1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
|
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes scalar/vector interactions using target cost models. The
// transforms implemented here may not fit in traditional loop-based or SLP
// vectorization passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/VectorCombine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <numeric>
#include <queue>
#define DEBUG_TYPE "vector-combine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"
using namespace llvm;
using namespace llvm::PatternMatch;
STATISTIC(NumVecLoad, "Number of vector loads formed");
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
STATISTIC(NumScalarBO, "Number of scalar binops formed");
STATISTIC(NumScalarCmp, "Number of scalar compares formed");
static cl::opt<bool> DisableVectorCombine(
"disable-vector-combine", cl::init(false), cl::Hidden,
cl::desc("Disable all vector combine transforms"));
static cl::opt<bool> DisableBinopExtractShuffle(
"disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
cl::desc("Disable binop extract to shuffle transforms"));
static cl::opt<unsigned> MaxInstrsToScan(
"vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
cl::desc("Max number of instructions to scan for vector combining."));
static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
namespace {
class VectorCombine {
public:
VectorCombine(Function &F, const TargetTransformInfo &TTI,
const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
const DataLayout *DL, bool TryEarlyFoldsOnly)
: F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), DL(DL),
TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
bool run();
private:
Function &F;
IRBuilder<> Builder;
const TargetTransformInfo &TTI;
const DominatorTree &DT;
AAResults &AA;
AssumptionCache &AC;
const DataLayout *DL;
/// If true, only perform beneficial early IR transforms. Do not introduce new
/// vector operations.
bool TryEarlyFoldsOnly;
InstructionWorklist Worklist;
// TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
// parameter. That should be updated to specific sub-classes because the
// run loop was changed to dispatch on opcode.
bool vectorizeLoadInsert(Instruction &I);
bool widenSubvectorLoad(Instruction &I);
ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
ExtractElementInst *Ext1,
unsigned PreferredExtractIndex) const;
bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
const Instruction &I,
ExtractElementInst *&ConvertToShuffle,
unsigned PreferredExtractIndex);
void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
Instruction &I);
void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
Instruction &I);
bool foldExtractExtract(Instruction &I);
bool foldInsExtFNeg(Instruction &I);
bool foldBitcastShuffle(Instruction &I);
bool scalarizeBinopOrCmp(Instruction &I);
bool scalarizeVPIntrinsic(Instruction &I);
bool foldExtractedCmps(Instruction &I);
bool foldSingleElementStore(Instruction &I);
bool scalarizeLoadExtract(Instruction &I);
bool foldShuffleOfBinops(Instruction &I);
bool foldShuffleOfCastops(Instruction &I);
bool foldShuffleOfShuffles(Instruction &I);
bool foldShuffleToIdentity(Instruction &I);
bool foldShuffleFromReductions(Instruction &I);
bool foldCastFromReductions(Instruction &I);
bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
void replaceValue(Value &Old, Value &New) {
Old.replaceAllUsesWith(&New);
if (auto *NewI = dyn_cast<Instruction>(&New)) {
New.takeName(&Old);
Worklist.pushUsersToWorkList(*NewI);
Worklist.pushValue(NewI);
}
Worklist.pushValue(&Old);
}
void eraseInstruction(Instruction &I) {
for (Value *Op : I.operands())
Worklist.pushValue(Op);
Worklist.remove(&I);
I.eraseFromParent();
}
};
} // namespace
/// Return the source operand of a potentially bitcasted value. If there is no
/// bitcast, return the input value itself.
static Value *peekThroughBitcasts(Value *V) {
while (auto *BitCast = dyn_cast<BitCastInst>(V))
V = BitCast->getOperand(0);
return V;
}
static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
// Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
// The widened load may load data from dirty regions or create data races
// non-existent in the source.
if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
mustSuppressSpeculation(*Load))
return false;
// We are potentially transforming byte-sized (8-bit) memory accesses, so make
// sure we have all of our type-based constraints in place for this target.
Type *ScalarTy = Load->getType()->getScalarType();
uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
ScalarSize % 8 != 0)
return false;
return true;
}
bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
// Match insert into fixed vector of scalar value.
// TODO: Handle non-zero insert index.
Value *Scalar;
if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
!Scalar->hasOneUse())
return false;
// Optionally match an extract from another vector.
Value *X;
bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
if (!HasExtract)
X = Scalar;
auto *Load = dyn_cast<LoadInst>(X);
if (!canWidenLoad(Load, TTI))
return false;
Type *ScalarTy = Scalar->getType();
uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
// Check safety of replacing the scalar load with a larger vector load.
// We use minimal alignment (maximum flexibility) because we only care about
// the dereferenceable region. When calculating cost and creating a new op,
// we may use a larger value based on alignment attributes.
Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
unsigned MinVecNumElts = MinVectorSize / ScalarSize;
auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
unsigned OffsetEltIndex = 0;
Align Alignment = Load->getAlign();
if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
&DT)) {
// It is not safe to load directly from the pointer, but we can still peek
// through gep offsets and check if it safe to load from a base address with
// updated alignment. If it is, we can shuffle the element(s) into place
// after loading.
unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(SrcPtr->getType());
APInt Offset(OffsetBitWidth, 0);
SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
// We want to shuffle the result down from a high element of a vector, so
// the offset must be positive.
if (Offset.isNegative())
return false;
// The offset must be a multiple of the scalar element to shuffle cleanly
// in the element's size.
uint64_t ScalarSizeInBytes = ScalarSize / 8;
if (Offset.urem(ScalarSizeInBytes) != 0)
return false;
// If we load MinVecNumElts, will our target element still be loaded?
OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
if (OffsetEltIndex >= MinVecNumElts)
return false;
if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
&DT))
return false;
// Update alignment with offset value. Note that the offset could be negated
// to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
// negation does not change the result of the alignment calculation.
Alignment = commonAlignment(Alignment, Offset.getZExtValue());
}
// Original pattern: insertelt undef, load [free casts of] PtrOp, 0
// Use the greater of the alignment on the load or its source pointer.
Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
Type *LoadTy = Load->getType();
unsigned AS = Load->getPointerAddressSpace();
InstructionCost OldCost =
TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
OldCost +=
TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
/* Insert */ true, HasExtract, CostKind);
// New pattern: load VecPtr
InstructionCost NewCost =
TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
// Optionally, we are shuffling the loaded vector element(s) into place.
// For the mask set everything but element 0 to undef to prevent poison from
// propagating from the extra loaded memory. This will also optionally
// shrink/grow the vector from the loaded size to the output size.
// We assume this operation has no cost in codegen if there was no offset.
// Note that we could use freeze to avoid poison problems, but then we might
// still need a shuffle to change the vector size.
auto *Ty = cast<FixedVectorType>(I.getType());
unsigned OutputNumElts = Ty->getNumElements();
SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
Mask[0] = OffsetEltIndex;
if (OffsetEltIndex)
NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
// We can aggressively convert to the vector form because the backend can
// invert this transform if it does not result in a performance win.
if (OldCost < NewCost || !NewCost.isValid())
return false;
// It is safe and potentially profitable to load a vector directly:
// inselt undef, load Scalar, 0 --> load VecPtr
IRBuilder<> Builder(Load);
Value *CastedPtr =
Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
VecLd = Builder.CreateShuffleVector(VecLd, Mask);
replaceValue(I, *VecLd);
++NumVecLoad;
return true;
}
/// If we are loading a vector and then inserting it into a larger vector with
/// undefined elements, try to load the larger vector and eliminate the insert.
/// This removes a shuffle in IR and may allow combining of other loaded values.
bool VectorCombine::widenSubvectorLoad(Instruction &I) {
// Match subvector insert of fixed vector.
auto *Shuf = cast<ShuffleVectorInst>(&I);
if (!Shuf->isIdentityWithPadding())
return false;
// Allow a non-canonical shuffle mask that is choosing elements from op1.
unsigned NumOpElts =
cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
return M >= (int)(NumOpElts);
});
auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
if (!canWidenLoad(Load, TTI))
return false;
// We use minimal alignment (maximum flexibility) because we only care about
// the dereferenceable region. When calculating cost and creating a new op,
// we may use a larger value based on alignment attributes.
auto *Ty = cast<FixedVectorType>(I.getType());
Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
Align Alignment = Load->getAlign();
if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), *DL, Load, &AC, &DT))
return false;
Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
Type *LoadTy = Load->getType();
unsigned AS = Load->getPointerAddressSpace();
// Original pattern: insert_subvector (load PtrOp)
// This conservatively assumes that the cost of a subvector insert into an
// undef value is 0. We could add that cost if the cost model accurately
// reflects the real cost of that operation.
InstructionCost OldCost =
TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
// New pattern: load PtrOp
InstructionCost NewCost =
TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS);
// We can aggressively convert to the vector form because the backend can
// invert this transform if it does not result in a performance win.
if (OldCost < NewCost || !NewCost.isValid())
return false;
IRBuilder<> Builder(Load);
Value *CastedPtr =
Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
replaceValue(I, *VecLd);
++NumVecLoad;
return true;
}
/// Determine which, if any, of the inputs should be replaced by a shuffle
/// followed by extract from a different index.
ExtractElementInst *VectorCombine::getShuffleExtract(
ExtractElementInst *Ext0, ExtractElementInst *Ext1,
unsigned PreferredExtractIndex = InvalidIndex) const {
auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
assert(Index0C && Index1C && "Expected constant extract indexes");
unsigned Index0 = Index0C->getZExtValue();
unsigned Index1 = Index1C->getZExtValue();
// If the extract indexes are identical, no shuffle is needed.
if (Index0 == Index1)
return nullptr;
Type *VecTy = Ext0->getVectorOperand()->getType();
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
InstructionCost Cost0 =
TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
InstructionCost Cost1 =
TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
// If both costs are invalid no shuffle is needed
if (!Cost0.isValid() && !Cost1.isValid())
return nullptr;
// We are extracting from 2 different indexes, so one operand must be shuffled
// before performing a vector operation and/or extract. The more expensive
// extract will be replaced by a shuffle.
if (Cost0 > Cost1)
return Ext0;
if (Cost1 > Cost0)
return Ext1;
// If the costs are equal and there is a preferred extract index, shuffle the
// opposite operand.
if (PreferredExtractIndex == Index0)
return Ext1;
if (PreferredExtractIndex == Index1)
return Ext0;
// Otherwise, replace the extract with the higher index.
return Index0 > Index1 ? Ext0 : Ext1;
}
/// Compare the relative costs of 2 extracts followed by scalar operation vs.
/// vector operation(s) followed by extract. Return true if the existing
/// instructions are cheaper than a vector alternative. Otherwise, return false
/// and if one of the extracts should be transformed to a shufflevector, set
/// \p ConvertToShuffle to that extract instruction.
bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
ExtractElementInst *Ext1,
const Instruction &I,
ExtractElementInst *&ConvertToShuffle,
unsigned PreferredExtractIndex) {
auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1));
auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1));
assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
unsigned Opcode = I.getOpcode();
Type *ScalarTy = Ext0->getType();
auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
InstructionCost ScalarOpCost, VectorOpCost;
// Get cost estimates for scalar and vector versions of the operation.
bool IsBinOp = Instruction::isBinaryOp(Opcode);
if (IsBinOp) {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
} else {
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
"Expected a compare");
CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
ScalarOpCost = TTI.getCmpSelInstrCost(
Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
VectorOpCost = TTI.getCmpSelInstrCost(
Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
}
// Get cost estimates for the extract elements. These costs will factor into
// both sequences.
unsigned Ext0Index = Ext0IndexC->getZExtValue();
unsigned Ext1Index = Ext1IndexC->getZExtValue();
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost Extract0Cost =
TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
InstructionCost Extract1Cost =
TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
// A more expensive extract will always be replaced by a splat shuffle.
// For example, if Ext0 is more expensive:
// opcode (extelt V0, Ext0), (ext V1, Ext1) -->
// extelt (opcode (splat V0, Ext0), V1), Ext1
// TODO: Evaluate whether that always results in lowest cost. Alternatively,
// check the cost of creating a broadcast shuffle and shuffling both
// operands to element 0.
InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
// Extra uses of the extracts mean that we include those costs in the
// vector total because those instructions will not be eliminated.
InstructionCost OldCost, NewCost;
if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
// Handle a special case. If the 2 extracts are identical, adjust the
// formulas to account for that. The extra use charge allows for either the
// CSE'd pattern or an unoptimized form with identical values:
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
OldCost = CheapExtractCost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
} else {
// Handle the general case. Each extract is actually a different value:
// opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost +
!Ext0->hasOneUse() * Extract0Cost +
!Ext1->hasOneUse() * Extract1Cost;
}
ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
if (ConvertToShuffle) {
if (IsBinOp && DisableBinopExtractShuffle)
return true;
// If we are extracting from 2 different indexes, then one operand must be
// shuffled before performing the vector operation. The shuffle mask is
// poison except for 1 lane that is being translated to the remaining
// extraction lane. Therefore, it is a splat shuffle. Ex:
// ShufMask = { poison, poison, 0, poison }
// TODO: The cost model has an option for a "broadcast" shuffle
// (splat-from-element-0), but no option for a more general splat.
NewCost +=
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
}
// Aggressively form a vector op if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
return OldCost < NewCost;
}
/// Create a shuffle that translates (shifts) 1 element from the input vector
/// to a new element location.
static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
unsigned NewIndex, IRBuilder<> &Builder) {
// The shuffle mask is poison except for 1 lane that is being translated
// to the new element index. Example for OldIndex == 2 and NewIndex == 0:
// ShufMask = { 2, poison, poison, poison }
auto *VecTy = cast<FixedVectorType>(Vec->getType());
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
ShufMask[NewIndex] = OldIndex;
return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
}
/// Given an extract element instruction with constant index operand, shuffle
/// the source vector (shift the scalar element) to a NewIndex for extraction.
/// Return null if the input can be constant folded, so that we are not creating
/// unnecessary instructions.
static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
unsigned NewIndex,
IRBuilder<> &Builder) {
// Shufflevectors can only be created for fixed-width vectors.
if (!isa<FixedVectorType>(ExtElt->getOperand(0)->getType()))
return nullptr;
// If the extract can be constant-folded, this code is unsimplified. Defer
// to other passes to handle that.
Value *X = ExtElt->getVectorOperand();
Value *C = ExtElt->getIndexOperand();
assert(isa<ConstantInt>(C) && "Expected a constant index operand");
if (isa<Constant>(X))
return nullptr;
Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
NewIndex, Builder);
return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
}
/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
ExtractElementInst *Ext1, Instruction &I) {
assert(isa<CmpInst>(&I) && "Expected a compare");
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
"Expected matching constant extract indexes");
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
++NumVecCmp;
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
replaceValue(I, *NewExt);
}
/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
/// bo (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
ExtractElementInst *Ext1, Instruction &I) {
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
"Expected matching constant extract indexes");
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
++NumVecBO;
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
Value *VecBO =
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
// All IR flags are safe to back-propagate because any potential poison
// created in unused vector elements is discarded by the extract.
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
VecBOInst->copyIRFlags(&I);
Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
replaceValue(I, *NewExt);
}
/// Match an instruction with extracted vector operands.
bool VectorCombine::foldExtractExtract(Instruction &I) {
// It is not safe to transform things like div, urem, etc. because we may
// create undefined behavior when executing those on unknown vector elements.
if (!isSafeToSpeculativelyExecute(&I))
return false;
Instruction *I0, *I1;
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
!match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
return false;
Value *V0, *V1;
uint64_t C0, C1;
if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
!match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
V0->getType() != V1->getType())
return false;
// If the scalar value 'I' is going to be re-inserted into a vector, then try
// to create an extract to that same element. The extract/insert can be
// reduced to a "select shuffle".
// TODO: If we add a larger pattern match that starts from an insert, this
// probably becomes unnecessary.
auto *Ext0 = cast<ExtractElementInst>(I0);
auto *Ext1 = cast<ExtractElementInst>(I1);
uint64_t InsertIndex = InvalidIndex;
if (I.hasOneUse())
match(I.user_back(),
m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
ExtractElementInst *ExtractToChange;
if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
return false;
if (ExtractToChange) {
unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
ExtractElementInst *NewExtract =
translateExtract(ExtractToChange, CheapExtractIdx, Builder);
if (!NewExtract)
return false;
if (ExtractToChange == Ext0)
Ext0 = NewExtract;
else
Ext1 = NewExtract;
}
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
foldExtExtCmp(Ext0, Ext1, I);
else
foldExtExtBinop(Ext0, Ext1, I);
Worklist.push(Ext0);
Worklist.push(Ext1);
return true;
}
/// Try to replace an extract + scalar fneg + insert with a vector fneg +
/// shuffle.
bool VectorCombine::foldInsExtFNeg(Instruction &I) {
// Match an insert (op (extract)) pattern.
Value *DestVec;
uint64_t Index;
Instruction *FNeg;
if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
m_ConstantInt(Index))))
return false;
// Note: This handles the canonical fneg instruction and "fsub -0.0, X".
Value *SrcVec;
Instruction *Extract;
if (!match(FNeg, m_FNeg(m_CombineAnd(
m_Instruction(Extract),
m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
return false;
// TODO: We could handle this with a length-changing shuffle.
auto *VecTy = cast<FixedVectorType>(I.getType());
if (SrcVec->getType() != VecTy)
return false;
// Ignore bogus insert/extract index.
unsigned NumElts = VecTy->getNumElements();
if (Index >= NumElts)
return false;
// We are inserting the negated element into the same lane that we extracted
// from. This is equivalent to a select-shuffle that chooses all but the
// negated element from the destination vector.
SmallVector<int> Mask(NumElts);
std::iota(Mask.begin(), Mask.end(), 0);
Mask[Index] = Index + NumElts;
Type *ScalarTy = VecTy->getScalarType();
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost OldCost =
TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy) +
TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
// If the extract has one use, it will be eliminated, so count it in the
// original cost. If it has more than one use, ignore the cost because it will
// be the same before/after.
if (Extract->hasOneUse())
OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
InstructionCost NewCost =
TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy) +
TTI.getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask);
if (NewCost > OldCost)
return false;
// insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index -->
// shuffle DestVec, (fneg SrcVec), Mask
Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
Value *Shuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
replaceValue(I, *Shuf);
return true;
}
/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
/// destination type followed by shuffle. This can enable further transforms by
/// moving bitcasts or shuffles together.
bool VectorCombine::foldBitcastShuffle(Instruction &I) {
Value *V0, *V1;
ArrayRef<int> Mask;
if (!match(&I, m_BitCast(m_OneUse(
m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(Mask))))))
return false;
// 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
// scalable type is unknown; Second, we cannot reason if the narrowed shuffle
// mask for scalable type is a splat or not.
// 2) Disallow non-vector casts.
// TODO: We could allow any shuffle.
auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
auto *SrcTy = dyn_cast<FixedVectorType>(V0->getType());
if (!DestTy || !SrcTy)
return false;
unsigned DestEltSize = DestTy->getScalarSizeInBits();
unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
return false;
bool IsUnary = isa<UndefValue>(V1);
// For binary shuffles, only fold bitcast(shuffle(X,Y))
// if it won't increase the number of bitcasts.
if (!IsUnary) {
auto *BCTy0 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V0)->getType());
auto *BCTy1 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V1)->getType());
if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
!(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
return false;
}
SmallVector<int, 16> NewMask;
if (DestEltSize <= SrcEltSize) {
// The bitcast is from wide to narrow/equal elements. The shuffle mask can
// always be expanded to the equivalent form choosing narrower elements.
assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = SrcEltSize / DestEltSize;
narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
} else {
// The bitcast is from narrow elements to wide elements. The shuffle mask
// must choose consecutive elements to allow casting first.
assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = DestEltSize / SrcEltSize;
if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
return false;
}
// Bitcast the shuffle src - keep its original width but using the destination
// scalar type.
unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
auto *NewShuffleTy =
FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
auto *OldShuffleTy =
FixedVectorType::get(SrcTy->getScalarType(), Mask.size());
unsigned NumOps = IsUnary ? 1 : 2;
// The new shuffle must not cost more than the old shuffle.
TargetTransformInfo::TargetCostKind CK =
TargetTransformInfo::TCK_RecipThroughput;
TargetTransformInfo::ShuffleKind SK =
IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
: TargetTransformInfo::SK_PermuteTwoSrc;
InstructionCost DestCost =
TTI.getShuffleCost(SK, NewShuffleTy, NewMask, CK) +
(NumOps * TTI.getCastInstrCost(Instruction::BitCast, NewShuffleTy, SrcTy,
TargetTransformInfo::CastContextHint::None,
CK));
InstructionCost SrcCost =
TTI.getShuffleCost(SK, SrcTy, Mask, CK) +
TTI.getCastInstrCost(Instruction::BitCast, DestTy, OldShuffleTy,
TargetTransformInfo::CastContextHint::None, CK);
if (DestCost > SrcCost || !DestCost.isValid())
return false;
// bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC'
++NumShufOfBitcast;
Value *CastV0 = Builder.CreateBitCast(peekThroughBitcasts(V0), NewShuffleTy);
Value *CastV1 = Builder.CreateBitCast(peekThroughBitcasts(V1), NewShuffleTy);
Value *Shuf = Builder.CreateShuffleVector(CastV0, CastV1, NewMask);
replaceValue(I, *Shuf);
return true;
}
/// VP Intrinsics whose vector operands are both splat values may be simplified
/// into the scalar version of the operation and the result splatted. This
/// can lead to scalarization down the line.
bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
if (!isa<VPIntrinsic>(I))
return false;
VPIntrinsic &VPI = cast<VPIntrinsic>(I);
Value *Op0 = VPI.getArgOperand(0);
Value *Op1 = VPI.getArgOperand(1);
if (!isSplatValue(Op0) || !isSplatValue(Op1))
return false;
// Check getSplatValue early in this function, to avoid doing unnecessary
// work.
Value *ScalarOp0 = getSplatValue(Op0);
Value *ScalarOp1 = getSplatValue(Op1);
if (!ScalarOp0 || !ScalarOp1)
return false;
// For the binary VP intrinsics supported here, the result on disabled lanes
// is a poison value. For now, only do this simplification if all lanes
// are active.
// TODO: Relax the condition that all lanes are active by using insertelement
// on inactive lanes.
auto IsAllTrueMask = [](Value *MaskVal) {
if (Value *SplattedVal = getSplatValue(MaskVal))
if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
return ConstValue->isAllOnesValue();
return false;
};
if (!IsAllTrueMask(VPI.getArgOperand(2)))
return false;
// Check to make sure we support scalarization of the intrinsic
Intrinsic::ID IntrID = VPI.getIntrinsicID();
if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
return false;
// Calculate cost of splatting both operands into vectors and the vector
// intrinsic
VectorType *VecTy = cast<VectorType>(VPI.getType());
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
SmallVector<int> Mask;
if (auto *FVTy = dyn_cast<FixedVectorType>(VecTy))
Mask.resize(FVTy->getNumElements(), 0);
InstructionCost SplatCost =
TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, Mask);
// Calculate the cost of the VP Intrinsic
SmallVector<Type *, 4> Args;
for (Value *V : VPI.args())
Args.push_back(V->getType());
IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
// Determine scalar opcode
std::optional<unsigned> FunctionalOpcode =
VPI.getFunctionalOpcode();
std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
if (!FunctionalOpcode) {
ScalarIntrID = VPI.getFunctionalIntrinsicID();
if (!ScalarIntrID)
return false;
}
// Calculate cost of scalarizing
InstructionCost ScalarOpCost = 0;
if (ScalarIntrID) {
IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
} else {
ScalarOpCost =
TTI.getArithmeticInstrCost(*FunctionalOpcode, VecTy->getScalarType());
}
// The existing splats may be kept around if other instructions use them.
InstructionCost CostToKeepSplats =
(SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
<< "\n");
LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
<< ", Cost of scalarizing:" << NewCost << "\n");
// We want to scalarize unless the vector variant actually has lower cost.
if (OldCost < NewCost || !NewCost.isValid())
return false;
// Scalarize the intrinsic
ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
Value *EVL = VPI.getArgOperand(3);
// If the VP op might introduce UB or poison, we can scalarize it provided
// that we know the EVL > 0: If the EVL is zero, then the original VP op
// becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
// scalarizing it.
bool SafeToSpeculate;
if (ScalarIntrID)
SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
.hasFnAttr(Attribute::AttrKind::Speculatable);
else
SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
*FunctionalOpcode, &VPI, nullptr, &AC, &DT);
if (!SafeToSpeculate &&
!isKnownNonZero(EVL, SimplifyQuery(*DL, &DT, &AC, &VPI)))
return false;
Value *ScalarVal =
ScalarIntrID
? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
{ScalarOp0, ScalarOp1})
: Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
ScalarOp0, ScalarOp1);
replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
return true;
}
/// Match a vector binop or compare instruction with at least one inserted
/// scalar operand and convert to scalar binop/cmp followed by insertelement.
bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
Value *Ins0, *Ins1;
if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
!match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
return false;
// Do not convert the vector condition of a vector select into a scalar
// condition. That may cause problems for codegen because of differences in
// boolean formats and register-file transfers.
// TODO: Can we account for that in the cost model?
bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
if (IsCmp)
for (User *U : I.users())
if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
return false;
// Match against one or both scalar values being inserted into constant
// vectors:
// vec_op VecC0, (inselt VecC1, V1, Index)
// vec_op (inselt VecC0, V0, Index), VecC1
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
// TODO: Deal with mismatched index constants and variable indexes?
Constant *VecC0 = nullptr, *VecC1 = nullptr;
Value *V0 = nullptr, *V1 = nullptr;
uint64_t Index0 = 0, Index1 = 0;
if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
m_ConstantInt(Index0))) &&
!match(Ins0, m_Constant(VecC0)))
return false;
if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
m_ConstantInt(Index1))) &&
!match(Ins1, m_Constant(VecC1)))
return false;
bool IsConst0 = !V0;
bool IsConst1 = !V1;
if (IsConst0 && IsConst1)
return false;
if (!IsConst0 && !IsConst1 && Index0 != Index1)
return false;
// Bail for single insertion if it is a load.
// TODO: Handle this once getVectorInstrCost can cost for load/stores.
auto *I0 = dyn_cast_or_null<Instruction>(V0);
auto *I1 = dyn_cast_or_null<Instruction>(V1);
if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
(IsConst1 && I0 && I0->mayReadFromMemory()))
return false;
uint64_t Index = IsConst0 ? Index1 : Index0;
Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
Type *VecTy = I.getType();
assert(VecTy->isVectorTy() &&
(IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
(ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
ScalarTy->isPointerTy()) &&
"Unexpected types for insert element into binop or cmp");
unsigned Opcode = I.getOpcode();
InstructionCost ScalarOpCost, VectorOpCost;
if (IsCmp) {
CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
ScalarOpCost = TTI.getCmpSelInstrCost(
Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
VectorOpCost = TTI.getCmpSelInstrCost(
Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
} else {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
}
// Get cost estimate for the insert element. This cost will factor into
// both sequences.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost InsertCost = TTI.getVectorInstrCost(
Instruction::InsertElement, VecTy, CostKind, Index);
InstructionCost OldCost =
(IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
InstructionCost NewCost = ScalarOpCost + InsertCost +
(IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
(IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
// We want to scalarize unless the vector variant actually has lower cost.
if (OldCost < NewCost || !NewCost.isValid())
return false;
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
// inselt NewVecC, (scalar_op V0, V1), Index
if (IsCmp)
++NumScalarCmp;
else
++NumScalarBO;
// For constant cases, extract the scalar element, this should constant fold.
if (IsConst0)
V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
if (IsConst1)
V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
Value *Scalar =
IsCmp ? Builder.CreateCmp(Pred, V0, V1)
: Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
Scalar->setName(I.getName() + ".scalar");
// All IR flags are safe to back-propagate. There is no potential for extra
// poison to be created by the scalar instruction.
if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
ScalarInst->copyIRFlags(&I);
// Fold the vector constants in the original vectors into a new base vector.
Value *NewVecC =
IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
: Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
replaceValue(I, *Insert);
return true;
}
/// Try to combine a scalar binop + 2 scalar compares of extracted elements of
/// a vector into vector operations followed by extract. Note: The SLP pass
/// may miss this pattern because of implementation problems.
bool VectorCombine::foldExtractedCmps(Instruction &I) {
// We are looking for a scalar binop of booleans.
// binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
return false;
// The compare predicates should match, and each compare should have a
// constant operand.
// TODO: Relax the one-use constraints.
Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
Instruction *I0, *I1;
Constant *C0, *C1;
CmpInst::Predicate P0, P1;
if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
!match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
P0 != P1)
return false;
// The compare operands must be extracts of the same vector with constant
// extract indexes.
// TODO: Relax the one-use constraints.
Value *X;
uint64_t Index0, Index1;
if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
!match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
return false;
auto *Ext0 = cast<ExtractElementInst>(I0);
auto *Ext1 = cast<ExtractElementInst>(I1);
ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
if (!ConvertToShuf)
return false;
// The original scalar pattern is:
// binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
CmpInst::Predicate Pred = P0;
unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
: Instruction::ICmp;
auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
if (!VecTy)
return false;
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost OldCost =
TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
OldCost += TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
OldCost +=
TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
CmpInst::makeCmpResultType(I0->getType()), Pred) *
2;
OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
// The proposed vector pattern is:
// vcmp = cmp Pred X, VecC
// ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
InstructionCost NewCost = TTI.getCmpSelInstrCost(
CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
ShufMask[CheapIndex] = ExpensiveIndex;
NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
ShufMask);
NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
// Aggressively form vector ops if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
if (OldCost < NewCost || !NewCost.isValid())
return false;
// Create a vector constant from the 2 scalar constants.
SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
PoisonValue::get(VecTy->getElementType()));
CmpC[Index0] = C0;
CmpC[Index1] = C1;
Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
VCmp, Shuf);
Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
replaceValue(I, *NewExt);
++NumVecCmpBO;
return true;
}
// Check if memory loc modified between two instrs in the same BB
static bool isMemModifiedBetween(BasicBlock::iterator Begin,
BasicBlock::iterator End,
const MemoryLocation &Loc, AAResults &AA) {
unsigned NumScanned = 0;
return std::any_of(Begin, End, [&](const Instruction &Instr) {
return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
++NumScanned > MaxInstrsToScan;
});
}
namespace {
/// Helper class to indicate whether a vector index can be safely scalarized and
/// if a freeze needs to be inserted.
class ScalarizationResult {
enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
StatusTy Status;
Value *ToFreeze;
ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
: Status(Status), ToFreeze(ToFreeze) {}
public:
ScalarizationResult(const ScalarizationResult &Other) = default;
~ScalarizationResult() {
assert(!ToFreeze && "freeze() not called with ToFreeze being set");
}
static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
static ScalarizationResult safe() { return {StatusTy::Safe}; }
static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
return {StatusTy::SafeWithFreeze, ToFreeze};
}
/// Returns true if the index can be scalarize without requiring a freeze.
bool isSafe() const { return Status == StatusTy::Safe; }
/// Returns true if the index cannot be scalarized.
bool isUnsafe() const { return Status == StatusTy::Unsafe; }
/// Returns true if the index can be scalarize, but requires inserting a
/// freeze.
bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
/// Reset the state of Unsafe and clear ToFreze if set.
void discard() {
ToFreeze = nullptr;
Status = StatusTy::Unsafe;
}
/// Freeze the ToFreeze and update the use in \p User to use it.
void freeze(IRBuilder<> &Builder, Instruction &UserI) {
assert(isSafeWithFreeze() &&
"should only be used when freezing is required");
assert(is_contained(ToFreeze->users(), &UserI) &&
"UserI must be a user of ToFreeze");
IRBuilder<>::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(cast<Instruction>(&UserI));
Value *Frozen =
Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
for (Use &U : make_early_inc_range((UserI.operands())))
if (U.get() == ToFreeze)
U.set(Frozen);
ToFreeze = nullptr;
}
};
} // namespace
/// Check if it is legal to scalarize a memory access to \p VecTy at index \p
/// Idx. \p Idx must access a valid vector element.
static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
Instruction *CtxI,
AssumptionCache &AC,
const DominatorTree &DT) {
// We do checks for both fixed vector types and scalable vector types.
// This is the number of elements of fixed vector types,
// or the minimum number of elements of scalable vector types.
uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
if (auto *C = dyn_cast<ConstantInt>(Idx)) {
if (C->getValue().ult(NumElements))
return ScalarizationResult::safe();
return ScalarizationResult::unsafe();
}
unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
APInt Zero(IntWidth, 0);
APInt MaxElts(IntWidth, NumElements);
ConstantRange ValidIndices(Zero, MaxElts);
ConstantRange IdxRange(IntWidth, true);
if (isGuaranteedNotToBePoison(Idx, &AC)) {
if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
true, &AC, CtxI, &DT)))
return ScalarizationResult::safe();
return ScalarizationResult::unsafe();
}
// If the index may be poison, check if we can insert a freeze before the
// range of the index is restricted.
Value *IdxBase;
ConstantInt *CI;
if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
IdxRange = IdxRange.binaryAnd(CI->getValue());
} else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
IdxRange = IdxRange.urem(CI->getValue());
}
if (ValidIndices.contains(IdxRange))
return ScalarizationResult::safeWithFreeze(IdxBase);
return ScalarizationResult::unsafe();
}
/// The memory operation on a vector of \p ScalarType had alignment of
/// \p VectorAlignment. Compute the maximal, but conservatively correct,
/// alignment that will be valid for the memory operation on a single scalar
/// element of the same type with index \p Idx.
static Align computeAlignmentAfterScalarization(Align VectorAlignment,
Type *ScalarType, Value *Idx,
const DataLayout &DL) {
if (auto *C = dyn_cast<ConstantInt>(Idx))
return commonAlignment(VectorAlignment,
C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
}
// Combine patterns like:
// %0 = load <4 x i32>, <4 x i32>* %a
// %1 = insertelement <4 x i32> %0, i32 %b, i32 1
// store <4 x i32> %1, <4 x i32>* %a
// to:
// %0 = bitcast <4 x i32>* %a to i32*
// %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
// store i32 %b, i32* %1
bool VectorCombine::foldSingleElementStore(Instruction &I) {
auto *SI = cast<StoreInst>(&I);
if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
return false;
// TODO: Combine more complicated patterns (multiple insert) by referencing
// TargetTransformInfo.
Instruction *Source;
Value *NewElement;
Value *Idx;
if (!match(SI->getValueOperand(),
m_InsertElt(m_Instruction(Source), m_Value(NewElement),
m_Value(Idx))))
return false;
if (auto *Load = dyn_cast<LoadInst>(Source)) {
auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
// Don't optimize for atomic/volatile load or store. Ensure memory is not
// modified between, vector type matches store size, and index is inbounds.
if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
!DL->typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
SrcAddr != SI->getPointerOperand()->stripPointerCasts())
return false;
auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
if (ScalarizableIdx.isUnsafe() ||
isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
MemoryLocation::get(SI), AA))
return false;
if (ScalarizableIdx.isSafeWithFreeze())
ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
Value *GEP = Builder.CreateInBoundsGEP(
SI->getValueOperand()->getType(), SI->getPointerOperand(),
{ConstantInt::get(Idx->getType(), 0), Idx});
StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
NSI->copyMetadata(*SI);
Align ScalarOpAlignment = computeAlignmentAfterScalarization(
std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
*DL);
NSI->setAlignment(ScalarOpAlignment);
replaceValue(I, *NSI);
eraseInstruction(I);
return true;
}
return false;
}
/// Try to scalarize vector loads feeding extractelement instructions.
bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
Value *Ptr;
if (!match(&I, m_Load(m_Value(Ptr))))
return false;
auto *VecTy = cast<VectorType>(I.getType());
auto *LI = cast<LoadInst>(&I);
if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
return false;
InstructionCost OriginalCost =
TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
LI->getPointerAddressSpace());
InstructionCost ScalarizedCost = 0;
Instruction *LastCheckedInst = LI;
unsigned NumInstChecked = 0;
DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
auto FailureGuard = make_scope_exit([&]() {
// If the transform is aborted, discard the ScalarizationResults.
for (auto &Pair : NeedFreeze)
Pair.second.discard();
});
// Check if all users of the load are extracts with no memory modifications
// between the load and the extract. Compute the cost of both the original
// code and the scalarized version.
for (User *U : LI->users()) {
auto *UI = dyn_cast<ExtractElementInst>(U);
if (!UI || UI->getParent() != LI->getParent())
return false;
// Check if any instruction between the load and the extract may modify
// memory.
if (LastCheckedInst->comesBefore(UI)) {
for (Instruction &I :
make_range(std::next(LI->getIterator()), UI->getIterator())) {
// Bail out if we reached the check limit or the instruction may write
// to memory.
if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
return false;
NumInstChecked++;
}
LastCheckedInst = UI;
}
auto ScalarIdx = canScalarizeAccess(VecTy, UI->getOperand(1), &I, AC, DT);
if (ScalarIdx.isUnsafe())
return false;
if (ScalarIdx.isSafeWithFreeze()) {
NeedFreeze.try_emplace(UI, ScalarIdx);
ScalarIdx.discard();
}
auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
OriginalCost +=
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
Index ? Index->getZExtValue() : -1);
ScalarizedCost +=
TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
Align(1), LI->getPointerAddressSpace());
ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
}
if (ScalarizedCost >= OriginalCost)
return false;
// Replace extracts with narrow scalar loads.
for (User *U : LI->users()) {
auto *EI = cast<ExtractElementInst>(U);
Value *Idx = EI->getOperand(1);
// Insert 'freeze' for poison indexes.
auto It = NeedFreeze.find(EI);
if (It != NeedFreeze.end())
It->second.freeze(Builder, *cast<Instruction>(Idx));
Builder.SetInsertPoint(EI);
Value *GEP =
Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
Align ScalarOpAlignment = computeAlignmentAfterScalarization(
LI->getAlign(), VecTy->getElementType(), Idx, *DL);
NewLoad->setAlignment(ScalarOpAlignment);
replaceValue(*EI, *NewLoad);
}
FailureGuard.release();
return true;
}
/// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)".
bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
BinaryOperator *B0, *B1;
ArrayRef<int> OldMask;
if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
m_Mask(OldMask))))
return false;
// Don't introduce poison into div/rem.
if (any_of(OldMask, [](int M) { return M == PoisonMaskElem; }) &&
B0->isIntDivRem())
return false;
// TODO: Add support for addlike etc.
Instruction::BinaryOps Opcode = B0->getOpcode();
if (Opcode != B1->getOpcode())
return false;
auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
auto *BinOpTy = dyn_cast<FixedVectorType>(B0->getType());
if (!ShuffleDstTy || !BinOpTy)
return false;
unsigned NumSrcElts = BinOpTy->getNumElements();
// If we have something like "add X, Y" and "add Z, X", swap ops to match.
Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W &&
(X == W || Y == Z))
std::swap(X, Y);
auto ConvertToUnary = [NumSrcElts](int &M) {
if (M >= (int)NumSrcElts)
M -= NumSrcElts;
};
SmallVector<int> NewMask0(OldMask.begin(), OldMask.end());
TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc;
if (X == Z) {
llvm::for_each(NewMask0, ConvertToUnary);
SK0 = TargetTransformInfo::SK_PermuteSingleSrc;
Z = PoisonValue::get(BinOpTy);
}
SmallVector<int> NewMask1(OldMask.begin(), OldMask.end());
TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc;
if (Y == W) {
llvm::for_each(NewMask1, ConvertToUnary);
SK1 = TargetTransformInfo::SK_PermuteSingleSrc;
W = PoisonValue::get(BinOpTy);
}
// Try to replace a binop with a shuffle if the shuffle is not costly.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost OldCost =
TTI.getArithmeticInstrCost(B0->getOpcode(), BinOpTy, CostKind) +
TTI.getArithmeticInstrCost(B1->getOpcode(), BinOpTy, CostKind) +
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, BinOpTy,
OldMask, CostKind, 0, nullptr, {B0, B1}, &I);
InstructionCost NewCost =
TTI.getShuffleCost(SK0, BinOpTy, NewMask0, CostKind, 0, nullptr, {X, Z}) +
TTI.getShuffleCost(SK1, BinOpTy, NewMask1, CostKind, 0, nullptr, {Y, W}) +
TTI.getArithmeticInstrCost(Opcode, ShuffleDstTy, CostKind);
LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I
<< "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
<< "\n");
if (NewCost >= OldCost)
return false;
Value *Shuf0 = Builder.CreateShuffleVector(X, Z, NewMask0);
Value *Shuf1 = Builder.CreateShuffleVector(Y, W, NewMask1);
Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
// Intersect flags from the old binops.
if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
NewInst->copyIRFlags(B0);
NewInst->andIRFlags(B1);
}
Worklist.pushValue(Shuf0);
Worklist.pushValue(Shuf1);
replaceValue(I, *NewBO);
return true;
}
/// Try to convert "shuffle (castop), (castop)" with a shared castop operand
/// into "castop (shuffle)".
bool VectorCombine::foldShuffleOfCastops(Instruction &I) {
Value *V0, *V1;
ArrayRef<int> OldMask;
if (!match(&I, m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(OldMask))))
return false;
auto *C0 = dyn_cast<CastInst>(V0);
auto *C1 = dyn_cast<CastInst>(V1);
if (!C0 || !C1)
return false;
Instruction::CastOps Opcode = C0->getOpcode();
if (C0->getSrcTy() != C1->getSrcTy())
return false;
// Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds.
if (Opcode != C1->getOpcode()) {
if (match(C0, m_SExtLike(m_Value())) && match(C1, m_SExtLike(m_Value())))
Opcode = Instruction::SExt;
else
return false;
}
auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
auto *CastDstTy = dyn_cast<FixedVectorType>(C0->getDestTy());
auto *CastSrcTy = dyn_cast<FixedVectorType>(C0->getSrcTy());
if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
return false;
unsigned NumSrcElts = CastSrcTy->getNumElements();
unsigned NumDstElts = CastDstTy->getNumElements();
assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
"Only bitcasts expected to alter src/dst element counts");
// Check for bitcasting of unscalable vector types.
// e.g. <32 x i40> -> <40 x i32>
if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
(NumDstElts % NumSrcElts) != 0)
return false;
SmallVector<int, 16> NewMask;
if (NumSrcElts >= NumDstElts) {
// The bitcast is from wide to narrow/equal elements. The shuffle mask can
// always be expanded to the equivalent form choosing narrower elements.
assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = NumSrcElts / NumDstElts;
narrowShuffleMaskElts(ScaleFactor, OldMask, NewMask);
} else {
// The bitcast is from narrow elements to wide elements. The shuffle mask
// must choose consecutive elements to allow casting first.
assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = NumDstElts / NumSrcElts;
if (!widenShuffleMaskElts(ScaleFactor, OldMask, NewMask))
return false;
}
auto *NewShuffleDstTy =
FixedVectorType::get(CastSrcTy->getScalarType(), NewMask.size());
// Try to replace a castop with a shuffle if the shuffle is not costly.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost CostC0 =
TTI.getCastInstrCost(C0->getOpcode(), CastDstTy, CastSrcTy,
TTI::CastContextHint::None, CostKind);
InstructionCost CostC1 =
TTI.getCastInstrCost(C1->getOpcode(), CastDstTy, CastSrcTy,
TTI::CastContextHint::None, CostKind);
InstructionCost OldCost = CostC0 + CostC1;
OldCost +=
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, CastDstTy,
OldMask, CostKind, 0, nullptr, std::nullopt, &I);
InstructionCost NewCost = TTI.getShuffleCost(
TargetTransformInfo::SK_PermuteTwoSrc, CastSrcTy, NewMask, CostKind);
NewCost += TTI.getCastInstrCost(Opcode, ShuffleDstTy, NewShuffleDstTy,
TTI::CastContextHint::None, CostKind);
if (!C0->hasOneUse())
NewCost += CostC0;
if (!C1->hasOneUse())
NewCost += CostC1;
LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I
<< "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
<< "\n");
if (NewCost > OldCost)
return false;
Value *Shuf = Builder.CreateShuffleVector(C0->getOperand(0),
C1->getOperand(0), NewMask);
Value *Cast = Builder.CreateCast(Opcode, Shuf, ShuffleDstTy);
// Intersect flags from the old casts.
if (auto *NewInst = dyn_cast<Instruction>(Cast)) {
NewInst->copyIRFlags(C0);
NewInst->andIRFlags(C1);
}
Worklist.pushValue(Shuf);
replaceValue(I, *Cast);
return true;
}
/// Try to convert "shuffle (shuffle x, undef), (shuffle y, undef)"
/// into "shuffle x, y".
bool VectorCombine::foldShuffleOfShuffles(Instruction &I) {
Value *V0, *V1;
UndefValue *U0, *U1;
ArrayRef<int> OuterMask, InnerMask0, InnerMask1;
if (!match(&I, m_Shuffle(m_OneUse(m_Shuffle(m_Value(V0), m_UndefValue(U0),
m_Mask(InnerMask0))),
m_OneUse(m_Shuffle(m_Value(V1), m_UndefValue(U1),
m_Mask(InnerMask1))),
m_Mask(OuterMask))))
return false;
auto *ShufI0 = dyn_cast<Instruction>(I.getOperand(0));
auto *ShufI1 = dyn_cast<Instruction>(I.getOperand(1));
auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(V0->getType());
auto *ShuffleImmTy = dyn_cast<FixedVectorType>(I.getOperand(0)->getType());
if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
V0->getType() != V1->getType())
return false;
unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
unsigned NumImmElts = ShuffleImmTy->getNumElements();
// Bail if either inner masks reference a RHS undef arg.
if ((!isa<PoisonValue>(U0) &&
any_of(InnerMask0, [&](int M) { return M >= (int)NumSrcElts; })) ||
(!isa<PoisonValue>(U1) &&
any_of(InnerMask1, [&](int M) { return M >= (int)NumSrcElts; })))
return false;
// Merge shuffles - replace index to the RHS poison arg with PoisonMaskElem,
SmallVector<int, 16> NewMask(OuterMask.begin(), OuterMask.end());
for (int &M : NewMask) {
if (0 <= M && M < (int)NumImmElts) {
M = (InnerMask0[M] >= (int)NumSrcElts) ? PoisonMaskElem : InnerMask0[M];
} else if (M >= (int)NumImmElts) {
if (InnerMask1[M - NumImmElts] >= (int)NumSrcElts)
M = PoisonMaskElem;
else
M = InnerMask1[M - NumImmElts] + (V0 == V1 ? 0 : NumSrcElts);
}
}
// Have we folded to an Identity shuffle?
if (ShuffleVectorInst::isIdentityMask(NewMask, NumSrcElts)) {
replaceValue(I, *V0);
return true;
}
// Try to merge the shuffles if the new shuffle is not costly.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost OldCost =
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, ShuffleSrcTy,
InnerMask0, CostKind, 0, nullptr, {V0, U0}, ShufI0) +
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, ShuffleSrcTy,
InnerMask1, CostKind, 0, nullptr, {V1, U1}, ShufI1) +
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, ShuffleImmTy,
OuterMask, CostKind, 0, nullptr, {ShufI0, ShufI1}, &I);
InstructionCost NewCost =
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, ShuffleSrcTy,
NewMask, CostKind, 0, nullptr, {V0, V1});
LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I
<< "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
<< "\n");
if (NewCost > OldCost)
return false;
// Clear unused sources to poison.
if (none_of(NewMask, [&](int M) { return 0 <= M && M < (int)NumSrcElts; }))
V0 = PoisonValue::get(ShuffleSrcTy);
if (none_of(NewMask, [&](int M) { return (int)NumSrcElts <= M; }))
V1 = PoisonValue::get(ShuffleSrcTy);
Value *Shuf = Builder.CreateShuffleVector(V0, V1, NewMask);
replaceValue(I, *Shuf);
return true;
}
using InstLane = std::pair<Use *, int>;
static InstLane lookThroughShuffles(Use *U, int Lane) {
while (auto *SV = dyn_cast<ShuffleVectorInst>(U->get())) {
unsigned NumElts =
cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements();
int M = SV->getMaskValue(Lane);
if (M < 0)
return {nullptr, PoisonMaskElem};
if (static_cast<unsigned>(M) < NumElts) {
U = &SV->getOperandUse(0);
Lane = M;
} else {
U = &SV->getOperandUse(1);
Lane = M - NumElts;
}
}
return InstLane{U, Lane};
}
static SmallVector<InstLane>
generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) {
SmallVector<InstLane> NItem;
for (InstLane IL : Item) {
auto [U, Lane] = IL;
InstLane OpLane =
U ? lookThroughShuffles(&cast<Instruction>(U->get())->getOperandUse(Op),
Lane)
: InstLane{nullptr, PoisonMaskElem};
NItem.emplace_back(OpLane);
}
return NItem;
}
/// Detect concat of multiple values into a vector
static bool isFreeConcat(ArrayRef<InstLane> Item,
const TargetTransformInfo &TTI) {
auto *Ty = cast<FixedVectorType>(Item.front().first->get()->getType());
unsigned NumElts = Ty->getNumElements();
if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0)
return false;
// Check that the concat is free, usually meaning that the type will be split
// during legalization.
SmallVector<int, 16> ConcatMask(NumElts * 2);
std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
if (TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, ConcatMask,
TTI::TCK_RecipThroughput) != 0)
return false;
unsigned NumSlices = Item.size() / NumElts;
// Currently we generate a tree of shuffles for the concats, which limits us
// to a power2.
if (!isPowerOf2_32(NumSlices))
return false;
for (unsigned Slice = 0; Slice < NumSlices; ++Slice) {
Use *SliceV = Item[Slice * NumElts].first;
if (!SliceV || SliceV->get()->getType() != Ty)
return false;
for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
auto [V, Lane] = Item[Slice * NumElts + Elt];
if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get())
return false;
}
}
return true;
}
static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty,
const SmallPtrSet<Use *, 4> &IdentityLeafs,
const SmallPtrSet<Use *, 4> &SplatLeafs,
const SmallPtrSet<Use *, 4> &ConcatLeafs,
IRBuilder<> &Builder) {
auto [FrontU, FrontLane] = Item.front();
if (IdentityLeafs.contains(FrontU)) {
return FrontU->get();
}
if (SplatLeafs.contains(FrontU)) {
SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane);
return Builder.CreateShuffleVector(FrontU->get(), Mask);
}
if (ConcatLeafs.contains(FrontU)) {
unsigned NumElts =
cast<FixedVectorType>(FrontU->get()->getType())->getNumElements();
SmallVector<Value *> Values(Item.size() / NumElts, nullptr);
for (unsigned S = 0; S < Values.size(); ++S)
Values[S] = Item[S * NumElts].first->get();
while (Values.size() > 1) {
NumElts *= 2;
SmallVector<int, 16> Mask(NumElts, 0);
std::iota(Mask.begin(), Mask.end(), 0);
SmallVector<Value *> NewValues(Values.size() / 2, nullptr);
for (unsigned S = 0; S < NewValues.size(); ++S)
NewValues[S] =
Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
Values = NewValues;
}
return Values[0];
}
auto *I = cast<Instruction>(FrontU->get());
auto *II = dyn_cast<IntrinsicInst>(I);
unsigned NumOps = I->getNumOperands() - (II ? 1 : 0);
SmallVector<Value *> Ops(NumOps);
for (unsigned Idx = 0; Idx < NumOps; Idx++) {
if (II && isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Idx)) {
Ops[Idx] = II->getOperand(Idx);
continue;
}
Ops[Idx] =
generateNewInstTree(generateInstLaneVectorFromOperand(Item, Idx), Ty,
IdentityLeafs, SplatLeafs, ConcatLeafs, Builder);
}
SmallVector<Value *, 8> ValueList;
for (const auto &Lane : Item)
if (Lane.first)
ValueList.push_back(Lane.first->get());
Type *DstTy =
FixedVectorType::get(I->getType()->getScalarType(), Ty->getNumElements());
if (auto *BI = dyn_cast<BinaryOperator>(I)) {
auto *Value = Builder.CreateBinOp((Instruction::BinaryOps)BI->getOpcode(),
Ops[0], Ops[1]);
propagateIRFlags(Value, ValueList);
return Value;
}
if (auto *CI = dyn_cast<CmpInst>(I)) {
auto *Value = Builder.CreateCmp(CI->getPredicate(), Ops[0], Ops[1]);
propagateIRFlags(Value, ValueList);
return Value;
}
if (auto *SI = dyn_cast<SelectInst>(I)) {
auto *Value = Builder.CreateSelect(Ops[0], Ops[1], Ops[2], "", SI);
propagateIRFlags(Value, ValueList);
return Value;
}
if (auto *CI = dyn_cast<CastInst>(I)) {
auto *Value = Builder.CreateCast((Instruction::CastOps)CI->getOpcode(),
Ops[0], DstTy);
propagateIRFlags(Value, ValueList);
return Value;
}
if (II) {
auto *Value = Builder.CreateIntrinsic(DstTy, II->getIntrinsicID(), Ops);
propagateIRFlags(Value, ValueList);
return Value;
}
assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate");
auto *Value =
Builder.CreateUnOp((Instruction::UnaryOps)I->getOpcode(), Ops[0]);
propagateIRFlags(Value, ValueList);
return Value;
}
// Starting from a shuffle, look up through operands tracking the shuffled index
// of each lane. If we can simplify away the shuffles to identities then
// do so.
bool VectorCombine::foldShuffleToIdentity(Instruction &I) {
auto *Ty = dyn_cast<FixedVectorType>(I.getType());
if (!Ty || I.use_empty())
return false;
SmallVector<InstLane> Start(Ty->getNumElements());
for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M)
Start[M] = lookThroughShuffles(&*I.use_begin(), M);
SmallVector<SmallVector<InstLane>> Worklist;
Worklist.push_back(Start);
SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
unsigned NumVisited = 0;
while (!Worklist.empty()) {
if (++NumVisited > MaxInstrsToScan)
return false;
SmallVector<InstLane> Item = Worklist.pop_back_val();
auto [FrontU, FrontLane] = Item.front();
// If we found an undef first lane then bail out to keep things simple.
if (!FrontU)
return false;
// Helper to peek through bitcasts to the same value.
auto IsEquiv = [&](Value *X, Value *Y) {
return X->getType() == Y->getType() &&
peekThroughBitcasts(X) == peekThroughBitcasts(Y);
};
// Look for an identity value.
if (FrontLane == 0 &&
cast<FixedVectorType>(FrontU->get()->getType())->getNumElements() ==
Ty->getNumElements() &&
all_of(drop_begin(enumerate(Item)), [IsEquiv, Item](const auto &E) {
Value *FrontV = Item.front().first->get();
return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) &&
E.value().second == (int)E.index());
})) {
IdentityLeafs.insert(FrontU);
continue;
}
// Look for constants, for the moment only supporting constant splats.
if (auto *C = dyn_cast<Constant>(FrontU);
C && C->getSplatValue() &&
all_of(drop_begin(Item), [Item](InstLane &IL) {
Value *FrontV = Item.front().first->get();
Use *U = IL.first;
return !U || U->get() == FrontV;
})) {
SplatLeafs.insert(FrontU);
continue;
}
// Look for a splat value.
if (all_of(drop_begin(Item), [Item](InstLane &IL) {
auto [FrontU, FrontLane] = Item.front();
auto [U, Lane] = IL;
return !U || (U->get() == FrontU->get() && Lane == FrontLane);
})) {
SplatLeafs.insert(FrontU);
continue;
}
// We need each element to be the same type of value, and check that each
// element has a single use.
auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) {
Value *FrontV = Item.front().first->get();
if (!IL.first)
return true;
Value *V = IL.first->get();
if (auto *I = dyn_cast<Instruction>(V); I && !I->hasOneUse())
return false;
if (V->getValueID() != FrontV->getValueID())
return false;
if (auto *CI = dyn_cast<CmpInst>(V))
if (CI->getPredicate() != cast<CmpInst>(FrontV)->getPredicate())
return false;
if (auto *CI = dyn_cast<CastInst>(V))
if (CI->getSrcTy() != cast<CastInst>(FrontV)->getSrcTy())
return false;
if (auto *SI = dyn_cast<SelectInst>(V))
if (!isa<VectorType>(SI->getOperand(0)->getType()) ||
SI->getOperand(0)->getType() !=
cast<SelectInst>(FrontV)->getOperand(0)->getType())
return false;
if (isa<CallInst>(V) && !isa<IntrinsicInst>(V))
return false;
auto *II = dyn_cast<IntrinsicInst>(V);
return !II || (isa<IntrinsicInst>(FrontV) &&
II->getIntrinsicID() ==
cast<IntrinsicInst>(FrontV)->getIntrinsicID() &&
!II->hasOperandBundles());
};
if (all_of(drop_begin(Item), CheckLaneIsEquivalentToFirst)) {
// Check the operator is one that we support.
if (isa<BinaryOperator, CmpInst>(FrontU)) {
// We exclude div/rem in case they hit UB from poison lanes.
if (auto *BO = dyn_cast<BinaryOperator>(FrontU);
BO && BO->isIntDivRem())
return false;
Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
continue;
} else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst>(FrontU)) {
Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
continue;
} else if (auto *BitCast = dyn_cast<BitCastInst>(FrontU)) {
// TODO: Handle vector widening/narrowing bitcasts.
auto *DstTy = dyn_cast<FixedVectorType>(BitCast->getDestTy());
auto *SrcTy = dyn_cast<FixedVectorType>(BitCast->getSrcTy());
if (DstTy && SrcTy &&
SrcTy->getNumElements() == DstTy->getNumElements()) {
Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
continue;
}
} else if (isa<SelectInst>(FrontU)) {
Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
Worklist.push_back(generateInstLaneVectorFromOperand(Item, 2));
continue;
} else if (auto *II = dyn_cast<IntrinsicInst>(FrontU);
II && isTriviallyVectorizable(II->getIntrinsicID()) &&
!II->hasOperandBundles()) {
for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) {
if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Op)) {
if (!all_of(drop_begin(Item), [Item, Op](InstLane &IL) {
Value *FrontV = Item.front().first->get();
Use *U = IL.first;
return !U || (cast<Instruction>(U->get())->getOperand(Op) ==
cast<Instruction>(FrontV)->getOperand(Op));
}))
return false;
continue;
}
Worklist.push_back(generateInstLaneVectorFromOperand(Item, Op));
}
continue;
}
}
if (isFreeConcat(Item, TTI)) {
ConcatLeafs.insert(FrontU);
continue;
}
return false;
}
if (NumVisited <= 1)
return false;
// If we got this far, we know the shuffles are superfluous and can be
// removed. Scan through again and generate the new tree of instructions.
Builder.SetInsertPoint(&I);
Value *V = generateNewInstTree(Start, Ty, IdentityLeafs, SplatLeafs,
ConcatLeafs, Builder);
replaceValue(I, *V);
return true;
}
/// Given a commutative reduction, the order of the input lanes does not alter
/// the results. We can use this to remove certain shuffles feeding the
/// reduction, removing the need to shuffle at all.
bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
auto *II = dyn_cast<IntrinsicInst>(&I);
if (!II)
return false;
switch (II->getIntrinsicID()) {
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax:
break;
default:
return false;
}
// Find all the inputs when looking through operations that do not alter the
// lane order (binops, for example). Currently we look for a single shuffle,
// and can ignore splat values.
std::queue<Value *> Worklist;
SmallPtrSet<Value *, 4> Visited;
ShuffleVectorInst *Shuffle = nullptr;
if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
Worklist.push(Op);
while (!Worklist.empty()) {
Value *CV = Worklist.front();
Worklist.pop();
if (Visited.contains(CV))
continue;
// Splats don't change the order, so can be safely ignored.
if (isSplatValue(CV))
continue;
Visited.insert(CV);
if (auto *CI = dyn_cast<Instruction>(CV)) {
if (CI->isBinaryOp()) {
for (auto *Op : CI->operand_values())
Worklist.push(Op);
continue;
} else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
if (Shuffle && Shuffle != SV)
return false;
Shuffle = SV;
continue;
}
}
// Anything else is currently an unknown node.
return false;
}
if (!Shuffle)
return false;
// Check all uses of the binary ops and shuffles are also included in the
// lane-invariant operations (Visited should be the list of lanewise
// instructions, including the shuffle that we found).
for (auto *V : Visited)
for (auto *U : V->users())
if (!Visited.contains(U) && U != &I)
return false;
FixedVectorType *VecType =
dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
if (!VecType)
return false;
FixedVectorType *ShuffleInputType =
dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
if (!ShuffleInputType)
return false;
unsigned NumInputElts = ShuffleInputType->getNumElements();
// Find the mask from sorting the lanes into order. This is most likely to
// become a identity or concat mask. Undef elements are pushed to the end.
SmallVector<int> ConcatMask;
Shuffle->getShuffleMask(ConcatMask);
sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
// In the case of a truncating shuffle it's possible for the mask
// to have an index greater than the size of the resulting vector.
// This requires special handling.
bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
bool UsesSecondVec =
any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
FixedVectorType *VecTyForCost =
(UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
InstructionCost OldCost = TTI.getShuffleCost(
UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
VecTyForCost, Shuffle->getShuffleMask());
InstructionCost NewCost = TTI.getShuffleCost(
UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
VecTyForCost, ConcatMask);
LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
<< "\n");
LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost
<< "\n");
if (NewCost < OldCost) {
Builder.SetInsertPoint(Shuffle);
Value *NewShuffle = Builder.CreateShuffleVector(
Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
replaceValue(*Shuffle, *NewShuffle);
}
// See if we can re-use foldSelectShuffle, getting it to reduce the size of
// the shuffle into a nicer order, as it can ignore the order of the shuffles.
return foldSelectShuffle(*Shuffle, true);
}
/// Determine if its more efficient to fold:
/// reduce(trunc(x)) -> trunc(reduce(x)).
/// reduce(sext(x)) -> sext(reduce(x)).
/// reduce(zext(x)) -> zext(reduce(x)).
bool VectorCombine::foldCastFromReductions(Instruction &I) {
auto *II = dyn_cast<IntrinsicInst>(&I);
if (!II)
return false;
bool TruncOnly = false;
Intrinsic::ID IID = II->getIntrinsicID();
switch (IID) {
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
TruncOnly = true;
break;
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
break;
default:
return false;
}
unsigned ReductionOpc = getArithmeticReductionInstruction(IID);
Value *ReductionSrc = I.getOperand(0);
Value *Src;
if (!match(ReductionSrc, m_OneUse(m_Trunc(m_Value(Src)))) &&
(TruncOnly || !match(ReductionSrc, m_OneUse(m_ZExtOrSExt(m_Value(Src))))))
return false;
auto CastOpc =
(Instruction::CastOps)cast<Instruction>(ReductionSrc)->getOpcode();
auto *SrcTy = cast<VectorType>(Src->getType());
auto *ReductionSrcTy = cast<VectorType>(ReductionSrc->getType());
Type *ResultTy = I.getType();
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost OldCost = TTI.getArithmeticReductionCost(
ReductionOpc, ReductionSrcTy, std::nullopt, CostKind);
OldCost += TTI.getCastInstrCost(CastOpc, ReductionSrcTy, SrcTy,
TTI::CastContextHint::None, CostKind,
cast<CastInst>(ReductionSrc));
InstructionCost NewCost =
TTI.getArithmeticReductionCost(ReductionOpc, SrcTy, std::nullopt,
CostKind) +
TTI.getCastInstrCost(CastOpc, ResultTy, ReductionSrcTy->getScalarType(),
TTI::CastContextHint::None, CostKind);
if (OldCost <= NewCost || !NewCost.isValid())
return false;
Value *NewReduction = Builder.CreateIntrinsic(SrcTy->getScalarType(),
II->getIntrinsicID(), {Src});
Value *NewCast = Builder.CreateCast(CastOpc, NewReduction, ResultTy);
replaceValue(I, *NewCast);
return true;
}
/// This method looks for groups of shuffles acting on binops, of the form:
/// %x = shuffle ...
/// %y = shuffle ...
/// %a = binop %x, %y
/// %b = binop %x, %y
/// shuffle %a, %b, selectmask
/// We may, especially if the shuffle is wider than legal, be able to convert
/// the shuffle to a form where only parts of a and b need to be computed. On
/// architectures with no obvious "select" shuffle, this can reduce the total
/// number of operations if the target reports them as cheaper.
bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
auto *SVI = cast<ShuffleVectorInst>(&I);
auto *VT = cast<FixedVectorType>(I.getType());
auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
VT != Op0->getType())
return false;
auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
auto checkSVNonOpUses = [&](Instruction *I) {
if (!I || I->getOperand(0)->getType() != VT)
return true;
return any_of(I->users(), [&](User *U) {
return U != Op0 && U != Op1 &&
!(isa<ShuffleVectorInst>(U) &&
(InputShuffles.contains(cast<Instruction>(U)) ||
isInstructionTriviallyDead(cast<Instruction>(U))));
});
};
if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
return false;
// Collect all the uses that are shuffles that we can transform together. We
// may not have a single shuffle, but a group that can all be transformed
// together profitably.
SmallVector<ShuffleVectorInst *> Shuffles;
auto collectShuffles = [&](Instruction *I) {
for (auto *U : I->users()) {
auto *SV = dyn_cast<ShuffleVectorInst>(U);
if (!SV || SV->getType() != VT)
return false;
if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
(SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
return false;
if (!llvm::is_contained(Shuffles, SV))
Shuffles.push_back(SV);
}
return true;
};
if (!collectShuffles(Op0) || !collectShuffles(Op1))
return false;
// From a reduction, we need to be processing a single shuffle, otherwise the
// other uses will not be lane-invariant.
if (FromReduction && Shuffles.size() > 1)
return false;
// Add any shuffle uses for the shuffles we have found, to include them in our
// cost calculations.
if (!FromReduction) {
for (ShuffleVectorInst *SV : Shuffles) {
for (auto *U : SV->users()) {
ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
Shuffles.push_back(SSV);
}
}
}
// For each of the output shuffles, we try to sort all the first vector
// elements to the beginning, followed by the second array elements at the
// end. If the binops are legalized to smaller vectors, this may reduce total
// number of binops. We compute the ReconstructMask mask needed to convert
// back to the original lane order.
SmallVector<std::pair<int, int>> V1, V2;
SmallVector<SmallVector<int>> OrigReconstructMasks;
int MaxV1Elt = 0, MaxV2Elt = 0;
unsigned NumElts = VT->getNumElements();
for (ShuffleVectorInst *SVN : Shuffles) {
SmallVector<int> Mask;
SVN->getShuffleMask(Mask);
// Check the operands are the same as the original, or reversed (in which
// case we need to commute the mask).
Value *SVOp0 = SVN->getOperand(0);
Value *SVOp1 = SVN->getOperand(1);
if (isa<UndefValue>(SVOp1)) {
auto *SSV = cast<ShuffleVectorInst>(SVOp0);
SVOp0 = SSV->getOperand(0);
SVOp1 = SSV->getOperand(1);
for (unsigned I = 0, E = Mask.size(); I != E; I++) {
if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
return false;
Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
}
}
if (SVOp0 == Op1 && SVOp1 == Op0) {
std::swap(SVOp0, SVOp1);
ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
}
if (SVOp0 != Op0 || SVOp1 != Op1)
return false;
// Calculate the reconstruction mask for this shuffle, as the mask needed to
// take the packed values from Op0/Op1 and reconstructing to the original
// order.
SmallVector<int> ReconstructMask;
for (unsigned I = 0; I < Mask.size(); I++) {
if (Mask[I] < 0) {
ReconstructMask.push_back(-1);
} else if (Mask[I] < static_cast<int>(NumElts)) {
MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
auto It = find_if(V1, [&](const std::pair<int, int> &A) {
return Mask[I] == A.first;
});
if (It != V1.end())
ReconstructMask.push_back(It - V1.begin());
else {
ReconstructMask.push_back(V1.size());
V1.emplace_back(Mask[I], V1.size());
}
} else {
MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
auto It = find_if(V2, [&](const std::pair<int, int> &A) {
return Mask[I] - static_cast<int>(NumElts) == A.first;
});
if (It != V2.end())
ReconstructMask.push_back(NumElts + It - V2.begin());
else {
ReconstructMask.push_back(NumElts + V2.size());
V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
}
}
}
// For reductions, we know that the lane ordering out doesn't alter the
// result. In-order can help simplify the shuffle away.
if (FromReduction)
sort(ReconstructMask);
OrigReconstructMasks.push_back(std::move(ReconstructMask));
}
// If the Maximum element used from V1 and V2 are not larger than the new
// vectors, the vectors are already packes and performing the optimization
// again will likely not help any further. This also prevents us from getting
// stuck in a cycle in case the costs do not also rule it out.
if (V1.empty() || V2.empty() ||
(MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
MaxV2Elt == static_cast<int>(V2.size()) - 1))
return false;
// GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
// shuffle of another shuffle, or not a shuffle (that is treated like a
// identity shuffle).
auto GetBaseMaskValue = [&](Instruction *I, int M) {
auto *SV = dyn_cast<ShuffleVectorInst>(I);
if (!SV)
return M;
if (isa<UndefValue>(SV->getOperand(1)))
if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
if (InputShuffles.contains(SSV))
return SSV->getMaskValue(SV->getMaskValue(M));
return SV->getMaskValue(M);
};
// Attempt to sort the inputs my ascending mask values to make simpler input
// shuffles and push complex shuffles down to the uses. We sort on the first
// of the two input shuffle orders, to try and get at least one input into a
// nice order.
auto SortBase = [&](Instruction *A, std::pair<int, int> X,
std::pair<int, int> Y) {
int MXA = GetBaseMaskValue(A, X.first);
int MYA = GetBaseMaskValue(A, Y.first);
return MXA < MYA;
};
stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
return SortBase(SVI0A, A, B);
});
stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
return SortBase(SVI1A, A, B);
});
// Calculate our ReconstructMasks from the OrigReconstructMasks and the
// modified order of the input shuffles.
SmallVector<SmallVector<int>> ReconstructMasks;
for (const auto &Mask : OrigReconstructMasks) {
SmallVector<int> ReconstructMask;
for (int M : Mask) {
auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
auto It = find_if(V, [M](auto A) { return A.second == M; });
assert(It != V.end() && "Expected all entries in Mask");
return std::distance(V.begin(), It);
};
if (M < 0)
ReconstructMask.push_back(-1);
else if (M < static_cast<int>(NumElts)) {
ReconstructMask.push_back(FindIndex(V1, M));
} else {
ReconstructMask.push_back(NumElts + FindIndex(V2, M));
}
}
ReconstructMasks.push_back(std::move(ReconstructMask));
}
// Calculate the masks needed for the new input shuffles, which get padded
// with undef
SmallVector<int> V1A, V1B, V2A, V2B;
for (unsigned I = 0; I < V1.size(); I++) {
V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
}
for (unsigned I = 0; I < V2.size(); I++) {
V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
}
while (V1A.size() < NumElts) {
V1A.push_back(PoisonMaskElem);
V1B.push_back(PoisonMaskElem);
}
while (V2A.size() < NumElts) {
V2A.push_back(PoisonMaskElem);
V2B.push_back(PoisonMaskElem);
}
auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
auto *SV = dyn_cast<ShuffleVectorInst>(I);
if (!SV)
return C;
return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
? TTI::SK_PermuteSingleSrc
: TTI::SK_PermuteTwoSrc,
VT, SV->getShuffleMask());
};
auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask);
};
// Get the costs of the shuffles + binops before and after with the new
// shuffle masks.
InstructionCost CostBefore =
TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) +
TTI.getArithmeticInstrCost(Op1->getOpcode(), VT);
CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
InstructionCost(0), AddShuffleCost);
CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
InstructionCost(0), AddShuffleCost);
// The new binops will be unused for lanes past the used shuffle lengths.
// These types attempt to get the correct cost for that from the target.
FixedVectorType *Op0SmallVT =
FixedVectorType::get(VT->getScalarType(), V1.size());
FixedVectorType *Op1SmallVT =
FixedVectorType::get(VT->getScalarType(), V2.size());
InstructionCost CostAfter =
TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) +
TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT);
CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
InstructionCost(0), AddShuffleMaskCost);
std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
CostAfter +=
std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
InstructionCost(0), AddShuffleMaskCost);
LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore
<< " vs CostAfter: " << CostAfter << "\n");
if (CostBefore <= CostAfter)
return false;
// The cost model has passed, create the new instructions.
auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
auto *SV = dyn_cast<ShuffleVectorInst>(I);
if (!SV)
return I;
if (isa<UndefValue>(SV->getOperand(1)))
if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
if (InputShuffles.contains(SSV))
return SSV->getOperand(Op);
return SV->getOperand(Op);
};
Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
GetShuffleOperand(SVI0A, 1), V1A);
Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
GetShuffleOperand(SVI0B, 1), V1B);
Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
GetShuffleOperand(SVI1A, 1), V2A);
Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
GetShuffleOperand(SVI1B, 1), V2B);
Builder.SetInsertPoint(Op0);
Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
NSV0A, NSV0B);
if (auto *I = dyn_cast<Instruction>(NOp0))
I->copyIRFlags(Op0, true);
Builder.SetInsertPoint(Op1);
Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
NSV1A, NSV1B);
if (auto *I = dyn_cast<Instruction>(NOp1))
I->copyIRFlags(Op1, true);
for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
Builder.SetInsertPoint(Shuffles[S]);
Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
replaceValue(*Shuffles[S], *NSV);
}
Worklist.pushValue(NSV0A);
Worklist.pushValue(NSV0B);
Worklist.pushValue(NSV1A);
Worklist.pushValue(NSV1B);
for (auto *S : Shuffles)
Worklist.add(S);
return true;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
bool VectorCombine::run() {
if (DisableVectorCombine)
return false;
// Don't attempt vectorization if the target does not support vectors.
if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
return false;
bool MadeChange = false;
auto FoldInst = [this, &MadeChange](Instruction &I) {
Builder.SetInsertPoint(&I);
bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
auto Opcode = I.getOpcode();
// These folds should be beneficial regardless of when this pass is run
// in the optimization pipeline.
// The type checking is for run-time efficiency. We can avoid wasting time
// dispatching to folding functions if there's no chance of matching.
if (IsFixedVectorType) {
switch (Opcode) {
case Instruction::InsertElement:
MadeChange |= vectorizeLoadInsert(I);
break;
case Instruction::ShuffleVector:
MadeChange |= widenSubvectorLoad(I);
break;
default:
break;
}
}
// This transform works with scalable and fixed vectors
// TODO: Identify and allow other scalable transforms
if (isa<VectorType>(I.getType())) {
MadeChange |= scalarizeBinopOrCmp(I);
MadeChange |= scalarizeLoadExtract(I);
MadeChange |= scalarizeVPIntrinsic(I);
}
if (Opcode == Instruction::Store)
MadeChange |= foldSingleElementStore(I);
// If this is an early pipeline invocation of this pass, we are done.
if (TryEarlyFoldsOnly)
return;
// Otherwise, try folds that improve codegen but may interfere with
// early IR canonicalizations.
// The type checking is for run-time efficiency. We can avoid wasting time
// dispatching to folding functions if there's no chance of matching.
if (IsFixedVectorType) {
switch (Opcode) {
case Instruction::InsertElement:
MadeChange |= foldInsExtFNeg(I);
break;
case Instruction::ShuffleVector:
MadeChange |= foldShuffleOfBinops(I);
MadeChange |= foldShuffleOfCastops(I);
MadeChange |= foldShuffleOfShuffles(I);
MadeChange |= foldSelectShuffle(I);
MadeChange |= foldShuffleToIdentity(I);
break;
case Instruction::BitCast:
MadeChange |= foldBitcastShuffle(I);
break;
}
} else {
switch (Opcode) {
case Instruction::Call:
MadeChange |= foldShuffleFromReductions(I);
MadeChange |= foldCastFromReductions(I);
break;
case Instruction::ICmp:
case Instruction::FCmp:
MadeChange |= foldExtractExtract(I);
break;
default:
if (Instruction::isBinaryOp(Opcode)) {
MadeChange |= foldExtractExtract(I);
MadeChange |= foldExtractedCmps(I);
}
break;
}
}
};
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
// Use early increment range so that we can erase instructions in loop.
for (Instruction &I : make_early_inc_range(BB)) {
if (I.isDebugOrPseudoInst())
continue;
FoldInst(I);
}
}
while (!Worklist.isEmpty()) {
Instruction *I = Worklist.removeOne();
if (!I)
continue;
if (isInstructionTriviallyDead(I)) {
eraseInstruction(*I);
continue;
}
FoldInst(*I);
}
return MadeChange;
}
PreservedAnalyses VectorCombinePass::run(Function &F,
FunctionAnalysisManager &FAM) {
auto &AC = FAM.getResult<AssumptionAnalysis>(F);
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
AAResults &AA = FAM.getResult<AAManager>(F);
const DataLayout *DL = &F.getDataLayout();
VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TryEarlyFoldsOnly);
if (!Combiner.run())
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
|