1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
|
//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a set of utility VPlan to VPlan transformations.
///
//===----------------------------------------------------------------------===//
#include "VPlanTransforms.h"
#include "VPRecipeBuilder.h"
#include "VPlanAnalysis.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
void VPlanTransforms::VPInstructionsToVPRecipes(
VPlanPtr &Plan,
function_ref<const InductionDescriptor *(PHINode *)>
GetIntOrFpInductionDescriptor,
ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan->getVectorLoopRegion());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
// Skip blocks outside region
if (!VPBB->getParent())
break;
VPRecipeBase *Term = VPBB->getTerminator();
auto EndIter = Term ? Term->getIterator() : VPBB->end();
// Introduce each ingredient into VPlan.
for (VPRecipeBase &Ingredient :
make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
VPValue *VPV = Ingredient.getVPSingleValue();
Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
VPRecipeBase *NewRecipe = nullptr;
if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
const auto *II = GetIntOrFpInductionDescriptor(Phi);
if (!II)
continue;
VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
VPValue *Step =
vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II);
} else {
assert(isa<VPInstruction>(&Ingredient) &&
"only VPInstructions expected here");
assert(!isa<PHINode>(Inst) && "phis should be handled above");
// Create VPWidenMemoryRecipe for loads and stores.
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
NewRecipe = new VPWidenLoadRecipe(
*Load, Ingredient.getOperand(0), nullptr /*Mask*/,
false /*Consecutive*/, false /*Reverse*/,
Ingredient.getDebugLoc());
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
NewRecipe = new VPWidenStoreRecipe(
*Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
Ingredient.getDebugLoc());
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
} else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
NewRecipe = new VPWidenCallRecipe(
CI, Ingredient.operands(), getVectorIntrinsicIDForCall(CI, &TLI),
CI->getDebugLoc());
} else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
} else if (auto *CI = dyn_cast<CastInst>(Inst)) {
NewRecipe = new VPWidenCastRecipe(
CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
} else {
NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
}
}
NewRecipe->insertBefore(&Ingredient);
if (NewRecipe->getNumDefinedValues() == 1)
VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
else
assert(NewRecipe->getNumDefinedValues() == 0 &&
"Only recpies with zero or one defined values expected");
Ingredient.eraseFromParent();
}
}
}
static bool sinkScalarOperands(VPlan &Plan) {
auto Iter = vp_depth_first_deep(Plan.getEntry());
bool Changed = false;
// First, collect the operands of all recipes in replicate blocks as seeds for
// sinking.
SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList;
for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
continue;
VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
continue;
for (auto &Recipe : *VPBB) {
for (VPValue *Op : Recipe.operands())
if (auto *Def =
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
WorkList.insert(std::make_pair(VPBB, Def));
}
}
bool ScalarVFOnly = Plan.hasScalarVFOnly();
// Try to sink each replicate or scalar IV steps recipe in the worklist.
for (unsigned I = 0; I != WorkList.size(); ++I) {
VPBasicBlock *SinkTo;
VPSingleDefRecipe *SinkCandidate;
std::tie(SinkTo, SinkCandidate) = WorkList[I];
if (SinkCandidate->getParent() == SinkTo ||
SinkCandidate->mayHaveSideEffects() ||
SinkCandidate->mayReadOrWriteMemory())
continue;
if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
if (!ScalarVFOnly && RepR->isUniform())
continue;
} else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
continue;
bool NeedsDuplicating = false;
// All recipe users of the sink candidate must be in the same block SinkTo
// or all users outside of SinkTo must be uniform-after-vectorization (
// i.e., only first lane is used) . In the latter case, we need to duplicate
// SinkCandidate.
auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
SinkCandidate](VPUser *U) {
auto *UI = dyn_cast<VPRecipeBase>(U);
if (!UI)
return false;
if (UI->getParent() == SinkTo)
return true;
NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
// We only know how to duplicate VPRecipeRecipes for now.
return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
};
if (!all_of(SinkCandidate->users(), CanSinkWithUser))
continue;
if (NeedsDuplicating) {
if (ScalarVFOnly)
continue;
Instruction *I = SinkCandidate->getUnderlyingInstr();
auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
// TODO: add ".cloned" suffix to name of Clone's VPValue.
Clone->insertBefore(SinkCandidate);
SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
});
}
SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
for (VPValue *Op : SinkCandidate->operands())
if (auto *Def =
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
WorkList.insert(std::make_pair(SinkTo, Def));
Changed = true;
}
return Changed;
}
/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
/// the mask.
VPValue *getPredicatedMask(VPRegionBlock *R) {
auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
if (!EntryBB || EntryBB->size() != 1 ||
!isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
return nullptr;
return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
}
/// If \p R is a triangle region, return the 'then' block of the triangle.
static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
if (EntryBB->getNumSuccessors() != 2)
return nullptr;
auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
if (!Succ0 || !Succ1)
return nullptr;
if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
return nullptr;
if (Succ0->getSingleSuccessor() == Succ1)
return Succ0;
if (Succ1->getSingleSuccessor() == Succ0)
return Succ1;
return nullptr;
}
// Merge replicate regions in their successor region, if a replicate region
// is connected to a successor replicate region with the same predicate by a
// single, empty VPBasicBlock.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
SetVector<VPRegionBlock *> DeletedRegions;
// Collect replicate regions followed by an empty block, followed by another
// replicate region with matching masks to process front. This is to avoid
// iterator invalidation issues while merging regions.
SmallVector<VPRegionBlock *, 8> WorkList;
for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
if (!Region1->isReplicator())
continue;
auto *MiddleBasicBlock =
dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
continue;
auto *Region2 =
dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
if (!Region2 || !Region2->isReplicator())
continue;
VPValue *Mask1 = getPredicatedMask(Region1);
VPValue *Mask2 = getPredicatedMask(Region2);
if (!Mask1 || Mask1 != Mask2)
continue;
assert(Mask1 && Mask2 && "both region must have conditions");
WorkList.push_back(Region1);
}
// Move recipes from Region1 to its successor region, if both are triangles.
for (VPRegionBlock *Region1 : WorkList) {
if (DeletedRegions.contains(Region1))
continue;
auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
if (!Then1 || !Then2)
continue;
// Note: No fusion-preventing memory dependencies are expected in either
// region. Such dependencies should be rejected during earlier dependence
// checks, which guarantee accesses can be re-ordered for vectorization.
//
// Move recipes to the successor region.
for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
// Move VPPredInstPHIRecipes from the merge block to the successor region's
// merge block. Update all users inside the successor region to use the
// original values.
for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
VPValue *PredInst1 =
cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
auto *UI = dyn_cast<VPRecipeBase>(&U);
return UI && UI->getParent() == Then2;
});
// Remove phi recipes that are unused after merging the regions.
if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
Phi1ToMove.eraseFromParent();
continue;
}
Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
}
// Finally, remove the first region.
for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
VPBlockUtils::disconnectBlocks(Pred, Region1);
VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
}
VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
DeletedRegions.insert(Region1);
}
for (VPRegionBlock *ToDelete : DeletedRegions)
delete ToDelete;
return !DeletedRegions.empty();
}
static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
VPlan &Plan) {
Instruction *Instr = PredRecipe->getUnderlyingInstr();
// Build the triangular if-then region.
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
assert(Instr->getParent() && "Predicated instruction not in any basic block");
auto *BlockInMask = PredRecipe->getMask();
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
// Replace predicated replicate recipe with a replicate recipe without a
// mask but in the replicate region.
auto *RecipeWithoutMask = new VPReplicateRecipe(
PredRecipe->getUnderlyingInstr(),
make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
PredRecipe->isUniform());
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
VPPredInstPHIRecipe *PHIRecipe = nullptr;
if (PredRecipe->getNumUsers() != 0) {
PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
PredRecipe->replaceAllUsesWith(PHIRecipe);
PHIRecipe->setOperand(0, RecipeWithoutMask);
}
PredRecipe->eraseFromParent();
auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
// Note: first set Entry as region entry and then connect successors starting
// from it in order, to propagate the "parent" of each VPBasicBlock.
VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
VPBlockUtils::connectBlocks(Pred, Exiting);
return Region;
}
static void addReplicateRegions(VPlan &Plan) {
SmallVector<VPReplicateRecipe *> WorkList;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
for (VPRecipeBase &R : *VPBB)
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
if (RepR->isPredicated())
WorkList.push_back(RepR);
}
}
unsigned BBNum = 0;
for (VPReplicateRecipe *RepR : WorkList) {
VPBasicBlock *CurrentBlock = RepR->getParent();
VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
SplitBlock->setName(
OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
// Record predicated instructions for above packing optimizations.
VPBlockBase *Region = createReplicateRegion(RepR, Plan);
Region->setParent(CurrentBlock->getParent());
VPBlockUtils::disconnectBlocks(CurrentBlock, SplitBlock);
VPBlockUtils::connectBlocks(CurrentBlock, Region);
VPBlockUtils::connectBlocks(Region, SplitBlock);
}
}
/// Remove redundant VPBasicBlocks by merging them into their predecessor if
/// the predecessor has a single successor.
static bool mergeBlocksIntoPredecessors(VPlan &Plan) {
SmallVector<VPBasicBlock *> WorkList;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
// Don't fold the exit block of the Plan into its single predecessor for
// now.
// TODO: Remove restriction once more of the skeleton is modeled in VPlan.
if (VPBB->getNumSuccessors() == 0 && !VPBB->getParent())
continue;
auto *PredVPBB =
dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
if (!PredVPBB || PredVPBB->getNumSuccessors() != 1)
continue;
WorkList.push_back(VPBB);
}
for (VPBasicBlock *VPBB : WorkList) {
VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
for (VPRecipeBase &R : make_early_inc_range(*VPBB))
R.moveBefore(*PredVPBB, PredVPBB->end());
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
if (ParentRegion && ParentRegion->getExiting() == VPBB)
ParentRegion->setExiting(PredVPBB);
for (auto *Succ : to_vector(VPBB->successors())) {
VPBlockUtils::disconnectBlocks(VPBB, Succ);
VPBlockUtils::connectBlocks(PredVPBB, Succ);
}
delete VPBB;
}
return !WorkList.empty();
}
void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
// Convert masked VPReplicateRecipes to if-then region blocks.
addReplicateRegions(Plan);
bool ShouldSimplify = true;
while (ShouldSimplify) {
ShouldSimplify = sinkScalarOperands(Plan);
ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
}
}
/// Remove redundant casts of inductions.
///
/// Such redundant casts are casts of induction variables that can be ignored,
/// because we already proved that the casted phi is equal to the uncasted phi
/// in the vectorized loop. There is no need to vectorize the cast - the same
/// value can be used for both the phi and casts in the vector loop.
static void removeRedundantInductionCasts(VPlan &Plan) {
for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!IV || IV->getTruncInst())
continue;
// A sequence of IR Casts has potentially been recorded for IV, which
// *must be bypassed* when the IV is vectorized, because the vectorized IV
// will produce the desired casted value. This sequence forms a def-use
// chain and is provided in reverse order, ending with the cast that uses
// the IV phi. Search for the recipe of the last cast in the chain and
// replace it with the original IV. Note that only the final cast is
// expected to have users outside the cast-chain and the dead casts left
// over will be cleaned up later.
auto &Casts = IV->getInductionDescriptor().getCastInsts();
VPValue *FindMyCast = IV;
for (Instruction *IRCast : reverse(Casts)) {
VPSingleDefRecipe *FoundUserCast = nullptr;
for (auto *U : FindMyCast->users()) {
auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
FoundUserCast = UserCast;
break;
}
}
FindMyCast = FoundUserCast;
}
FindMyCast->replaceAllUsesWith(IV);
}
}
/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
/// recipe, if it exists.
static void removeRedundantCanonicalIVs(VPlan &Plan) {
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
for (VPUser *U : CanonicalIV->users()) {
WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
if (WidenNewIV)
break;
}
if (!WidenNewIV)
return;
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
continue;
// Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
// everything WidenNewIV's users need. That is, WidenOriginalIV will
// generate a vector phi or all users of WidenNewIV demand the first lane
// only.
if (any_of(WidenOriginalIV->users(),
[WidenOriginalIV](VPUser *U) {
return !U->usesScalars(WidenOriginalIV);
}) ||
vputils::onlyFirstLaneUsed(WidenNewIV)) {
WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
WidenNewIV->eraseFromParent();
return;
}
}
}
/// Returns true if \p R is dead and can be removed.
static bool isDeadRecipe(VPRecipeBase &R) {
using namespace llvm::PatternMatch;
// Do remove conditional assume instructions as their conditions may be
// flattened.
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
bool IsConditionalAssume =
RepR && RepR->isPredicated() &&
match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
if (IsConditionalAssume)
return true;
if (R.mayHaveSideEffects())
return false;
// Recipe is dead if no user keeps the recipe alive.
return all_of(R.definedValues(),
[](VPValue *V) { return V->getNumUsers() == 0; });
}
static void removeDeadRecipes(VPlan &Plan) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
// The recipes in the block are processed in reverse order, to catch chains
// of dead recipes.
for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
if (isDeadRecipe(R))
R.eraseFromParent();
}
}
}
static VPScalarIVStepsRecipe *
createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind,
Instruction::BinaryOps InductionOpcode,
FPMathOperator *FPBinOp, ScalarEvolution &SE,
Instruction *TruncI, VPValue *StartV, VPValue *Step,
VPBasicBlock::iterator IP) {
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
VPSingleDefRecipe *BaseIV = CanonicalIV;
if (!CanonicalIV->isCanonical(Kind, StartV, Step)) {
BaseIV = new VPDerivedIVRecipe(Kind, FPBinOp, StartV, CanonicalIV, Step);
HeaderVPBB->insert(BaseIV, IP);
}
// Truncate base induction if needed.
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(),
SE.getContext());
Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
if (TruncI) {
Type *TruncTy = TruncI->getType();
assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
"Not truncating.");
assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
BaseIV = new VPScalarCastRecipe(Instruction::Trunc, BaseIV, TruncTy);
HeaderVPBB->insert(BaseIV, IP);
ResultTy = TruncTy;
}
// Truncate step if needed.
Type *StepTy = TypeInfo.inferScalarType(Step);
if (ResultTy != StepTy) {
assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
"Not truncating.");
assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
Step = new VPScalarCastRecipe(Instruction::Trunc, Step, ResultTy);
auto *VecPreheader =
cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
VecPreheader->appendRecipe(Step->getDefiningRecipe());
}
VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(
BaseIV, Step, InductionOpcode,
FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags());
HeaderVPBB->insert(Steps, IP);
return Steps;
}
/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
/// VPWidenPointerInductionRecipe will generate vectors only. If some users
/// require vectors while other require scalars, the scalar uses need to extract
/// the scalars from the generated vectors (Note that this is different to how
/// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe,
/// if any of its users needs scalar values, by providing them scalar steps
/// built on the canonical scalar IV and update the original IV's users. This is
/// an optional optimization to reduce the needs of vector extracts.
static void legalizeAndOptimizeInductions(VPlan &Plan, ScalarEvolution &SE) {
SmallVector<VPRecipeBase *> ToRemove;
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
VPBasicBlock::iterator InsertPt = HeaderVPBB->getFirstNonPhi();
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
// Replace wide pointer inductions which have only their scalars used by
// PtrAdd(IndStart, ScalarIVSteps (0, Step)).
if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
continue;
const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
VPValue *StartV =
Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
VPValue *StepV = PtrIV->getOperand(1);
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
SE, nullptr, StartV, StepV, InsertPt);
auto *Recipe = new VPInstruction(VPInstruction::PtrAdd,
{PtrIV->getStartValue(), Steps},
PtrIV->getDebugLoc(), "next.gep");
Recipe->insertAfter(Steps);
PtrIV->replaceAllUsesWith(Recipe);
continue;
}
// Replace widened induction with scalar steps for users that only use
// scalars.
auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!WideIV)
continue;
if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
return U->usesScalars(WideIV);
}))
continue;
const InductionDescriptor &ID = WideIV->getInductionDescriptor();
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
Plan, ID.getKind(), ID.getInductionOpcode(),
dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), SE,
WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
InsertPt);
// Update scalar users of IV to use Step instead.
if (!HasOnlyVectorVFs)
WideIV->replaceAllUsesWith(Steps);
else
WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
return U.usesScalars(WideIV);
});
}
}
/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
/// them with already existing recipes expanding the same SCEV expression.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan) {
DenseMap<const SCEV *, VPValue *> SCEV2VPV;
for (VPRecipeBase &R :
make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
if (!ExpR)
continue;
auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
if (I.second)
continue;
ExpR->replaceAllUsesWith(I.first->second);
ExpR->eraseFromParent();
}
}
static void recursivelyDeleteDeadRecipes(VPValue *V) {
SmallVector<VPValue *> WorkList;
SmallPtrSet<VPValue *, 8> Seen;
WorkList.push_back(V);
while (!WorkList.empty()) {
VPValue *Cur = WorkList.pop_back_val();
if (!Seen.insert(Cur).second)
continue;
VPRecipeBase *R = Cur->getDefiningRecipe();
if (!R)
continue;
if (!isDeadRecipe(*R))
continue;
WorkList.append(R->op_begin(), R->op_end());
R->eraseFromParent();
}
}
void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
unsigned BestUF,
PredicatedScalarEvolution &PSE) {
assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
VPBasicBlock *ExitingVPBB =
Plan.getVectorLoopRegion()->getExitingBasicBlock();
auto *Term = &ExitingVPBB->back();
// Try to simplify the branch condition if TC <= VF * UF when preparing to
// execute the plan for the main vector loop. We only do this if the
// terminator is:
// 1. BranchOnCount, or
// 2. BranchOnCond where the input is Not(ActiveLaneMask).
using namespace llvm::VPlanPatternMatch;
if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
!match(Term,
m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
return;
Type *IdxTy =
Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType();
const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE);
ScalarEvolution &SE = *PSE.getSE();
ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
if (TripCount->isZero() ||
!SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
return;
LLVMContext &Ctx = SE.getContext();
auto *BOC =
new VPInstruction(VPInstruction::BranchOnCond,
{Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))});
SmallVector<VPValue *> PossiblyDead(Term->operands());
Term->eraseFromParent();
for (VPValue *Op : PossiblyDead)
recursivelyDeleteDeadRecipes(Op);
ExitingVPBB->appendRecipe(BOC);
Plan.setVF(BestVF);
Plan.setUF(BestUF);
// TODO: Further simplifications are possible
// 1. Replace inductions with constants.
// 2. Replace vector loop region with VPBasicBlock.
}
#ifndef NDEBUG
static VPRegionBlock *GetReplicateRegion(VPRecipeBase *R) {
auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
if (Region && Region->isReplicator()) {
assert(Region->getNumSuccessors() == 1 &&
Region->getNumPredecessors() == 1 && "Expected SESE region!");
assert(R->getParent()->size() == 1 &&
"A recipe in an original replicator region must be the only "
"recipe in its block");
return Region;
}
return nullptr;
}
#endif
static bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B,
VPDominatorTree &VPDT) {
if (A == B)
return false;
auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
for (auto &R : *A->getParent()) {
if (&R == A)
return true;
if (&R == B)
return false;
}
llvm_unreachable("recipe not found");
};
const VPBlockBase *ParentA = A->getParent();
const VPBlockBase *ParentB = B->getParent();
if (ParentA == ParentB)
return LocalComesBefore(A, B);
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
"No replicate regions expected at this point");
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
"No replicate regions expected at this point");
return VPDT.properlyDominates(ParentA, ParentB);
}
/// Sink users of \p FOR after the recipe defining the previous value \p
/// Previous of the recurrence. \returns true if all users of \p FOR could be
/// re-arranged as needed or false if it is not possible.
static bool
sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
VPRecipeBase *Previous,
VPDominatorTree &VPDT) {
// Collect recipes that need sinking.
SmallVector<VPRecipeBase *> WorkList;
SmallPtrSet<VPRecipeBase *, 8> Seen;
Seen.insert(Previous);
auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
// The previous value must not depend on the users of the recurrence phi. In
// that case, FOR is not a fixed order recurrence.
if (SinkCandidate == Previous)
return false;
if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
!Seen.insert(SinkCandidate).second ||
properlyDominates(Previous, SinkCandidate, VPDT))
return true;
if (SinkCandidate->mayHaveSideEffects())
return false;
WorkList.push_back(SinkCandidate);
return true;
};
// Recursively sink users of FOR after Previous.
WorkList.push_back(FOR);
for (unsigned I = 0; I != WorkList.size(); ++I) {
VPRecipeBase *Current = WorkList[I];
assert(Current->getNumDefinedValues() == 1 &&
"only recipes with a single defined value expected");
for (VPUser *User : Current->getVPSingleValue()->users()) {
if (auto *R = dyn_cast<VPRecipeBase>(User))
if (!TryToPushSinkCandidate(R))
return false;
}
}
// Keep recipes to sink ordered by dominance so earlier instructions are
// processed first.
sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
return properlyDominates(A, B, VPDT);
});
for (VPRecipeBase *SinkCandidate : WorkList) {
if (SinkCandidate == FOR)
continue;
SinkCandidate->moveAfter(Previous);
Previous = SinkCandidate;
}
return true;
}
bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
VPBuilder &LoopBuilder) {
VPDominatorTree VPDT;
VPDT.recalculate(Plan);
SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
for (VPRecipeBase &R :
Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
RecurrencePhis.push_back(FOR);
VPBasicBlock *MiddleVPBB =
cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSingleSuccessor());
VPBuilder MiddleBuilder;
// Set insert point so new recipes are inserted before terminator and
// condition, if there is either the former or both.
if (auto *Term =
dyn_cast_or_null<VPInstruction>(MiddleVPBB->getTerminator())) {
if (auto *Cmp = dyn_cast<VPInstruction>(Term->getOperand(0)))
MiddleBuilder.setInsertPoint(Cmp);
else
MiddleBuilder.setInsertPoint(Term);
} else
MiddleBuilder.setInsertPoint(MiddleVPBB);
for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
// Fixed-order recurrences do not contain cycles, so this loop is guaranteed
// to terminate.
while (auto *PrevPhi =
dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
assert(PrevPhi->getParent() == FOR->getParent());
assert(SeenPhis.insert(PrevPhi).second);
Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
}
if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT))
return false;
// Introduce a recipe to combine the incoming and previous values of a
// fixed-order recurrence.
VPBasicBlock *InsertBlock = Previous->getParent();
if (isa<VPHeaderPHIRecipe>(Previous))
LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
else
LoopBuilder.setInsertPoint(InsertBlock,
std::next(Previous->getIterator()));
auto *RecurSplice = cast<VPInstruction>(
LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
{FOR, FOR->getBackedgeValue()}));
FOR->replaceAllUsesWith(RecurSplice);
// Set the first operand of RecurSplice to FOR again, after replacing
// all users.
RecurSplice->setOperand(0, FOR);
// This is the second phase of vectorizing first-order recurrences. An
// overview of the transformation is described below. Suppose we have the
// following loop with some use after the loop of the last a[i-1],
//
// for (int i = 0; i < n; ++i) {
// t = a[i - 1];
// b[i] = a[i] - t;
// }
// use t;
//
// There is a first-order recurrence on "a". For this loop, the shorthand
// scalar IR looks like:
//
// scalar.ph:
// s_init = a[-1]
// br scalar.body
//
// scalar.body:
// i = phi [0, scalar.ph], [i+1, scalar.body]
// s1 = phi [s_init, scalar.ph], [s2, scalar.body]
// s2 = a[i]
// b[i] = s2 - s1
// br cond, scalar.body, exit.block
//
// exit.block:
// use = lcssa.phi [s1, scalar.body]
//
// In this example, s1 is a recurrence because it's value depends on the
// previous iteration. In the first phase of vectorization, we created a
// vector phi v1 for s1. We now complete the vectorization and produce the
// shorthand vector IR shown below (for VF = 4, UF = 1).
//
// vector.ph:
// v_init = vector(..., ..., ..., a[-1])
// br vector.body
//
// vector.body
// i = phi [0, vector.ph], [i+4, vector.body]
// v1 = phi [v_init, vector.ph], [v2, vector.body]
// v2 = a[i, i+1, i+2, i+3];
// v3 = vector(v1(3), v2(0, 1, 2))
// b[i, i+1, i+2, i+3] = v2 - v3
// br cond, vector.body, middle.block
//
// middle.block:
// s_penultimate = v2(2) = v3(3)
// s_resume = v2(3)
// br cond, scalar.ph, exit.block
//
// scalar.ph:
// s_init' = phi [s_resume, middle.block], [s_init, otherwise]
// br scalar.body
//
// scalar.body:
// i = phi [0, scalar.ph], [i+1, scalar.body]
// s1 = phi [s_init', scalar.ph], [s2, scalar.body]
// s2 = a[i]
// b[i] = s2 - s1
// br cond, scalar.body, exit.block
//
// exit.block:
// lo = lcssa.phi [s1, scalar.body], [s.penultimate, middle.block]
//
// After execution completes the vector loop, we extract the next value of
// the recurrence (x) to use as the initial value in the scalar loop. This
// is modeled by ExtractFromEnd.
Type *IntTy = Plan.getCanonicalIV()->getScalarType();
// Extract the penultimate value of the recurrence and update VPLiveOut
// users of the recurrence splice. Note that the extract of the final value
// used to resume in the scalar loop is created earlier during VPlan
// construction.
auto *Penultimate = cast<VPInstruction>(MiddleBuilder.createNaryOp(
VPInstruction::ExtractFromEnd,
{FOR->getBackedgeValue(),
Plan.getOrAddLiveIn(ConstantInt::get(IntTy, 2))},
{}, "vector.recur.extract.for.phi"));
RecurSplice->replaceUsesWithIf(
Penultimate, [](VPUser &U, unsigned) { return isa<VPLiveOut>(&U); });
}
return true;
}
static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) {
SetVector<VPUser *> Users(V->user_begin(), V->user_end());
for (unsigned I = 0; I != Users.size(); ++I) {
VPRecipeBase *Cur = dyn_cast<VPRecipeBase>(Users[I]);
if (!Cur || isa<VPHeaderPHIRecipe>(Cur))
continue;
for (VPValue *V : Cur->definedValues())
Users.insert(V->user_begin(), V->user_end());
}
return Users.takeVector();
}
void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
for (VPRecipeBase &R :
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
if (!PhiR)
continue;
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
RecurKind RK = RdxDesc.getRecurrenceKind();
if (RK != RecurKind::Add && RK != RecurKind::Mul)
continue;
for (VPUser *U : collectUsersRecursively(PhiR))
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
RecWithFlags->dropPoisonGeneratingFlags();
}
}
}
/// Try to simplify recipe \p R.
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
using namespace llvm::VPlanPatternMatch;
// Try to remove redundant blend recipes.
if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
VPValue *Inc0 = Blend->getIncomingValue(0);
for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
if (Inc0 != Blend->getIncomingValue(I) &&
!match(Blend->getMask(I), m_False()))
return;
Blend->replaceAllUsesWith(Inc0);
Blend->eraseFromParent();
return;
}
VPValue *A;
if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
VPValue *Trunc = R.getVPSingleValue();
Type *TruncTy = TypeInfo.inferScalarType(Trunc);
Type *ATy = TypeInfo.inferScalarType(A);
if (TruncTy == ATy) {
Trunc->replaceAllUsesWith(A);
} else {
// Don't replace a scalarizing recipe with a widened cast.
if (isa<VPReplicateRecipe>(&R))
return;
if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
? Instruction::SExt
: Instruction::ZExt;
auto *VPC =
new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
// UnderlyingExt has distinct return type, used to retain legacy cost.
VPC->setUnderlyingValue(UnderlyingExt);
}
VPC->insertBefore(&R);
Trunc->replaceAllUsesWith(VPC);
} else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
VPC->insertBefore(&R);
Trunc->replaceAllUsesWith(VPC);
}
}
#ifndef NDEBUG
// Verify that the cached type info is for both A and its users is still
// accurate by comparing it to freshly computed types.
VPTypeAnalysis TypeInfo2(
R.getParent()->getPlan()->getCanonicalIV()->getScalarType(),
TypeInfo.getContext());
assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
for (VPUser *U : A->users()) {
auto *R = dyn_cast<VPRecipeBase>(U);
if (!R)
continue;
for (VPValue *VPV : R->definedValues())
assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
}
#endif
}
// Simplify (X && Y) || (X && !Y) -> X.
// TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
// && (Y || Z) and (X || !X) into true. This requires queuing newly created
// recipes to be visited during simplification.
VPValue *X, *Y, *X1, *Y1;
if (match(&R,
m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)),
m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) &&
X == X1 && Y == Y1) {
R.getVPSingleValue()->replaceAllUsesWith(X);
return;
}
if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
return R.getVPSingleValue()->replaceAllUsesWith(A);
}
/// Try to simplify the recipes in \p Plan.
static void simplifyRecipes(VPlan &Plan, LLVMContext &Ctx) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
simplifyRecipe(R, TypeInfo);
}
}
}
void VPlanTransforms::truncateToMinimalBitwidths(
VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs,
LLVMContext &Ctx) {
#ifndef NDEBUG
// Count the processed recipes and cross check the count later with MinBWs
// size, to make sure all entries in MinBWs have been handled.
unsigned NumProcessedRecipes = 0;
#endif
// Keep track of created truncates, so they can be re-used. Note that we
// cannot use RAUW after creating a new truncate, as this would could make
// other uses have different types for their operands, making them invalidly
// typed.
DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs;
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
VPBasicBlock *PH = Plan.getEntry();
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getVectorLoopRegion()))) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe,
VPWidenSelectRecipe, VPWidenLoadRecipe>(&R))
continue;
VPValue *ResultVPV = R.getVPSingleValue();
auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
unsigned NewResSizeInBits = MinBWs.lookup(UI);
if (!NewResSizeInBits)
continue;
#ifndef NDEBUG
NumProcessedRecipes++;
#endif
// If the value wasn't vectorized, we must maintain the original scalar
// type. Skip those here, after incrementing NumProcessedRecipes. Also
// skip casts which do not need to be handled explicitly here, as
// redundant casts will be removed during recipe simplification.
if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
#ifndef NDEBUG
// If any of the operands is a live-in and not used by VPWidenRecipe or
// VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
// processed as well. When MinBWs is currently constructed, there is no
// information about whether recipes are widened or replicated and in
// case they are reciplicated the operands are not truncated. Counting
// them them here ensures we do not miss any recipes in MinBWs.
// TODO: Remove once the analysis is done on VPlan.
for (VPValue *Op : R.operands()) {
if (!Op->isLiveIn())
continue;
auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
all_of(Op->users(), [](VPUser *U) {
return !isa<VPWidenRecipe, VPWidenSelectRecipe>(U);
})) {
// Add an entry to ProcessedTruncs to avoid counting the same
// operand multiple times.
ProcessedTruncs[Op] = nullptr;
NumProcessedRecipes += 1;
}
}
#endif
continue;
}
Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
assert(OldResTy->isIntegerTy() && "only integer types supported");
(void)OldResSizeInBits;
auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);
// Any wrapping introduced by shrinking this operation shouldn't be
// considered undefined behavior. So, we can't unconditionally copy
// arithmetic wrapping flags to VPW.
if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
VPW->dropPoisonGeneratingFlags();
using namespace llvm::VPlanPatternMatch;
if (OldResSizeInBits != NewResSizeInBits &&
!match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) {
// Extend result to original width.
auto *Ext =
new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
Ext->insertAfter(&R);
ResultVPV->replaceAllUsesWith(Ext);
Ext->setOperand(0, ResultVPV);
assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
} else
assert(
match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) &&
"Only ICmps should not need extending the result.");
assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
if (isa<VPWidenLoadRecipe>(&R))
continue;
// Shrink operands by introducing truncates as needed.
unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
auto *Op = R.getOperand(Idx);
unsigned OpSizeInBits =
TypeInfo.inferScalarType(Op)->getScalarSizeInBits();
if (OpSizeInBits == NewResSizeInBits)
continue;
assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
auto [ProcessedIter, IterIsEmpty] =
ProcessedTruncs.insert({Op, nullptr});
VPWidenCastRecipe *NewOp =
IterIsEmpty
? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
: ProcessedIter->second;
R.setOperand(Idx, NewOp);
if (!IterIsEmpty)
continue;
ProcessedIter->second = NewOp;
if (!Op->isLiveIn()) {
NewOp->insertBefore(&R);
} else {
PH->appendRecipe(NewOp);
#ifndef NDEBUG
auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
bool IsContained = MinBWs.contains(OpInst);
NumProcessedRecipes += IsContained;
#endif
}
}
}
}
assert(MinBWs.size() == NumProcessedRecipes &&
"some entries in MinBWs haven't been processed");
}
void VPlanTransforms::optimize(VPlan &Plan, ScalarEvolution &SE) {
removeRedundantCanonicalIVs(Plan);
removeRedundantInductionCasts(Plan);
simplifyRecipes(Plan, SE.getContext());
legalizeAndOptimizeInductions(Plan, SE);
removeDeadRecipes(Plan);
createAndOptimizeReplicateRegions(Plan);
removeRedundantExpandSCEVRecipes(Plan);
mergeBlocksIntoPredecessors(Plan);
}
// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
// the loop terminator with a branch-on-cond recipe with the negated
// active-lane-mask as operand. Note that this turns the loop into an
// uncountable one. Only the existing terminator is replaced, all other existing
// recipes/users remain unchanged, except for poison-generating flags being
// dropped from the canonical IV increment. Return the created
// VPActiveLaneMaskPHIRecipe.
//
// The function uses the following definitions:
//
// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
// calculate-trip-count-minus-VF (original TC) : original TC
// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
// CanonicalIVPhi : CanonicalIVIncrement
// %StartV is the canonical induction start value.
//
// The function adds the following recipes:
//
// vector.ph:
// %TripCount = calculate-trip-count-minus-VF (original TC)
// [if DataWithControlFlowWithoutRuntimeCheck]
// %EntryInc = canonical-iv-increment-for-part %StartV
// %EntryALM = active-lane-mask %EntryInc, %TripCount
//
// vector.body:
// ...
// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
// ...
// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
// %ALM = active-lane-mask %InLoopInc, TripCount
// %Negated = Not %ALM
// branch-on-cond %Negated
//
static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch(
VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) {
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
auto *CanonicalIVPHI = Plan.getCanonicalIV();
VPValue *StartV = CanonicalIVPHI->getStartValue();
auto *CanonicalIVIncrement =
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
// TODO: Check if dropping the flags is needed if
// !DataAndControlFlowWithoutRuntimeCheck.
CanonicalIVIncrement->dropPoisonGeneratingFlags();
DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
// We can't use StartV directly in the ActiveLaneMask VPInstruction, since
// we have to take unrolling into account. Each part needs to start at
// Part * VF
auto *VecPreheader = cast<VPBasicBlock>(TopRegion->getSinglePredecessor());
VPBuilder Builder(VecPreheader);
// Create the ActiveLaneMask instruction using the correct start values.
VPValue *TC = Plan.getTripCount();
VPValue *TripCount, *IncrementValue;
if (!DataAndControlFlowWithoutRuntimeCheck) {
// When the loop is guarded by a runtime overflow check for the loop
// induction variable increment by VF, we can increment the value before
// the get.active.lane mask and use the unmodified tripcount.
IncrementValue = CanonicalIVIncrement;
TripCount = TC;
} else {
// When avoiding a runtime check, the active.lane.mask inside the loop
// uses a modified trip count and the induction variable increment is
// done after the active.lane.mask intrinsic is called.
IncrementValue = CanonicalIVPHI;
TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
{TC}, DL);
}
auto *EntryIncrement = Builder.createOverflowingOp(
VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
"index.part.next");
// Create the active lane mask instruction in the VPlan preheader.
auto *EntryALM =
Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
DL, "active.lane.mask.entry");
// Now create the ActiveLaneMaskPhi recipe in the main loop using the
// preheader ActiveLaneMask instruction.
auto LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
LaneMaskPhi->insertAfter(CanonicalIVPHI);
// Create the active lane mask for the next iteration of the loop before the
// original terminator.
VPRecipeBase *OriginalTerminator = EB->getTerminator();
Builder.setInsertPoint(OriginalTerminator);
auto *InLoopIncrement =
Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
{IncrementValue}, {false, false}, DL);
auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
{InLoopIncrement, TripCount}, DL,
"active.lane.mask.next");
LaneMaskPhi->addOperand(ALM);
// Replace the original terminator with BranchOnCond. We have to invert the
// mask here because a true condition means jumping to the exit block.
auto *NotMask = Builder.createNot(ALM, DL);
Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
OriginalTerminator->eraseFromParent();
return LaneMaskPhi;
}
/// Collect all VPValues representing a header mask through the (ICMP_ULE,
/// WideCanonicalIV, backedge-taken-count) pattern.
/// TODO: Introduce explicit recipe for header-mask instead of searching
/// for the header-mask pattern manually.
static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) {
SmallVector<VPValue *> WideCanonicalIVs;
auto *FoundWidenCanonicalIVUser =
find_if(Plan.getCanonicalIV()->users(),
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
assert(count_if(Plan.getCanonicalIV()->users(),
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <=
1 &&
"Must have at most one VPWideCanonicalIVRecipe");
if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
auto *WideCanonicalIV =
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
WideCanonicalIVs.push_back(WideCanonicalIV);
}
// Also include VPWidenIntOrFpInductionRecipes that represent a widened
// version of the canonical induction.
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (WidenOriginalIV && WidenOriginalIV->isCanonical())
WideCanonicalIVs.push_back(WidenOriginalIV);
}
// Walk users of wide canonical IVs and collect to all compares of the form
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
SmallVector<VPValue *> HeaderMasks;
for (auto *Wide : WideCanonicalIVs) {
for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
auto *HeaderMask = dyn_cast<VPInstruction>(U);
if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan))
continue;
assert(HeaderMask->getOperand(0) == Wide &&
"WidenCanonicalIV must be the first operand of the compare");
HeaderMasks.push_back(HeaderMask);
}
}
return HeaderMasks;
}
void VPlanTransforms::addActiveLaneMask(
VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
bool DataAndControlFlowWithoutRuntimeCheck) {
assert((!DataAndControlFlowWithoutRuntimeCheck ||
UseActiveLaneMaskForControlFlow) &&
"DataAndControlFlowWithoutRuntimeCheck implies "
"UseActiveLaneMaskForControlFlow");
auto FoundWidenCanonicalIVUser =
find_if(Plan.getCanonicalIV()->users(),
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
assert(FoundWidenCanonicalIVUser &&
"Must have widened canonical IV when tail folding!");
auto *WideCanonicalIV =
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
VPSingleDefRecipe *LaneMask;
if (UseActiveLaneMaskForControlFlow) {
LaneMask = addVPLaneMaskPhiAndUpdateExitBranch(
Plan, DataAndControlFlowWithoutRuntimeCheck);
} else {
VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
{WideCanonicalIV, Plan.getTripCount()}, nullptr,
"active.lane.mask");
}
// Walk users of WideCanonicalIV and replace all compares of the form
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
// active-lane-mask.
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan))
HeaderMask->replaceAllUsesWith(LaneMask);
}
/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
/// replaces all uses except the canonical IV increment of
/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
/// is used only for loop iterations counting after this transformation.
///
/// The function uses the following definitions:
/// %StartV is the canonical induction start value.
///
/// The function adds the following recipes:
///
/// vector.ph:
/// ...
///
/// vector.body:
/// ...
/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
/// [ %NextEVLIV, %vector.body ]
/// %VPEVL = EXPLICIT-VECTOR-LENGTH %EVLPhi, original TC
/// ...
/// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi
/// ...
///
bool VPlanTransforms::tryAddExplicitVectorLength(VPlan &Plan) {
VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock();
// The transform updates all users of inductions to work based on EVL, instead
// of the VF directly. At the moment, widened inductions cannot be updated, so
// bail out if the plan contains any.
bool ContainsWidenInductions = any_of(Header->phis(), [](VPRecipeBase &Phi) {
return isa<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>(
&Phi);
});
// FIXME: Remove this once we can transform (select header_mask, true_value,
// false_value) into vp.merge.
bool ContainsOutloopReductions =
any_of(Header->phis(), [&](VPRecipeBase &Phi) {
auto *R = dyn_cast<VPReductionPHIRecipe>(&Phi);
return R && !R->isInLoop();
});
if (ContainsWidenInductions || ContainsOutloopReductions)
return false;
auto *CanonicalIVPHI = Plan.getCanonicalIV();
VPValue *StartV = CanonicalIVPHI->getStartValue();
// Create the ExplicitVectorLengthPhi recipe in the main loop.
auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc());
EVLPhi->insertAfter(CanonicalIVPHI);
auto *VPEVL = new VPInstruction(VPInstruction::ExplicitVectorLength,
{EVLPhi, Plan.getTripCount()});
VPEVL->insertBefore(*Header, Header->getFirstNonPhi());
auto *CanonicalIVIncrement =
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
VPSingleDefRecipe *OpVPEVL = VPEVL;
if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits();
IVSize != 32) {
OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc
: Instruction::ZExt,
OpVPEVL, CanonicalIVPHI->getScalarType());
OpVPEVL->insertBefore(CanonicalIVIncrement);
}
auto *NextEVLIV =
new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi},
{CanonicalIVIncrement->hasNoUnsignedWrap(),
CanonicalIVIncrement->hasNoSignedWrap()},
CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
NextEVLIV->insertBefore(CanonicalIVIncrement);
EVLPhi->addOperand(NextEVLIV);
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) {
for (VPUser *U : collectUsersRecursively(HeaderMask)) {
VPRecipeBase *NewRecipe = nullptr;
auto *CurRecipe = dyn_cast<VPRecipeBase>(U);
if (!CurRecipe)
continue;
auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
assert(OrigMask && "Unmasked recipe when folding tail");
return HeaderMask == OrigMask ? nullptr : OrigMask;
};
if (auto *MemR = dyn_cast<VPWidenMemoryRecipe>(CurRecipe)) {
VPValue *NewMask = GetNewMask(MemR->getMask());
if (auto *L = dyn_cast<VPWidenLoadRecipe>(MemR))
NewRecipe = new VPWidenLoadEVLRecipe(L, VPEVL, NewMask);
else if (auto *S = dyn_cast<VPWidenStoreRecipe>(MemR))
NewRecipe = new VPWidenStoreEVLRecipe(S, VPEVL, NewMask);
else
llvm_unreachable("unsupported recipe");
} else if (auto *RedR = dyn_cast<VPReductionRecipe>(CurRecipe)) {
NewRecipe = new VPReductionEVLRecipe(RedR, VPEVL,
GetNewMask(RedR->getCondOp()));
}
if (NewRecipe) {
[[maybe_unused]] unsigned NumDefVal = NewRecipe->getNumDefinedValues();
assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
"New recipe must define the same number of values as the "
"original.");
assert(
NumDefVal <= 1 &&
"Only supports recipes with a single definition or without users.");
NewRecipe->insertBefore(CurRecipe);
if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(NewRecipe)) {
VPValue *CurVPV = CurRecipe->getVPSingleValue();
CurVPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
}
CurRecipe->eraseFromParent();
}
}
recursivelyDeleteDeadRecipes(HeaderMask);
}
// Replace all uses of VPCanonicalIVPHIRecipe by
// VPEVLBasedIVPHIRecipe except for the canonical IV increment.
CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
// TODO: support unroll factor > 1.
Plan.setUF(1);
return true;
}
void VPlanTransforms::dropPoisonGeneratingRecipes(
VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
// Collect recipes in the backward slice of `Root` that may generate a poison
// value that is used after vectorization.
SmallPtrSet<VPRecipeBase *, 16> Visited;
auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
SmallVector<VPRecipeBase *, 16> Worklist;
Worklist.push_back(Root);
// Traverse the backward slice of Root through its use-def chain.
while (!Worklist.empty()) {
VPRecipeBase *CurRec = Worklist.back();
Worklist.pop_back();
if (!Visited.insert(CurRec).second)
continue;
// Prune search if we find another recipe generating a widen memory
// instruction. Widen memory instructions involved in address computation
// will lead to gather/scatter instructions, which don't need to be
// handled.
if (isa<VPWidenMemoryRecipe>(CurRec) || isa<VPInterleaveRecipe>(CurRec) ||
isa<VPScalarIVStepsRecipe>(CurRec) || isa<VPHeaderPHIRecipe>(CurRec))
continue;
// This recipe contributes to the address computation of a widen
// load/store. If the underlying instruction has poison-generating flags,
// drop them directly.
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
VPValue *A, *B;
using namespace llvm::VPlanPatternMatch;
// Dropping disjoint from an OR may yield incorrect results, as some
// analysis may have converted it to an Add implicitly (e.g. SCEV used
// for dependence analysis). Instead, replace it with an equivalent Add.
// This is possible as all users of the disjoint OR only access lanes
// where the operands are disjoint or poison otherwise.
if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
RecWithFlags->isDisjoint()) {
VPBuilder Builder(RecWithFlags);
VPInstruction *New = Builder.createOverflowingOp(
Instruction::Add, {A, B}, {false, false},
RecWithFlags->getDebugLoc());
New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
RecWithFlags->replaceAllUsesWith(New);
RecWithFlags->eraseFromParent();
CurRec = New;
} else
RecWithFlags->dropPoisonGeneratingFlags();
} else {
Instruction *Instr = dyn_cast_or_null<Instruction>(
CurRec->getVPSingleValue()->getUnderlyingValue());
(void)Instr;
assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
"found instruction with poison generating flags not covered by "
"VPRecipeWithIRFlags");
}
// Add new definitions to the worklist.
for (VPValue *operand : CurRec->operands())
if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
Worklist.push_back(OpDef);
}
});
// Traverse all the recipes in the VPlan and collect the poison-generating
// recipes in the backward slice starting at the address of a VPWidenRecipe or
// VPInterleaveRecipe.
auto Iter = vp_depth_first_deep(Plan.getEntry());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &Recipe : *VPBB) {
if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
Instruction &UnderlyingInstr = WidenRec->getIngredient();
VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
if (AddrDef && WidenRec->isConsecutive() &&
BlockNeedsPredication(UnderlyingInstr.getParent()))
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
if (AddrDef) {
// Check if any member of the interleave group needs predication.
const InterleaveGroup<Instruction> *InterGroup =
InterleaveRec->getInterleaveGroup();
bool NeedPredication = false;
for (int I = 0, NumMembers = InterGroup->getNumMembers();
I < NumMembers; ++I) {
Instruction *Member = InterGroup->getMember(I);
if (Member)
NeedPredication |= BlockNeedsPredication(Member->getParent());
}
if (NeedPredication)
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
}
}
}
}
}
|