1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
|
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the LLVM vectorization plan. It represents a candidate for
/// vectorization, allowing to plan and optimize how to vectorize a given loop
/// before generating LLVM-IR.
/// The vectorizer uses vectorization plans to estimate the costs of potential
/// candidates and if profitable to execute the desired plan, generating vector
/// LLVM-IR code.
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "LoopVectorizationPlanner.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <cassert>
#include <string>
#include <vector>
using namespace llvm;
using namespace llvm::VPlanPatternMatch;
namespace llvm {
extern cl::opt<bool> EnableVPlanNativePath;
}
#define DEBUG_TYPE "vplan"
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
V.print(OS, SlotTracker);
return OS;
}
#endif
Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
const ElementCount &VF) const {
switch (LaneKind) {
case VPLane::Kind::ScalableLast:
// Lane = RuntimeVF - VF.getKnownMinValue() + Lane
return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
Builder.getInt32(VF.getKnownMinValue() - Lane));
case VPLane::Kind::First:
return Builder.getInt32(Lane);
}
llvm_unreachable("Unknown lane kind");
}
VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
: SubclassID(SC), UnderlyingVal(UV), Def(Def) {
if (Def)
Def->addDefinedValue(this);
}
VPValue::~VPValue() {
assert(Users.empty() && "trying to delete a VPValue with remaining users");
if (Def)
Def->removeDefinedValue(this);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
R->print(OS, "", SlotTracker);
else
printAsOperand(OS, SlotTracker);
}
void VPValue::dump() const {
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
print(dbgs(), SlotTracker);
dbgs() << "\n";
}
void VPDef::dump() const {
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
print(dbgs(), "", SlotTracker);
dbgs() << "\n";
}
#endif
VPRecipeBase *VPValue::getDefiningRecipe() {
return cast_or_null<VPRecipeBase>(Def);
}
const VPRecipeBase *VPValue::getDefiningRecipe() const {
return cast_or_null<VPRecipeBase>(Def);
}
// Get the top-most entry block of \p Start. This is the entry block of the
// containing VPlan. This function is templated to support both const and non-const blocks
template <typename T> static T *getPlanEntry(T *Start) {
T *Next = Start;
T *Current = Start;
while ((Next = Next->getParent()))
Current = Next;
SmallSetVector<T *, 8> WorkList;
WorkList.insert(Current);
for (unsigned i = 0; i < WorkList.size(); i++) {
T *Current = WorkList[i];
if (Current->getNumPredecessors() == 0)
return Current;
auto &Predecessors = Current->getPredecessors();
WorkList.insert(Predecessors.begin(), Predecessors.end());
}
llvm_unreachable("VPlan without any entry node without predecessors");
}
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
void VPBlockBase::setPlan(VPlan *ParentPlan) {
assert(
(ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
"Can only set plan on its entry or preheader block.");
Plan = ParentPlan;
}
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExiting();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExiting();
return cast<VPBasicBlock>(Block);
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
if (!Successors.empty() || !Parent)
return this;
assert(Parent->getExiting() == this &&
"Block w/o successors not the exiting block of its parent.");
return Parent->getEnclosingBlockWithSuccessors();
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
if (!Predecessors.empty() || !Parent)
return this;
assert(Parent->getEntry() == this &&
"Block w/o predecessors not the entry of its parent.");
return Parent->getEnclosingBlockWithPredecessors();
}
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
delete Block;
}
VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
iterator It = begin();
while (It != end() && It->isPhi())
It++;
return It;
}
VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
DominatorTree *DT, IRBuilderBase &Builder,
InnerLoopVectorizer *ILV, VPlan *Plan,
LLVMContext &Ctx)
: VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
LVer(nullptr),
TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {}
Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
if (Def->isLiveIn())
return Def->getLiveInIRValue();
if (hasScalarValue(Def, Instance)) {
return Data
.PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
}
if (!Instance.Lane.isFirstLane() &&
vputils::isUniformAfterVectorization(Def) &&
hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) {
return Data.PerPartScalars[Def][Instance.Part][0];
}
assert(hasVectorValue(Def, Instance.Part));
auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
if (!VecPart->getType()->isVectorTy()) {
assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
return VecPart;
}
// TODO: Cache created scalar values.
Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
// set(Def, Extract, Instance);
return Extract;
}
Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) {
if (NeedsScalar) {
assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) ||
!vputils::onlyFirstLaneUsed(Def) ||
(hasScalarValue(Def, VPIteration(Part, 0)) &&
Data.PerPartScalars[Def][Part].size() == 1)) &&
"Trying to access a single scalar per part but has multiple scalars "
"per part.");
return get(Def, VPIteration(Part, 0));
}
// If Values have been set for this Def return the one relevant for \p Part.
if (hasVectorValue(Def, Part))
return Data.PerPartOutput[Def][Part];
auto GetBroadcastInstrs = [this, Def](Value *V) {
bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
if (VF.isScalar())
return V;
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (SafeToHoist) {
BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
Plan->getVectorLoopRegion()->getSinglePredecessor())];
if (LoopVectorPreHeader)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
}
// Place the code for broadcasting invariant variables in the new preheader.
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
};
if (!hasScalarValue(Def, {Part, 0})) {
assert(Def->isLiveIn() && "expected a live-in");
if (Part != 0)
return get(Def, 0);
Value *IRV = Def->getLiveInIRValue();
Value *B = GetBroadcastInstrs(IRV);
set(Def, B, Part);
return B;
}
Value *ScalarValue = get(Def, {Part, 0});
// If we aren't vectorizing, we can just copy the scalar map values over
// to the vector map.
if (VF.isScalar()) {
set(Def, ScalarValue, Part);
return ScalarValue;
}
bool IsUniform = vputils::isUniformAfterVectorization(Def);
unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
// Check if there is a scalar value for the selected lane.
if (!hasScalarValue(Def, {Part, LastLane})) {
// At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
// VPExpandSCEVRecipes can also be uniform.
assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
"unexpected recipe found to be invariant");
IsUniform = true;
LastLane = 0;
}
auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
// Set the insert point after the last scalarized instruction or after the
// last PHI, if LastInst is a PHI. This ensures the insertelement sequence
// will directly follow the scalar definitions.
auto OldIP = Builder.saveIP();
auto NewIP =
isa<PHINode>(LastInst)
? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
: std::next(BasicBlock::iterator(LastInst));
Builder.SetInsertPoint(&*NewIP);
// However, if we are vectorizing, we need to construct the vector values.
// If the value is known to be uniform after vectorization, we can just
// broadcast the scalar value corresponding to lane zero for each unroll
// iteration. Otherwise, we construct the vector values using
// insertelement instructions. Since the resulting vectors are stored in
// State, we will only generate the insertelements once.
Value *VectorValue = nullptr;
if (IsUniform) {
VectorValue = GetBroadcastInstrs(ScalarValue);
set(Def, VectorValue, Part);
} else {
// Initialize packing with insertelements to start from undef.
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
set(Def, Undef, Part);
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
packScalarIntoVectorValue(Def, {Part, Lane});
VectorValue = get(Def, Part);
}
Builder.restoreIP(OldIP);
return VectorValue;
}
BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
}
void VPTransformState::addNewMetadata(Instruction *To,
const Instruction *Orig) {
// If the loop was versioned with memchecks, add the corresponding no-alias
// metadata.
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
LVer->annotateInstWithNoAlias(To, Orig);
}
void VPTransformState::addMetadata(Value *To, Instruction *From) {
// No source instruction to transfer metadata from?
if (!From)
return;
if (Instruction *ToI = dyn_cast<Instruction>(To)) {
propagateMetadata(ToI, From);
addNewMetadata(ToI, From);
}
}
void VPTransformState::setDebugLocFrom(DebugLoc DL) {
const DILocation *DIL = DL;
// When a FSDiscriminator is enabled, we don't need to add the multiply
// factors to the discriminators.
if (DIL &&
Builder.GetInsertBlock()
->getParent()
->shouldEmitDebugInfoForProfiling() &&
!EnableFSDiscriminator) {
// FIXME: For scalable vectors, assume vscale=1.
auto NewDIL =
DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
if (NewDIL)
Builder.SetCurrentDebugLocation(*NewDIL);
else
LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL->getLine());
} else
Builder.SetCurrentDebugLocation(DIL);
}
void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
const VPIteration &Instance) {
Value *ScalarInst = get(Def, Instance);
Value *VectorValue = get(Def, Instance.Part);
VectorValue = Builder.CreateInsertElement(
VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
set(Def, VectorValue, Instance.Part);
}
BasicBlock *
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
BasicBlock *PrevBB = CFG.PrevBB;
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
PrevBB->getParent(), CFG.ExitBB);
LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
// Hook up the new basic block to its predecessors.
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
assert(PredBB && "Predecessor basic-block not found building successor.");
auto *PredBBTerminator = PredBB->getTerminator();
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
if (isa<UnreachableInst>(PredBBTerminator)) {
assert(PredVPSuccessors.size() == 1 &&
"Predecessor ending w/o branch must have single successor.");
DebugLoc DL = PredBBTerminator->getDebugLoc();
PredBBTerminator->eraseFromParent();
auto *Br = BranchInst::Create(NewBB, PredBB);
Br->setDebugLoc(DL);
} else if (TermBr && !TermBr->isConditional()) {
TermBr->setSuccessor(0, NewBB);
} else {
// Set each forward successor here when it is created, excluding
// backedges. A backward successor is set when the branch is created.
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
assert(!TermBr->getSuccessor(idx) &&
"Trying to reset an existing successor block.");
TermBr->setSuccessor(idx, NewBB);
}
CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
}
return NewBB;
}
void VPIRBasicBlock::execute(VPTransformState *State) {
assert(getHierarchicalSuccessors().size() <= 2 &&
"VPIRBasicBlock can have at most two successors at the moment!");
State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator());
executeRecipes(State, getIRBasicBlock());
if (getSingleSuccessor()) {
assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator()));
auto *Br = State->Builder.CreateBr(getIRBasicBlock());
Br->setOperand(0, nullptr);
getIRBasicBlock()->getTerminator()->eraseFromParent();
}
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB];
assert(PredBB && "Predecessor basic-block not found building successor.");
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
auto *PredBBTerminator = PredBB->getTerminator();
auto *TermBr = cast<BranchInst>(PredBBTerminator);
// Set each forward successor here when it is created, excluding
// backedges. A backward successor is set when the branch is created.
const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
assert(!TermBr->getSuccessor(idx) &&
"Trying to reset an existing successor block.");
TermBr->setSuccessor(idx, IRBB);
State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}});
}
}
void VPBasicBlock::execute(VPTransformState *State) {
bool Replica = State->Instance && !State->Instance->isFirstIteration();
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
VPBlockBase *SingleHPred = nullptr;
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
auto IsLoopRegion = [](VPBlockBase *BB) {
auto *R = dyn_cast<VPRegionBlock>(BB);
return R && !R->isReplicator();
};
// 1. Create an IR basic block.
if (PrevVPBB && /* A */
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
SingleHPred->getExitingBasicBlock() == PrevVPBB &&
PrevVPBB->getSingleHierarchicalSuccessor() &&
(SingleHPred->getParent() == getEnclosingLoopRegion() &&
!IsLoopRegion(SingleHPred))) && /* B */
!(Replica && getPredecessors().empty())) { /* C */
// The last IR basic block is reused, as an optimization, in three cases:
// A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
// B. when the current VPBB has a single (hierarchical) predecessor which
// is PrevVPBB and the latter has a single (hierarchical) successor which
// both are in the same non-replicator region; and
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
// is the exiting VPBB of this region from a previous instance, or the
// predecessor of this region.
NewBB = createEmptyBasicBlock(State->CFG);
State->Builder.SetInsertPoint(NewBB);
// Temporarily terminate with unreachable until CFG is rewired.
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
// Register NewBB in its loop. In innermost loops its the same for all
// BB's.
if (State->CurrentVectorLoop)
State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
State->Builder.SetInsertPoint(Terminator);
State->CFG.PrevBB = NewBB;
}
// 2. Fill the IR basic block with IR instructions.
executeRecipes(State, NewBB);
}
void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
for (VPRecipeBase &R : Recipes) {
for (auto *Def : R.definedValues())
Def->replaceAllUsesWith(NewValue);
for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
R.setOperand(I, NewValue);
}
}
void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
<< " in BB:" << BB->getName() << '\n');
State->CFG.VPBB2IRBB[this] = BB;
State->CFG.PrevVPBB = this;
for (VPRecipeBase &Recipe : Recipes)
Recipe.execute(*State);
LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
}
VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
assert((SplitAt == end() || SplitAt->getParent() == this) &&
"can only split at a position in the same block");
SmallVector<VPBlockBase *, 2> Succs(successors());
// First, disconnect the current block from its successors.
for (VPBlockBase *Succ : Succs)
VPBlockUtils::disconnectBlocks(this, Succ);
// Create new empty block after the block to split.
auto *SplitBlock = new VPBasicBlock(getName() + ".split");
VPBlockUtils::insertBlockAfter(SplitBlock, this);
// Add successors for block to split to new block.
for (VPBlockBase *Succ : Succs)
VPBlockUtils::connectBlocks(SplitBlock, Succ);
// Finally, move the recipes starting at SplitAt to new block.
for (VPRecipeBase &ToMove :
make_early_inc_range(make_range(SplitAt, this->end())))
ToMove.moveBefore(*SplitBlock, SplitBlock->end());
return SplitBlock;
}
VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
VPRegionBlock *P = getParent();
if (P && P->isReplicator()) {
P = P->getParent();
assert(!cast<VPRegionBlock>(P)->isReplicator() &&
"unexpected nested replicate regions");
}
return P;
}
static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
if (VPBB->empty()) {
assert(
VPBB->getNumSuccessors() < 2 &&
"block with multiple successors doesn't have a recipe as terminator");
return false;
}
const VPRecipeBase *R = &VPBB->back();
bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
match(R, m_BranchOnCond(m_VPValue())) ||
match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
(void)IsCondBranch;
if (VPBB->getNumSuccessors() >= 2 ||
(VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
assert(IsCondBranch && "block with multiple successors not terminated by "
"conditional branch recipe");
return true;
}
assert(
!IsCondBranch &&
"block with 0 or 1 successors terminated by conditional branch recipe");
return false;
}
VPRecipeBase *VPBasicBlock::getTerminator() {
if (hasConditionalTerminator(this))
return &back();
return nullptr;
}
const VPRecipeBase *VPBasicBlock::getTerminator() const {
if (hasConditionalTerminator(this))
return &back();
return nullptr;
}
bool VPBasicBlock::isExiting() const {
return getParent() && getParent()->getExitingBasicBlock() == this;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
if (getSuccessors().empty()) {
O << Indent << "No successors\n";
} else {
O << Indent << "Successor(s): ";
ListSeparator LS;
for (auto *Succ : getSuccessors())
O << LS << Succ->getName();
O << '\n';
}
}
void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << getName() << ":\n";
auto RecipeIndent = Indent + " ";
for (const VPRecipeBase &Recipe : *this) {
Recipe.print(O, RecipeIndent, SlotTracker);
O << '\n';
}
printSuccessors(O, Indent);
}
#endif
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
// Remapping of operands must be done separately. Returns a pair with the new
// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
// region, return nullptr for the exiting block.
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
VPBlockBase *Exiting = nullptr;
bool InRegion = Entry->getParent();
// First, clone blocks reachable from Entry.
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
VPBlockBase *NewBB = BB->clone();
Old2NewVPBlocks[BB] = NewBB;
if (InRegion && BB->getNumSuccessors() == 0) {
assert(!Exiting && "Multiple exiting blocks?");
Exiting = BB;
}
}
assert((!InRegion || Exiting) && "regions must have a single exiting block");
// Second, update the predecessors & successors of the cloned blocks.
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
VPBlockBase *NewBB = Old2NewVPBlocks[BB];
SmallVector<VPBlockBase *> NewPreds;
for (VPBlockBase *Pred : BB->getPredecessors()) {
NewPreds.push_back(Old2NewVPBlocks[Pred]);
}
NewBB->setPredecessors(NewPreds);
SmallVector<VPBlockBase *> NewSuccs;
for (VPBlockBase *Succ : BB->successors()) {
NewSuccs.push_back(Old2NewVPBlocks[Succ]);
}
NewBB->setSuccessors(NewSuccs);
}
#if !defined(NDEBUG)
// Verify that the order of predecessors and successors matches in the cloned
// version.
for (const auto &[OldBB, NewBB] :
zip(vp_depth_first_shallow(Entry),
vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
for (const auto &[OldPred, NewPred] :
zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
for (const auto &[OldSucc, NewSucc] :
zip(OldBB->successors(), NewBB->successors()))
assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
}
#endif
return std::make_pair(Old2NewVPBlocks[Entry],
Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
}
VPRegionBlock *VPRegionBlock::clone() {
const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
auto *NewRegion =
new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
Block->setParent(NewRegion);
return NewRegion;
}
void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
// Drop all references in VPBasicBlocks and replace all uses with
// DummyValue.
Block->dropAllReferences(NewValue);
}
void VPRegionBlock::execute(VPTransformState *State) {
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
RPOT(Entry);
if (!isReplicator()) {
// Create and register the new vector loop.
Loop *PrevLoop = State->CurrentVectorLoop;
State->CurrentVectorLoop = State->LI->AllocateLoop();
BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
// Insert the new loop into the loop nest and register the new basic blocks
// before calling any utilities such as SCEV that require valid LoopInfo.
if (ParentLoop)
ParentLoop->addChildLoop(State->CurrentVectorLoop);
else
State->LI->addTopLevelLoop(State->CurrentVectorLoop);
// Visit the VPBlocks connected to "this", starting from it.
for (VPBlockBase *Block : RPOT) {
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
State->CurrentVectorLoop = PrevLoop;
return;
}
assert(!State->Instance && "Replicating a Region with non-null instance.");
// Enter replicating mode.
State->Instance = VPIteration(0, 0);
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
State->Instance->Part = Part;
assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
++Lane) {
State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
// Visit the VPBlocks connected to \p this, starting from it.
for (VPBlockBase *Block : RPOT) {
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
}
}
// Exit replicating mode.
State->Instance.reset();
}
InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
InstructionCost Cost = 0;
for (VPRecipeBase &R : Recipes)
Cost += R.cost(VF, Ctx);
return Cost;
}
InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
if (!isReplicator()) {
InstructionCost Cost = 0;
for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
Cost += Block->cost(VF, Ctx);
InstructionCost BackedgeCost =
Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
<< ": vector loop backedge\n");
Cost += BackedgeCost;
return Cost;
}
// Compute the cost of a replicate region. Replicating isn't supported for
// scalable vectors, return an invalid cost for them.
// TODO: Discard scalable VPlans with replicate recipes earlier after
// construction.
if (VF.isScalable())
return InstructionCost::getInvalid();
// First compute the cost of the conditionally executed recipes, followed by
// account for the branching cost, except if the mask is a header mask or
// uniform condition.
using namespace llvm::VPlanPatternMatch;
VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
InstructionCost ThenCost = Then->cost(VF, Ctx);
// For the scalar case, we may not always execute the original predicated
// block, Thus, scale the block's cost by the probability of executing it.
if (VF.isScalar())
return ThenCost / getReciprocalPredBlockProb();
return ThenCost;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
auto NewIndent = Indent + " ";
for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
O << '\n';
BlockBase->print(O, NewIndent, SlotTracker);
}
O << Indent << "}\n";
printSuccessors(O, Indent);
}
#endif
VPlan::~VPlan() {
for (auto &KV : LiveOuts)
delete KV.second;
LiveOuts.clear();
if (Entry) {
VPValue DummyValue;
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
Block->dropAllReferences(&DummyValue);
VPBlockBase::deleteCFG(Entry);
Preheader->dropAllReferences(&DummyValue);
delete Preheader;
}
for (VPValue *VPV : VPLiveInsToFree)
delete VPV;
if (BackedgeTakenCount)
delete BackedgeTakenCount;
}
VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE,
bool RequiresScalarEpilogueCheck,
bool TailFolded, Loop *TheLoop) {
VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader());
VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
auto Plan = std::make_unique<VPlan>(Entry, VecPreheader);
Plan->TripCount =
vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
// Create VPRegionBlock, with empty header and latch blocks, to be filled
// during processing later.
VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
false /*isReplicator*/);
VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
if (!RequiresScalarEpilogueCheck) {
VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
return Plan;
}
// If needed, add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop. Three cases:
// 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
// Thus if tail is to be folded, we know we don't need to run the
// remainder and we can set the condition to true.
// 2) If we require a scalar epilogue, there is no conditional branch as
// we unconditionally branch to the scalar preheader. Do nothing.
// 3) Otherwise, construct a runtime check.
BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock);
// The connection order corresponds to the operands of the conditional branch.
VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
// Here we use the same DebugLoc as the scalar loop latch terminator instead
// of the corresponding compare because they may have ended up with
// different line numbers and we want to avoid awkward line stepping while
// debugging. Eg. if the compare has got a line number inside the loop.
VPBuilder Builder(MiddleVPBB);
VPValue *Cmp =
TailFolded
? Plan->getOrAddLiveIn(ConstantInt::getTrue(
IntegerType::getInt1Ty(TripCount->getType()->getContext())))
: Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
&Plan->getVectorTripCount(),
ScalarLatchTerm->getDebugLoc(), "cmp.n");
Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
ScalarLatchTerm->getDebugLoc());
return Plan;
}
void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
Value *CanonicalIVStartValue,
VPTransformState &State) {
// Check if the backedge taken count is needed, and if so build it.
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
auto *TCMO = Builder.CreateSub(TripCountV,
ConstantInt::get(TripCountV->getType(), 1),
"trip.count.minus.1");
BackedgeTakenCount->setUnderlyingValue(TCMO);
}
VectorTripCount.setUnderlyingValue(VectorTripCountV);
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
// FIXME: Model VF * UF computation completely in VPlan.
VFxUF.setUnderlyingValue(
createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF));
// When vectorizing the epilogue loop, the canonical induction start value
// needs to be changed from zero to the value after the main vector loop.
// FIXME: Improve modeling for canonical IV start values in the epilogue loop.
if (CanonicalIVStartValue) {
VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
auto *IV = getCanonicalIV();
assert(all_of(IV->users(),
[](const VPUser *U) {
return isa<VPScalarIVStepsRecipe>(U) ||
isa<VPScalarCastRecipe>(U) ||
isa<VPDerivedIVRecipe>(U) ||
cast<VPInstruction>(U)->getOpcode() ==
Instruction::Add;
}) &&
"the canonical IV should only be used by its increment or "
"ScalarIVSteps when resetting the start value");
IV->setOperand(0, VPV);
}
}
/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
/// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single
/// predecessor, which is rewired to the new VPIRBasicBlock. All successors of
/// VPBB, if any, are rewired to the new VPIRBasicBlock.
static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB);
for (auto &R : make_early_inc_range(*VPBB))
R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end());
VPBlockBase *PredVPBB = VPBB->getSinglePredecessor();
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB);
for (auto *Succ : to_vector(VPBB->getSuccessors())) {
VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ);
VPBlockUtils::disconnectBlocks(VPBB, Succ);
}
delete VPBB;
}
/// Generate the code inside the preheader and body of the vectorized loop.
/// Assumes a single pre-header basic-block was created for this. Introduce
/// additional basic-blocks as needed, and fill them all.
void VPlan::execute(VPTransformState *State) {
// Initialize CFG state.
State->CFG.PrevVPBB = nullptr;
State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
BasicBlock *VectorPreHeader = State->CFG.PrevBB;
State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
// Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
State->CFG.DTU.applyUpdates(
{{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
// Replace regular VPBB's for the middle and scalar preheader blocks with
// VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
// skeleton creation, so we can only create the VPIRBasicBlocks now during
// VPlan execution rather than earlier during VPlan construction.
BasicBlock *MiddleBB = State->CFG.ExitBB;
VPBasicBlock *MiddleVPBB =
cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
// Find the VPBB for the scalar preheader, relying on the current structure
// when creating the middle block and its successrs: if there's a single
// predecessor, it must be the scalar preheader. Otherwise, the second
// successor is the scalar preheader.
BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
auto &MiddleSuccs = MiddleVPBB->getSuccessors();
assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) &&
"middle block has unexpected successors");
VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>(
MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]);
assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) &&
"scalar preheader cannot be wrapped already");
replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh);
replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
// Disconnect the middle block from its single successor (the scalar loop
// header) in both the CFG and DT. The branch will be recreated during VPlan
// execution.
auto *BrInst = new UnreachableInst(MiddleBB->getContext());
BrInst->insertBefore(MiddleBB->getTerminator());
MiddleBB->getTerminator()->eraseFromParent();
State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
// Generate code in the loop pre-header and body.
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
Block->execute(State);
VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
// Fix the latch value of canonical, reduction and first-order recurrences
// phis in the vector loop.
VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &R : Header->phis()) {
// Skip phi-like recipes that generate their backedege values themselves.
if (isa<VPWidenPHIRecipe>(&R))
continue;
if (isa<VPWidenPointerInductionRecipe>(&R) ||
isa<VPWidenIntOrFpInductionRecipe>(&R)) {
PHINode *Phi = nullptr;
if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
} else {
auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
"recipe generating only scalars should have been replaced");
auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
Phi = cast<PHINode>(GEP->getPointerOperand());
}
Phi->setIncomingBlock(1, VectorLatchBB);
// Move the last step to the end of the latch block. This ensures
// consistent placement of all induction updates.
Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
continue;
}
auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
// For canonical IV, first-order recurrences and in-order reduction phis,
// only a single part is generated, which provides the last part from the
// previous iteration. For non-ordered reductions all UF parts are
// generated.
bool SinglePartNeeded =
isa<VPCanonicalIVPHIRecipe>(PhiR) ||
isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
(isa<VPReductionPHIRecipe>(PhiR) &&
cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
bool NeedsScalar =
isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
(isa<VPReductionPHIRecipe>(PhiR) &&
cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
Value *Phi = State->get(PhiR, Part, NeedsScalar);
Value *Val =
State->get(PhiR->getBackedgeValue(),
SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar);
cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
}
}
State->CFG.DTU.flush();
assert(State->CFG.DTU.getDomTree().verify(
DominatorTree::VerificationLevel::Fast) &&
"DT not preserved correctly");
}
InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
// For now only return the cost of the vector loop region, ignoring any other
// blocks, like the preheader or middle blocks.
return getVectorLoopRegion()->cost(VF, Ctx);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPlan::printLiveIns(raw_ostream &O) const {
VPSlotTracker SlotTracker(this);
if (VFxUF.getNumUsers() > 0) {
O << "\nLive-in ";
VFxUF.printAsOperand(O, SlotTracker);
O << " = VF * UF";
}
if (VectorTripCount.getNumUsers() > 0) {
O << "\nLive-in ";
VectorTripCount.printAsOperand(O, SlotTracker);
O << " = vector-trip-count";
}
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
O << "\nLive-in ";
BackedgeTakenCount->printAsOperand(O, SlotTracker);
O << " = backedge-taken count";
}
O << "\n";
if (TripCount->isLiveIn())
O << "Live-in ";
TripCount->printAsOperand(O, SlotTracker);
O << " = original trip-count";
O << "\n";
}
LLVM_DUMP_METHOD
void VPlan::print(raw_ostream &O) const {
VPSlotTracker SlotTracker(this);
O << "VPlan '" << getName() << "' {";
printLiveIns(O);
if (!getPreheader()->empty()) {
O << "\n";
getPreheader()->print(O, "", SlotTracker);
}
for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
O << '\n';
Block->print(O, "", SlotTracker);
}
if (!LiveOuts.empty())
O << "\n";
for (const auto &KV : LiveOuts) {
KV.second->print(O, SlotTracker);
}
O << "}\n";
}
std::string VPlan::getName() const {
std::string Out;
raw_string_ostream RSO(Out);
RSO << Name << " for ";
if (!VFs.empty()) {
RSO << "VF={" << VFs[0];
for (ElementCount VF : drop_begin(VFs))
RSO << "," << VF;
RSO << "},";
}
if (UFs.empty()) {
RSO << "UF>=1";
} else {
RSO << "UF={" << UFs[0];
for (unsigned UF : drop_begin(UFs))
RSO << "," << UF;
RSO << "}";
}
return Out;
}
LLVM_DUMP_METHOD
void VPlan::printDOT(raw_ostream &O) const {
VPlanPrinter Printer(O, *this);
Printer.dump();
}
LLVM_DUMP_METHOD
void VPlan::dump() const { print(dbgs()); }
#endif
void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
LiveOuts.insert({PN, new VPLiveOut(PN, V)});
}
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
// Update the operands of all cloned recipes starting at NewEntry. This
// traverses all reachable blocks. This is done in two steps, to handle cycles
// in PHI recipes.
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
OldDeepRPOT(Entry);
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
NewDeepRPOT(NewEntry);
// First, collect all mappings from old to new VPValues defined by cloned
// recipes.
for (const auto &[OldBB, NewBB] :
zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
"blocks must have the same number of recipes");
for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
assert(OldR.getNumOperands() == NewR.getNumOperands() &&
"recipes must have the same number of operands");
assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
"recipes must define the same number of operands");
for (const auto &[OldV, NewV] :
zip(OldR.definedValues(), NewR.definedValues()))
Old2NewVPValues[OldV] = NewV;
}
}
// Update all operands to use cloned VPValues.
for (VPBasicBlock *NewBB :
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
for (VPRecipeBase &NewR : *NewBB)
for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
NewR.setOperand(I, NewOp);
}
}
}
VPlan *VPlan::duplicate() {
// Clone blocks.
VPBasicBlock *NewPreheader = Preheader->clone();
const auto &[NewEntry, __] = cloneFrom(Entry);
// Create VPlan, clone live-ins and remap operands in the cloned blocks.
auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
DenseMap<VPValue *, VPValue *> Old2NewVPValues;
for (VPValue *OldLiveIn : VPLiveInsToFree) {
Old2NewVPValues[OldLiveIn] =
NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
}
Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
if (BackedgeTakenCount) {
NewPlan->BackedgeTakenCount = new VPValue();
Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
}
assert(TripCount && "trip count must be set");
if (TripCount->isLiveIn())
Old2NewVPValues[TripCount] =
NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
// else NewTripCount will be created and inserted into Old2NewVPValues when
// TripCount is cloned. In any case NewPlan->TripCount is updated below.
remapOperands(Preheader, NewPreheader, Old2NewVPValues);
remapOperands(Entry, NewEntry, Old2NewVPValues);
// Clone live-outs.
for (const auto &[_, LO] : LiveOuts)
NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
// Initialize remaining fields of cloned VPlan.
NewPlan->VFs = VFs;
NewPlan->UFs = UFs;
// TODO: Adjust names.
NewPlan->Name = Name;
assert(Old2NewVPValues.contains(TripCount) &&
"TripCount must have been added to Old2NewVPValues");
NewPlan->TripCount = Old2NewVPValues[TripCount];
return NewPlan;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
Twine(getOrCreateBID(Block));
}
Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
const std::string &Name = Block->getName();
if (!Name.empty())
return Name;
return "VPB" + Twine(getOrCreateBID(Block));
}
void VPlanPrinter::dump() {
Depth = 1;
bumpIndent(0);
OS << "digraph VPlan {\n";
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
if (!Plan.getName().empty())
OS << "\\n" << DOT::EscapeString(Plan.getName());
{
// Print live-ins.
std::string Str;
raw_string_ostream SS(Str);
Plan.printLiveIns(SS);
SmallVector<StringRef, 0> Lines;
StringRef(Str).rtrim('\n').split(Lines, "\n");
for (auto Line : Lines)
OS << DOT::EscapeString(Line.str()) << "\\n";
}
OS << "\"]\n";
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
OS << "edge [fontname=Courier, fontsize=30]\n";
OS << "compound=true\n";
dumpBlock(Plan.getPreheader());
for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
dumpBlock(Block);
OS << "}\n";
}
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
dumpBasicBlock(BasicBlock);
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
dumpRegion(Region);
else
llvm_unreachable("Unsupported kind of VPBlock.");
}
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
bool Hidden, const Twine &Label) {
// Due to "dot" we print an edge between two regions as an edge between the
// exiting basic block and the entry basic of the respective regions.
const VPBlockBase *Tail = From->getExitingBasicBlock();
const VPBlockBase *Head = To->getEntryBasicBlock();
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
OS << " [ label=\"" << Label << '\"';
if (Tail != From)
OS << " ltail=" << getUID(From);
if (Head != To)
OS << " lhead=" << getUID(To);
if (Hidden)
OS << "; splines=none";
OS << "]\n";
}
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
auto &Successors = Block->getSuccessors();
if (Successors.size() == 1)
drawEdge(Block, Successors.front(), false, "");
else if (Successors.size() == 2) {
drawEdge(Block, Successors.front(), false, "T");
drawEdge(Block, Successors.back(), false, "F");
} else {
unsigned SuccessorNumber = 0;
for (auto *Successor : Successors)
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
}
}
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
// Implement dot-formatted dump by performing plain-text dump into the
// temporary storage followed by some post-processing.
OS << Indent << getUID(BasicBlock) << " [label =\n";
bumpIndent(1);
std::string Str;
raw_string_ostream SS(Str);
// Use no indentation as we need to wrap the lines into quotes ourselves.
BasicBlock->print(SS, "", SlotTracker);
// We need to process each line of the output separately, so split
// single-string plain-text dump.
SmallVector<StringRef, 0> Lines;
StringRef(Str).rtrim('\n').split(Lines, "\n");
auto EmitLine = [&](StringRef Line, StringRef Suffix) {
OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
};
// Don't need the "+" after the last line.
for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
EmitLine(Line, " +\n");
EmitLine(Lines.back(), "\n");
bumpIndent(-1);
OS << Indent << "]\n";
dumpEdges(BasicBlock);
}
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
OS << Indent << "subgraph " << getUID(Region) << " {\n";
bumpIndent(1);
OS << Indent << "fontname=Courier\n"
<< Indent << "label=\""
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
<< DOT::EscapeString(Region->getName()) << "\"\n";
// Dump the blocks of the region.
assert(Region->getEntry() && "Region contains no inner blocks.");
for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
dumpBlock(Block);
bumpIndent(-1);
OS << Indent << "}\n";
dumpEdges(Region);
}
void VPlanIngredient::print(raw_ostream &O) const {
if (auto *Inst = dyn_cast<Instruction>(V)) {
if (!Inst->getType()->isVoidTy()) {
Inst->printAsOperand(O, false);
O << " = ";
}
O << Inst->getOpcodeName() << " ";
unsigned E = Inst->getNumOperands();
if (E > 0) {
Inst->getOperand(0)->printAsOperand(O, false);
for (unsigned I = 1; I < E; ++I)
Inst->getOperand(I)->printAsOperand(O << ", ", false);
}
} else // !Inst
V->printAsOperand(O, false);
}
#endif
template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
void VPValue::replaceAllUsesWith(VPValue *New) {
replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
}
void VPValue::replaceUsesWithIf(
VPValue *New,
llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
// Note that this early exit is required for correctness; the implementation
// below relies on the number of users for this VPValue to decrease, which
// isn't the case if this == New.
if (this == New)
return;
for (unsigned J = 0; J < getNumUsers();) {
VPUser *User = Users[J];
bool RemovedUser = false;
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
if (User->getOperand(I) != this || !ShouldReplace(*User, I))
continue;
RemovedUser = true;
User->setOperand(I, New);
}
// If a user got removed after updating the current user, the next user to
// update will be moved to the current position, so we only need to
// increment the index if the number of users did not change.
if (!RemovedUser)
J++;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
OS << Tracker.getOrCreateName(this);
}
void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
Op->printAsOperand(O, SlotTracker);
});
}
#endif
void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
Old2NewTy &Old2New,
InterleavedAccessInfo &IAI) {
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
RPOT(Region->getEntry());
for (VPBlockBase *Base : RPOT) {
visitBlock(Base, Old2New, IAI);
}
}
void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
InterleavedAccessInfo &IAI) {
if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
for (VPRecipeBase &VPI : *VPBB) {
if (isa<VPWidenPHIRecipe>(&VPI))
continue;
assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
auto *VPInst = cast<VPInstruction>(&VPI);
auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
if (!Inst)
continue;
auto *IG = IAI.getInterleaveGroup(Inst);
if (!IG)
continue;
auto NewIGIter = Old2New.find(IG);
if (NewIGIter == Old2New.end())
Old2New[IG] = new InterleaveGroup<VPInstruction>(
IG->getFactor(), IG->isReverse(), IG->getAlign());
if (Inst == IG->getInsertPos())
Old2New[IG]->setInsertPos(VPInst);
InterleaveGroupMap[VPInst] = Old2New[IG];
InterleaveGroupMap[VPInst]->insertMember(
VPInst, IG->getIndex(Inst),
Align(IG->isReverse() ? (-1) * int(IG->getFactor())
: IG->getFactor()));
}
} else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
visitRegion(Region, Old2New, IAI);
else
llvm_unreachable("Unsupported kind of VPBlock.");
}
VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
InterleavedAccessInfo &IAI) {
Old2NewTy Old2New;
visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
}
void VPSlotTracker::assignName(const VPValue *V) {
assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
auto *UV = V->getUnderlyingValue();
if (!UV) {
VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
NextSlot++;
return;
}
// Use the name of the underlying Value, wrapped in "ir<>", and versioned by
// appending ".Number" to the name if there are multiple uses.
std::string Name;
raw_string_ostream S(Name);
UV->printAsOperand(S, false);
assert(!Name.empty() && "Name cannot be empty.");
std::string BaseName = (Twine("ir<") + Name + Twine(">")).str();
// First assign the base name for V.
const auto &[A, _] = VPValue2Name.insert({V, BaseName});
// Integer or FP constants with different types will result in he same string
// due to stripping types.
if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
return;
// If it is already used by C > 0 other VPValues, increase the version counter
// C and use it for V.
const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
if (!UseInserted) {
C->second++;
A->second = (BaseName + Twine(".") + Twine(C->second)).str();
}
}
void VPSlotTracker::assignNames(const VPlan &Plan) {
if (Plan.VFxUF.getNumUsers() > 0)
assignName(&Plan.VFxUF);
assignName(&Plan.VectorTripCount);
if (Plan.BackedgeTakenCount)
assignName(Plan.BackedgeTakenCount);
for (VPValue *LI : Plan.VPLiveInsToFree)
assignName(LI);
assignNames(Plan.getPreheader());
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
for (const VPBasicBlock *VPBB :
VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
assignNames(VPBB);
}
void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
for (const VPRecipeBase &Recipe : *VPBB)
for (VPValue *Def : Recipe.definedValues())
assignName(Def);
}
std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
std::string Name = VPValue2Name.lookup(V);
if (!Name.empty())
return Name;
// If no name was assigned, no VPlan was provided when creating the slot
// tracker or it is not reachable from the provided VPlan. This can happen,
// e.g. when trying to print a recipe that has not been inserted into a VPlan
// in a debugger.
// TODO: Update VPSlotTracker constructor to assign names to recipes &
// VPValues not associated with a VPlan, instead of constructing names ad-hoc
// here.
const VPRecipeBase *DefR = V->getDefiningRecipe();
(void)DefR;
assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
"VPValue defined by a recipe in a VPlan?");
// Use the underlying value's name, if there is one.
if (auto *UV = V->getUnderlyingValue()) {
std::string Name;
raw_string_ostream S(Name);
UV->printAsOperand(S, false);
return (Twine("ir<") + Name + ">").str();
}
return "<badref>";
}
bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
}
bool vputils::onlyFirstPartUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
}
VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
ScalarEvolution &SE) {
if (auto *Expanded = Plan.getSCEVExpansion(Expr))
return Expanded;
VPValue *Expanded = nullptr;
if (auto *E = dyn_cast<SCEVConstant>(Expr))
Expanded = Plan.getOrAddLiveIn(E->getValue());
else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
Expanded = Plan.getOrAddLiveIn(E->getValue());
else {
Expanded = new VPExpandSCEVRecipe(Expr, SE);
Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
}
Plan.addSCEVExpansion(Expr, Expanded);
return Expanded;
}
bool vputils::isHeaderMask(VPValue *V, VPlan &Plan) {
if (isa<VPActiveLaneMaskPHIRecipe>(V))
return true;
auto IsWideCanonicalIV = [](VPValue *A) {
return isa<VPWidenCanonicalIVRecipe>(A) ||
(isa<VPWidenIntOrFpInductionRecipe>(A) &&
cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical());
};
VPValue *A, *B;
if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B))))
return B == Plan.getTripCount() &&
(match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) ||
IsWideCanonicalIV(A));
return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) &&
IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount();
}
|