File: VPlanPatternMatch.h

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (349 lines) | stat: -rw-r--r-- 11,557 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//===- VPlanPatternMatch.h - Match on VPValues and recipes ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on the VPlan values and recipes, based on
// LLVM's IR pattern matchers.
//
// Currently it provides generic matchers for unary and binary VPInstructions,
// and specialized matchers like m_Not, m_ActiveLaneMask, m_BranchOnCond,
// m_BranchOnCount to match specific VPInstructions.
// TODO: Add missing matchers for additional opcodes and recipes as needed.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
#define LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H

#include "VPlan.h"

namespace llvm {
namespace VPlanPatternMatch {

template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
  return const_cast<Pattern &>(P).match(V);
}

template <typename Class> struct class_match {
  template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
};

/// Match an arbitrary VPValue and ignore it.
inline class_match<VPValue> m_VPValue() { return class_match<VPValue>(); }

template <typename Class> struct bind_ty {
  Class *&VR;

  bind_ty(Class *&V) : VR(V) {}

  template <typename ITy> bool match(ITy *V) {
    if (auto *CV = dyn_cast<Class>(V)) {
      VR = CV;
      return true;
    }
    return false;
  }
};

/// Match a specified integer value or vector of all elements of that
/// value. \p BitWidth optionally specifies the bitwidth the matched constant
/// must have. If it is 0, the matched constant can have any bitwidth.
template <unsigned BitWidth = 0> struct specific_intval {
  APInt Val;

  specific_intval(APInt V) : Val(std::move(V)) {}

  bool match(VPValue *VPV) {
    if (!VPV->isLiveIn())
      return false;
    Value *V = VPV->getLiveInIRValue();
    const auto *CI = dyn_cast<ConstantInt>(V);
    if (!CI && V->getType()->isVectorTy())
      if (const auto *C = dyn_cast<Constant>(V))
        CI = dyn_cast_or_null<ConstantInt>(
            C->getSplatValue(/*AllowPoison=*/false));
    if (!CI)
      return false;

    assert((BitWidth == 0 || CI->getBitWidth() == BitWidth) &&
           "Trying the match constant with unexpected bitwidth.");
    return APInt::isSameValue(CI->getValue(), Val);
  }
};

inline specific_intval<0> m_SpecificInt(uint64_t V) {
  return specific_intval<0>(APInt(64, V));
}

inline specific_intval<1> m_False() { return specific_intval<1>(APInt(64, 0)); }

/// Matching combinators
template <typename LTy, typename RTy> struct match_combine_or {
  LTy L;
  RTy R;

  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}

  template <typename ITy> bool match(ITy *V) {
    if (L.match(V))
      return true;
    if (R.match(V))
      return true;
    return false;
  }
};

template <typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
  return match_combine_or<LTy, RTy>(L, R);
}

/// Match a VPValue, capturing it if we match.
inline bind_ty<VPValue> m_VPValue(VPValue *&V) { return V; }

namespace detail {

/// A helper to match an opcode against multiple recipe types.
template <unsigned Opcode, typename...> struct MatchRecipeAndOpcode {};

template <unsigned Opcode, typename RecipeTy>
struct MatchRecipeAndOpcode<Opcode, RecipeTy> {
  static bool match(const VPRecipeBase *R) {
    auto *DefR = dyn_cast<RecipeTy>(R);
    return DefR && DefR->getOpcode() == Opcode;
  }
};

template <unsigned Opcode, typename RecipeTy, typename... RecipeTys>
struct MatchRecipeAndOpcode<Opcode, RecipeTy, RecipeTys...> {
  static bool match(const VPRecipeBase *R) {
    return MatchRecipeAndOpcode<Opcode, RecipeTy>::match(R) ||
           MatchRecipeAndOpcode<Opcode, RecipeTys...>::match(R);
  }
};
} // namespace detail

template <typename Op0_t, unsigned Opcode, typename... RecipeTys>
struct UnaryRecipe_match {
  Op0_t Op0;

  UnaryRecipe_match(Op0_t Op0) : Op0(Op0) {}

  bool match(const VPValue *V) {
    auto *DefR = V->getDefiningRecipe();
    return DefR && match(DefR);
  }

  bool match(const VPRecipeBase *R) {
    if (!detail::MatchRecipeAndOpcode<Opcode, RecipeTys...>::match(R))
      return false;
    assert(R->getNumOperands() == 1 &&
           "recipe with matched opcode does not have 1 operands");
    return Op0.match(R->getOperand(0));
  }
};

template <typename Op0_t, unsigned Opcode>
using UnaryVPInstruction_match =
    UnaryRecipe_match<Op0_t, Opcode, VPInstruction>;

template <typename Op0_t, unsigned Opcode>
using AllUnaryRecipe_match =
    UnaryRecipe_match<Op0_t, Opcode, VPWidenRecipe, VPReplicateRecipe,
                      VPWidenCastRecipe, VPInstruction>;

template <typename Op0_t, typename Op1_t, unsigned Opcode, bool Commutative,
          typename... RecipeTys>
struct BinaryRecipe_match {
  Op0_t Op0;
  Op1_t Op1;

  BinaryRecipe_match(Op0_t Op0, Op1_t Op1) : Op0(Op0), Op1(Op1) {}

  bool match(const VPValue *V) {
    auto *DefR = V->getDefiningRecipe();
    return DefR && match(DefR);
  }

  bool match(const VPSingleDefRecipe *R) {
    return match(static_cast<const VPRecipeBase *>(R));
  }

  bool match(const VPRecipeBase *R) {
    if (!detail::MatchRecipeAndOpcode<Opcode, RecipeTys...>::match(R))
      return false;
    assert(R->getNumOperands() == 2 &&
           "recipe with matched opcode does not have 2 operands");
    if (Op0.match(R->getOperand(0)) && Op1.match(R->getOperand(1)))
      return true;
    return Commutative && Op0.match(R->getOperand(1)) &&
           Op1.match(R->getOperand(0));
  }
};

template <typename Op0_t, typename Op1_t, unsigned Opcode>
using BinaryVPInstruction_match =
    BinaryRecipe_match<Op0_t, Op1_t, Opcode, /*Commutative*/ false,
                       VPInstruction>;

template <typename Op0_t, typename Op1_t, unsigned Opcode,
          bool Commutative = false>
using AllBinaryRecipe_match =
    BinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative, VPWidenRecipe,
                       VPReplicateRecipe, VPWidenCastRecipe, VPInstruction>;

template <unsigned Opcode, typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, Opcode>
m_VPInstruction(const Op0_t &Op0) {
  return UnaryVPInstruction_match<Op0_t, Opcode>(Op0);
}

template <unsigned Opcode, typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, Opcode>
m_VPInstruction(const Op0_t &Op0, const Op1_t &Op1) {
  return BinaryVPInstruction_match<Op0_t, Op1_t, Opcode>(Op0, Op1);
}

template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, VPInstruction::Not>
m_Not(const Op0_t &Op0) {
  return m_VPInstruction<VPInstruction::Not>(Op0);
}

template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, VPInstruction::BranchOnCond>
m_BranchOnCond(const Op0_t &Op0) {
  return m_VPInstruction<VPInstruction::BranchOnCond>(Op0);
}

template <typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::ActiveLaneMask>
m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1) {
  return m_VPInstruction<VPInstruction::ActiveLaneMask>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::BranchOnCount>
m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1) {
  return m_VPInstruction<VPInstruction::BranchOnCount>(Op0, Op1);
}

template <unsigned Opcode, typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Opcode> m_Unary(const Op0_t &Op0) {
  return AllUnaryRecipe_match<Op0_t, Opcode>(Op0);
}

template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::Trunc>
m_Trunc(const Op0_t &Op0) {
  return m_Unary<Instruction::Trunc, Op0_t>(Op0);
}

template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::ZExt> m_ZExt(const Op0_t &Op0) {
  return m_Unary<Instruction::ZExt, Op0_t>(Op0);
}

template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::SExt> m_SExt(const Op0_t &Op0) {
  return m_Unary<Instruction::SExt, Op0_t>(Op0);
}

template <typename Op0_t>
inline match_combine_or<AllUnaryRecipe_match<Op0_t, Instruction::ZExt>,
                        AllUnaryRecipe_match<Op0_t, Instruction::SExt>>
m_ZExtOrSExt(const Op0_t &Op0) {
  return m_CombineOr(m_ZExt(Op0), m_SExt(Op0));
}

template <unsigned Opcode, typename Op0_t, typename Op1_t,
          bool Commutative = false>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative>
m_Binary(const Op0_t &Op0, const Op1_t &Op1) {
  return AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Mul>
m_Mul(const Op0_t &Op0, const Op1_t &Op1) {
  return m_Binary<Instruction::Mul, Op0_t, Op1_t>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Mul,
                             /* Commutative =*/true>
m_c_Mul(const Op0_t &Op0, const Op1_t &Op1) {
  return m_Binary<Instruction::Mul, Op0_t, Op1_t, true>(Op0, Op1);
}

/// Match a binary OR operation. Note that while conceptually the operands can
/// be matched commutatively, \p Commutative defaults to false in line with the
/// IR-based pattern matching infrastructure. Use m_c_BinaryOr for a commutative
/// version of the matcher.
template <typename Op0_t, typename Op1_t, bool Commutative = false>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Or, Commutative>
m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
  return m_Binary<Instruction::Or, Op0_t, Op1_t, Commutative>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Or,
                             /*Commutative*/ true>
m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
  return m_BinaryOr<Op0_t, Op1_t, /*Commutative*/ true>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::LogicalAnd>
m_LogicalAnd(const Op0_t &Op0, const Op1_t &Op1) {
  return m_VPInstruction<VPInstruction::LogicalAnd, Op0_t, Op1_t>(Op0, Op1);
}

struct VPCanonicalIVPHI_match {
  bool match(const VPValue *V) {
    auto *DefR = V->getDefiningRecipe();
    return DefR && match(DefR);
  }

  bool match(const VPRecipeBase *R) { return isa<VPCanonicalIVPHIRecipe>(R); }
};

inline VPCanonicalIVPHI_match m_CanonicalIV() {
  return VPCanonicalIVPHI_match();
}

template <typename Op0_t, typename Op1_t> struct VPScalarIVSteps_match {
  Op0_t Op0;
  Op1_t Op1;

  VPScalarIVSteps_match(Op0_t Op0, Op1_t Op1) : Op0(Op0), Op1(Op1) {}

  bool match(const VPValue *V) {
    auto *DefR = V->getDefiningRecipe();
    return DefR && match(DefR);
  }

  bool match(const VPRecipeBase *R) {
    if (!isa<VPScalarIVStepsRecipe>(R))
      return false;
    assert(R->getNumOperands() == 2 &&
           "VPScalarIVSteps must have exactly 2 operands");
    return Op0.match(R->getOperand(0)) && Op1.match(R->getOperand(1));
  }
};

template <typename Op0_t, typename Op1_t>
inline VPScalarIVSteps_match<Op0_t, Op1_t> m_ScalarIVSteps(const Op0_t &Op0,
                                                           const Op1_t &Op1) {
  return VPScalarIVSteps_match<Op0_t, Op1_t>(Op0, Op1);
}

} // namespace VPlanPatternMatch
} // namespace llvm

#endif