1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
//===- VPlanAnalysis.cpp - Various Analyses working on VPlan ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "VPlanAnalysis.h"
#include "VPlan.h"
#include "VPlanCFG.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
#define DEBUG_TYPE "vplan"
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPBlendRecipe *R) {
Type *ResTy = inferScalarType(R->getIncomingValue(0));
for (unsigned I = 1, E = R->getNumIncomingValues(); I != E; ++I) {
VPValue *Inc = R->getIncomingValue(I);
assert(inferScalarType(Inc) == ResTy &&
"different types inferred for different incoming values");
CachedTypes[Inc] = ResTy;
}
return ResTy;
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPInstruction *R) {
// Set the result type from the first operand, check if the types for all
// other operands match and cache them.
auto SetResultTyFromOp = [this, R]() {
Type *ResTy = inferScalarType(R->getOperand(0));
for (unsigned Op = 1; Op != R->getNumOperands(); ++Op) {
VPValue *OtherV = R->getOperand(Op);
assert(inferScalarType(OtherV) == ResTy &&
"different types inferred for different operands");
CachedTypes[OtherV] = ResTy;
}
return ResTy;
};
unsigned Opcode = R->getOpcode();
if (Instruction::isBinaryOp(Opcode) || Instruction::isUnaryOp(Opcode))
return SetResultTyFromOp();
switch (Opcode) {
case Instruction::Select: {
Type *ResTy = inferScalarType(R->getOperand(1));
VPValue *OtherV = R->getOperand(2);
assert(inferScalarType(OtherV) == ResTy &&
"different types inferred for different operands");
CachedTypes[OtherV] = ResTy;
return ResTy;
}
case Instruction::ICmp:
case VPInstruction::ActiveLaneMask:
return inferScalarType(R->getOperand(1));
case VPInstruction::FirstOrderRecurrenceSplice:
case VPInstruction::Not:
return SetResultTyFromOp();
case VPInstruction::ExtractFromEnd: {
Type *BaseTy = inferScalarType(R->getOperand(0));
if (auto *VecTy = dyn_cast<VectorType>(BaseTy))
return VecTy->getElementType();
return BaseTy;
}
case VPInstruction::LogicalAnd:
return IntegerType::get(Ctx, 1);
case VPInstruction::PtrAdd:
// Return the type based on the pointer argument (i.e. first operand).
return inferScalarType(R->getOperand(0));
case VPInstruction::BranchOnCond:
case VPInstruction::BranchOnCount:
return Type::getVoidTy(Ctx);
default:
break;
}
// Type inference not implemented for opcode.
LLVM_DEBUG({
dbgs() << "LV: Found unhandled opcode for: ";
R->getVPSingleValue()->dump();
});
llvm_unreachable("Unhandled opcode!");
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenRecipe *R) {
unsigned Opcode = R->getOpcode();
switch (Opcode) {
case Instruction::ICmp:
case Instruction::FCmp:
return IntegerType::get(Ctx, 1);
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
Type *ResTy = inferScalarType(R->getOperand(0));
assert(ResTy == inferScalarType(R->getOperand(1)) &&
"types for both operands must match for binary op");
CachedTypes[R->getOperand(1)] = ResTy;
return ResTy;
}
case Instruction::FNeg:
case Instruction::Freeze:
return inferScalarType(R->getOperand(0));
default:
break;
}
// Type inference not implemented for opcode.
LLVM_DEBUG({
dbgs() << "LV: Found unhandled opcode for: ";
R->getVPSingleValue()->dump();
});
llvm_unreachable("Unhandled opcode!");
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenCallRecipe *R) {
auto &CI = *cast<CallInst>(R->getUnderlyingInstr());
return CI.getType();
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenMemoryRecipe *R) {
assert((isa<VPWidenLoadRecipe>(R) || isa<VPWidenLoadEVLRecipe>(R)) &&
"Store recipes should not define any values");
return cast<LoadInst>(&R->getIngredient())->getType();
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenSelectRecipe *R) {
Type *ResTy = inferScalarType(R->getOperand(1));
VPValue *OtherV = R->getOperand(2);
assert(inferScalarType(OtherV) == ResTy &&
"different types inferred for different operands");
CachedTypes[OtherV] = ResTy;
return ResTy;
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPReplicateRecipe *R) {
switch (R->getUnderlyingInstr()->getOpcode()) {
case Instruction::Call: {
unsigned CallIdx = R->getNumOperands() - (R->isPredicated() ? 2 : 1);
return cast<Function>(R->getOperand(CallIdx)->getLiveInIRValue())
->getReturnType();
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
Type *ResTy = inferScalarType(R->getOperand(0));
assert(ResTy == inferScalarType(R->getOperand(1)) &&
"inferred types for operands of binary op don't match");
CachedTypes[R->getOperand(1)] = ResTy;
return ResTy;
}
case Instruction::Select: {
Type *ResTy = inferScalarType(R->getOperand(1));
assert(ResTy == inferScalarType(R->getOperand(2)) &&
"inferred types for operands of select op don't match");
CachedTypes[R->getOperand(2)] = ResTy;
return ResTy;
}
case Instruction::ICmp:
case Instruction::FCmp:
return IntegerType::get(Ctx, 1);
case Instruction::AddrSpaceCast:
case Instruction::Alloca:
case Instruction::BitCast:
case Instruction::Trunc:
case Instruction::SExt:
case Instruction::ZExt:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::ExtractValue:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::FPToSI:
case Instruction::FPToUI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
return R->getUnderlyingInstr()->getType();
case Instruction::Freeze:
case Instruction::FNeg:
case Instruction::GetElementPtr:
return inferScalarType(R->getOperand(0));
case Instruction::Load:
return cast<LoadInst>(R->getUnderlyingInstr())->getType();
case Instruction::Store:
// FIXME: VPReplicateRecipes with store opcodes still define a result
// VPValue, so we need to handle them here. Remove the code here once this
// is modeled accurately in VPlan.
return Type::getVoidTy(Ctx);
default:
break;
}
// Type inference not implemented for opcode.
LLVM_DEBUG({
dbgs() << "LV: Found unhandled opcode for: ";
R->getVPSingleValue()->dump();
});
llvm_unreachable("Unhandled opcode");
}
Type *VPTypeAnalysis::inferScalarType(const VPValue *V) {
if (Type *CachedTy = CachedTypes.lookup(V))
return CachedTy;
if (V->isLiveIn()) {
if (auto *IRValue = V->getLiveInIRValue())
return IRValue->getType();
// All VPValues without any underlying IR value (like the vector trip count
// or the backedge-taken count) have the same type as the canonical IV.
return CanonicalIVTy;
}
Type *ResultTy =
TypeSwitch<const VPRecipeBase *, Type *>(V->getDefiningRecipe())
.Case<VPActiveLaneMaskPHIRecipe, VPCanonicalIVPHIRecipe,
VPFirstOrderRecurrencePHIRecipe, VPReductionPHIRecipe,
VPWidenPointerInductionRecipe, VPEVLBasedIVPHIRecipe>(
[this](const auto *R) {
// Handle header phi recipes, except VPWidenIntOrFpInduction
// which needs special handling due it being possibly truncated.
// TODO: consider inferring/caching type of siblings, e.g.,
// backedge value, here and in cases below.
return inferScalarType(R->getStartValue());
})
.Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
[](const auto *R) { return R->getScalarType(); })
.Case<VPReductionRecipe, VPPredInstPHIRecipe, VPWidenPHIRecipe,
VPScalarIVStepsRecipe, VPWidenGEPRecipe, VPVectorPointerRecipe,
VPWidenCanonicalIVRecipe>([this](const VPRecipeBase *R) {
return inferScalarType(R->getOperand(0));
})
.Case<VPBlendRecipe, VPInstruction, VPWidenRecipe, VPReplicateRecipe,
VPWidenCallRecipe, VPWidenMemoryRecipe, VPWidenSelectRecipe>(
[this](const auto *R) { return inferScalarTypeForRecipe(R); })
.Case<VPInterleaveRecipe>([V](const VPInterleaveRecipe *R) {
// TODO: Use info from interleave group.
return V->getUnderlyingValue()->getType();
})
.Case<VPWidenCastRecipe>(
[](const VPWidenCastRecipe *R) { return R->getResultType(); })
.Case<VPScalarCastRecipe>(
[](const VPScalarCastRecipe *R) { return R->getResultType(); })
.Case<VPExpandSCEVRecipe>([](const VPExpandSCEVRecipe *R) {
return R->getSCEV()->getType();
})
.Case<VPReductionRecipe>([this](const auto *R) {
return inferScalarType(R->getChainOp());
});
assert(ResultTy && "could not infer type for the given VPValue");
CachedTypes[V] = ResultTy;
return ResultTy;
}
void llvm::collectEphemeralRecipesForVPlan(
VPlan &Plan, DenseSet<VPRecipeBase *> &EphRecipes) {
// First, collect seed recipes which are operands of assumes.
SmallVector<VPRecipeBase *> Worklist;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry()))) {
for (VPRecipeBase &R : *VPBB) {
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
if (!RepR || !match(RepR->getUnderlyingInstr(),
PatternMatch::m_Intrinsic<Intrinsic::assume>()))
continue;
Worklist.push_back(RepR);
EphRecipes.insert(RepR);
}
}
// Process operands of candidates in worklist and add them to the set of
// ephemeral recipes, if they don't have side-effects and are only used by
// other ephemeral recipes.
while (!Worklist.empty()) {
VPRecipeBase *Cur = Worklist.pop_back_val();
for (VPValue *Op : Cur->operands()) {
auto *OpR = Op->getDefiningRecipe();
if (!OpR || OpR->mayHaveSideEffects() || EphRecipes.contains(OpR))
continue;
if (any_of(Op->users(), [EphRecipes](VPUser *U) {
auto *UR = dyn_cast<VPRecipeBase>(U);
return !UR || !EphRecipes.contains(UR);
}))
continue;
EphRecipes.insert(OpR);
Worklist.push_back(OpR);
}
}
}
|