime memory
// checks based on the minimum page size as follows:
// 1. Calculate the addresses of the first memory accesses in the loop,
// i.e. LhsStart and RhsStart.
// 2. Get the last accessed addresses in the loop, i.e. LhsEnd and RhsEnd.
// 3. Determine which pages correspond to all the memory accesses, i.e
// LhsStartPage, LhsEndPage, RhsStartPage, RhsEndPage.
// 4. If LhsStartPage == LhsEndPage and RhsStartPage == RhsEndPage, then
// we know we won't cross any page boundaries in the loop so we can
// enter the vector loop! Otherwise we fall back on the scalar loop.
Value *LhsStartGEP = Builder.CreateGEP(LoadType, PtrA, ExtStart);
Value *RhsStartGEP = Builder.CreateGEP(LoadType, PtrB, ExtStart);
Value *RhsStart = Builder.CreatePtrToInt(RhsStartGEP, I64Type);
Value *LhsStart = Builder.CreatePtrToInt(LhsStartGEP, I64Type);
Value *LhsEndGEP = Builder.CreateGEP(LoadType, PtrA, ExtEnd);
Value *RhsEndGEP = Builder.CreateGEP(LoadType, PtrB, ExtEnd);
Value *LhsEnd = Builder.CreatePtrToInt(LhsEndGEP, I64Type);
Value *RhsEnd = Builder.CreatePtrToInt(RhsEndGEP, I64Type);
const uint64_t MinPageSize = TTI->getMinPageSize().value();
const uint64_t AddrShiftAmt = llvm::Log2_64(MinPageSize);
Value *LhsStartPage = Builder.CreateLShr(LhsStart, AddrShiftAmt);
Value *LhsEndPage = Builder.CreateLShr(LhsEnd, AddrShiftAmt);
Value *RhsStartPage = Builder.CreateLShr(RhsStart, AddrShiftAmt);
Value *RhsEndPage = Builder.CreateLShr(RhsEnd, AddrShiftAmt);
Value *LhsPageCmp = Builder.CreateICmpNE(LhsStartPage, LhsEndPage);
Value *RhsPageCmp = Builder.CreateICmpNE(RhsStartPage, RhsEndPage);
Value *CombinedPageCmp = Builder.CreateOr(LhsPageCmp, RhsPageCmp);
BranchInst *CombinedPageCmpCmpBr = BranchInst::Create(
LoopPreHeaderBlock, VectorLoopPreheaderBlock, CombinedPageCmp);
CombinedPageCmpCmpBr->setMetadata(
LLVMContext::MD_prof, MDBuilder(CombinedPageCmpCmpBr->getContext())
.createBranchWeights(10, 90));
Builder.Insert(CombinedPageCmpCmpBr);
DTU.applyUpdates(
{{DominatorTree::Insert, MemCheckBlock, LoopPreHeaderBlock},
{DominatorTree::Insert, MemCheckBlock, VectorLoopPreheaderBlock}});
// Set up the vector loop preheader, i.e. calculate initial loop predicate,
// zero-extend MaxLen to 64-bits, determine the number of vector elements
// processed in each iteration, etc.
Builder.SetInsertPoint(VectorLoopPreheaderBlock);
// At this point we know two things must be true:
// 1. Start <= End
// 2. ExtMaxLen <= MinPageSize due to the page checks.
// Therefore, we know that we can use a 64-bit induction variable that
// starts from 0 -> ExtMaxLen and it will not overflow.
Value *VectorLoopRes = nullptr;
switch (VectorizeStyle) {
case LoopIdiomVectorizeStyle::Masked:
VectorLoopRes =
createMaskedFindMismatch(Builder, DTU, GEPA, GEPB, ExtStart, ExtEnd);
break;
case LoopIdiomVectorizeStyle::Predicated:
VectorLoopRes = createPredicatedFindMismatch(Builder, DTU, GEPA, GEPB,
ExtStart, ExtEnd);
break;
}
Builder.Insert(BranchInst::Create(EndBlock));
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopMismatchBlock, EndBlock}});
// Generate code for scalar loop.
Builder.SetInsertPoint(LoopPreHeaderBlock);
Builder.Insert(BranchInst::Create(LoopStartBlock));
DTU.applyUpdates(
{{DominatorTree::Insert, LoopPreHeaderBlock, LoopStartBlock}});
Builder.SetInsertPoint(LoopStartBlock);
PHINode *IndexPhi = Builder.CreatePHI(ResType, 2, "mismatch_index");
IndexPhi->addIncoming(Start, LoopPreHeaderBlock);
// Otherwise compare the values
// Load bytes from each array and compare them.
Value *GepOffset = Builder.CreateZExt(IndexPhi, I64Type);
Value *LhsGep =
Builder.CreateGEP(LoadType, PtrA, GepOffset, "", GEPA->isInBounds());
Value *LhsLoad = Builder.CreateLoad(LoadType, LhsGep);
Value *RhsGep =
Builder.CreateGEP(LoadType, PtrB, GepOffset, "", GEPB->isInBounds());
Value *RhsLoad = Builder.CreateLoad(LoadType, RhsGep);
Value *MatchCmp = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
// If we have a mismatch then exit the loop ...
BranchInst *MatchCmpBr = BranchInst::Create(LoopIncBlock, EndBlock, MatchCmp);
Builder.Insert(MatchCmpBr);
DTU.applyUpdates({{DominatorTree::Insert, LoopStartBlock, LoopIncBlock},
{DominatorTree::Insert, LoopStartBlock, EndBlock}});
// Have we reached the maximum permitted length for the loop?
Builder.SetInsertPoint(LoopIncBlock);
Value *PhiInc = Builder.CreateAdd(IndexPhi, ConstantInt::get(ResType, 1), "",
/*HasNUW=*/Index->hasNoUnsignedWrap(),
/*HasNSW=*/Index->hasNoSignedWrap());
IndexPhi->addIncoming(PhiInc, LoopIncBlock);
Value *IVCmp = Builder.CreateICmpEQ(PhiInc, MaxLen);
BranchInst *IVCmpBr = BranchInst::Create(EndBlock, LoopStartBlock, IVCmp);
Builder.Insert(IVCmpBr);
DTU.applyUpdates({{DominatorTree::Insert, LoopIncBlock, EndBlock},
{DominatorTree::Insert, LoopIncBlock, LoopStartBlock}});
// In the end block we need to insert a PHI node to deal with three cases:
// 1. We didn't find a mismatch in the scalar loop, so we return MaxLen.
// 2. We exitted the scalar loop early due to a mismatch and need to return
// the index that we found.
// 3. We didn't find a mismatch in the vector loop, so we return MaxLen.
// 4. We exitted the vector loop early due to a mismatch and need to return
// the index that we found.
Builder.SetInsertPoint(EndBlock, EndBlock->getFirstInsertionPt());
PHINode *ResPhi = Builder.CreatePHI(ResType, 4, "mismatch_result");
ResPhi->addIncoming(MaxLen, LoopIncBlock);
ResPhi->addIncoming(IndexPhi, LoopStartBlock);
ResPhi->addIncoming(MaxLen, VectorLoopIncBlock);
ResPhi->addIncoming(VectorLoopRes, VectorLoopMismatchBlock);
Value *FinalRes = Builder.CreateTrunc(ResPhi, ResType);
if (VerifyLoops) {
ScalarLoop->verifyLoop();
VectorLoop->verifyLoop();
if (!VectorLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
if (!ScalarLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
return FinalRes;
}
void LoopIdiomVectorize::transformByteCompare(GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB,
PHINode *IndPhi, Value *MaxLen,
Instruction *Index, Value *Start,
bool IncIdx, BasicBlock *FoundBB,
BasicBlock *EndBB) {
// Insert the byte compare code at the end of the preheader block
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BasicBlock *Header = CurLoop->getHeader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
IRBuilder<> Builder(PHBranch);
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
Builder.SetCurrentDebugLocation(PHBranch->getDebugLoc());
// Increment the pointer if this was done before the loads in the loop.
if (IncIdx)
Start = Builder.CreateAdd(Start, ConstantInt::get(Start->getType(), 1));
Value *ByteCmpRes =
expandFindMismatch(Builder, DTU, GEPA, GEPB, Index, Start, MaxLen);
// Replaces uses of index & induction Phi with intrinsic (we already
// checked that the the first instruction of Header is the Phi above).
assert(IndPhi->hasOneUse() && "Index phi node has more than one use!");
Index->replaceAllUsesWith(ByteCmpRes);
assert(PHBranch->isUnconditional() &&
"Expected preheader to terminate with an unconditional branch.");
// If no mismatch was found, we can jump to the end block. Create a
// new basic block for the compare instruction.
auto *CmpBB = BasicBlock::Create(Preheader->getContext(), "byte.compare",
Preheader->getParent());
CmpBB->moveBefore(EndBB);
// Replace the branch in the preheader with an always-true conditional branch.
// This ensures there is still a reference to the original loop.
Builder.CreateCondBr(Builder.getTrue(), CmpBB, Header);
PHBranch->eraseFromParent();
BasicBlock *MismatchEnd = cast<Instruction>(ByteCmpRes)->getParent();
DTU.applyUpdates({{DominatorTree::Insert, MismatchEnd, CmpBB}});
// Create the branch to either the end or found block depending on the value
// returned by the intrinsic.
Builder.SetInsertPoint(CmpBB);
if (FoundBB != EndBB) {
Value *FoundCmp = Builder.CreateICmpEQ(ByteCmpRes, MaxLen);
Builder.CreateCondBr(FoundCmp, EndBB, FoundBB);
DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB},
{DominatorTree::Insert, CmpBB, EndBB}});
} else {
Builder.CreateBr(FoundBB);
DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB}});
}
auto fixSuccessorPhis = [&](BasicBlock *SuccBB) {
for (PHINode &PN : SuccBB->phis()) {
// At this point we've already replaced all uses of the result from the
// loop with ByteCmp. Look through the incoming values to find ByteCmp,
// meaning this is a Phi collecting the results of the byte compare.
bool ResPhi = false;
for (Value *Op : PN.incoming_values())
if (Op == ByteCmpRes) {
ResPhi = true;
break;
}
// Any PHI that depended upon the result of the byte compare needs a new
// incoming value from CmpBB. This is because the original loop will get
// deleted.
if (ResPhi)
PN.addIncoming(ByteCmpRes, CmpBB);
else {
// There should be no other outside uses of other values in the
// original loop. Any incoming values should either:
// 1. Be for blocks outside the loop, which aren't interesting. Or ..
// 2. These are from blocks in the loop with values defined outside
// the loop. We should a similar incoming value from CmpBB.
for (BasicBlock *BB : PN.blocks())
if (CurLoop->contains(BB)) {
PN.addIncoming(PN.getIncomingValueForBlock(BB), CmpBB);
break;
}
}
}
};
// Ensure all Phis in the successors of CmpBB have an incoming value from it.
fixSuccessorPhis(EndBB);
if (EndBB != FoundBB)
fixSuccessorPhis(FoundBB);
// The new CmpBB block isn't part of the loop, but will need to be added to
// the outer loop if there is one.
if (!CurLoop->isOutermost())
CurLoop->getParentLoop()->addBasicBlockToLoop(CmpBB, *LI);
if (VerifyLoops && CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->verifyLoop();
if (!CurLoop->getParentLoop()->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
}
|