1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 3
; RUN: llc -global-isel -mtriple=amdgcn-amd-amdpal -mcpu=gfx1010 -verify-machineinstrs < %s | FileCheck -check-prefix=GFX10 %s
; Divergent phis that don't require lowering using lane mask merging
; - divergent phi that has divergent incoming value (this makes it divergent)
; but is reachable through only one path - branch instruction that chooses
; path is uniform
; - divergent phi that is used only inside the loop and has incoming from
; previous iteration. After phi-elimination (rewrite lane mask in phi def with
; lane mask value from previous iteration), phi will hold lane mask valid for
; current iteration which is fine since it is not used outside of the loop.
; And one more that is tricky (is branch divergent or not ?)
; "amdgpu-flat-work-group-size"="1,1" aka single lane execution does not stop
; shader from activating multiple lanes by using some intrinsic (entering wwm
; and using dpp instructions)
; - there are cases with single lane execution where branch instructions are not
; lowered to si_if (or other intrinsic branches) - with intention to use
; uniform branch after instruction selection?
; PhiIncomingAnalysis does not recognize G_BRCOND as divergent branch and does
; not perform lane mask merging
define amdgpu_ps void @divergent_i1_phi_uniform_branch(ptr addrspace(1) %out, i32 %tid, i32 inreg %cond, ptr addrspace(1) %dummyaddr) {
; GFX10-LABEL: divergent_i1_phi_uniform_branch:
; GFX10: ; %bb.0: ; %A
; GFX10-NEXT: s_cmp_lg_u32 s0, 0
; GFX10-NEXT: s_cbranch_scc0 .LBB0_2
; GFX10-NEXT: ; %bb.1:
; GFX10-NEXT: v_cmp_le_u32_e64 s0, 6, v2
; GFX10-NEXT: s_branch .LBB0_3
; GFX10-NEXT: .LBB0_2: ; %dummy
; GFX10-NEXT: v_mov_b32_e32 v5, 0x7b
; GFX10-NEXT: v_cmp_gt_u32_e64 s0, 1, v2
; GFX10-NEXT: global_store_dword v[3:4], v5, off
; GFX10-NEXT: .LBB0_3: ; %exit
; GFX10-NEXT: v_cndmask_b32_e64 v2, 0, -1, s0
; GFX10-NEXT: v_add_nc_u32_e32 v2, 2, v2
; GFX10-NEXT: global_store_dword v[0:1], v2, off
; GFX10-NEXT: s_endpgm
A:
%val_A = icmp uge i32 %tid, 6
%cmp = icmp eq i32 %cond, 0
br i1 %cmp, label %dummy, label %exit
dummy:
store i32 123, ptr addrspace(1) %dummyaddr
br label %B
B:
%val_B = icmp ult i32 %tid, 1
br label %exit
exit:
%phi = phi i1 [ %val_A, %A ], [ %val_B, %B ]
%sel = select i1 %phi, i32 1, i32 2
store i32 %sel, ptr addrspace(1) %out
ret void
}
; Fix me - there is no need to merge lane masks here
define amdgpu_ps void @divergent_i1_phi_uniform_branch_simple(ptr addrspace(1) %out, i32 %tid, i32 inreg %cond) {
; GFX10-LABEL: divergent_i1_phi_uniform_branch_simple:
; GFX10: ; %bb.0: ; %A
; GFX10-NEXT: v_cmp_le_u32_e64 s1, 6, v2
; GFX10-NEXT: s_cmp_lg_u32 s0, 0
; GFX10-NEXT: s_cbranch_scc1 .LBB1_2
; GFX10-NEXT: ; %bb.1: ; %B
; GFX10-NEXT: v_cmp_gt_u32_e32 vcc_lo, 1, v2
; GFX10-NEXT: s_andn2_b32 s0, s1, exec_lo
; GFX10-NEXT: s_and_b32 s1, exec_lo, vcc_lo
; GFX10-NEXT: s_or_b32 s1, s0, s1
; GFX10-NEXT: .LBB1_2: ; %exit
; GFX10-NEXT: v_cndmask_b32_e64 v2, 0, -1, s1
; GFX10-NEXT: v_add_nc_u32_e32 v2, 2, v2
; GFX10-NEXT: global_store_dword v[0:1], v2, off
; GFX10-NEXT: s_endpgm
A:
%val_A = icmp uge i32 %tid, 6
%cmp = icmp eq i32 %cond, 0
br i1 %cmp, label %B, label %exit
B:
%val_B = icmp ult i32 %tid, 1
br label %exit
exit:
%phi = phi i1 [ %val_A, %A ], [ %val_B, %B ]
%sel = select i1 %phi, i32 1, i32 2
store i32 %sel, ptr addrspace(1) %out
ret void
}
; Divergent i1 phi that uses value from previous iteration.
; Used only inside the loop (variable name is bool_counter)
define void @divergent_i1_phi_used_inside_loop(float %val, ptr %addr) {
; GFX10-LABEL: divergent_i1_phi_used_inside_loop:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: s_mov_b32 s5, 0
; GFX10-NEXT: v_mov_b32_e32 v3, 1
; GFX10-NEXT: v_mov_b32_e32 v4, s5
; GFX10-NEXT: ; implicit-def: $sgpr6
; GFX10-NEXT: .LBB2_1: ; %loop
; GFX10-NEXT: ; =>This Inner Loop Header: Depth=1
; GFX10-NEXT: v_xor_b32_e32 v3, 1, v3
; GFX10-NEXT: v_cvt_f32_u32_e32 v5, v4
; GFX10-NEXT: v_add_nc_u32_e32 v4, 1, v4
; GFX10-NEXT: v_and_b32_e32 v6, 1, v3
; GFX10-NEXT: v_cmp_gt_f32_e32 vcc_lo, v5, v0
; GFX10-NEXT: v_cmp_ne_u32_e64 s4, 0, v6
; GFX10-NEXT: s_or_b32 s5, vcc_lo, s5
; GFX10-NEXT: s_andn2_b32 s6, s6, exec_lo
; GFX10-NEXT: s_and_b32 s4, exec_lo, s4
; GFX10-NEXT: s_or_b32 s6, s6, s4
; GFX10-NEXT: s_andn2_b32 exec_lo, exec_lo, s5
; GFX10-NEXT: s_cbranch_execnz .LBB2_1
; GFX10-NEXT: ; %bb.2: ; %exit
; GFX10-NEXT: s_or_b32 exec_lo, exec_lo, s5
; GFX10-NEXT: v_cndmask_b32_e64 v0, 0, 1.0, s6
; GFX10-NEXT: flat_store_dword v[1:2], v0
; GFX10-NEXT: s_waitcnt lgkmcnt(0)
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
br label %loop
loop:
%counter = phi i32 [ 0, %entry ], [ %counterPlus1, %loop ]
%bool_counter = phi i1 [ true, %entry ], [ %neg_bool_counter, %loop ]
%neg_bool_counter = xor i1 %bool_counter, true
%fcounter = uitofp i32 %counter to float
%cond = fcmp ogt float %fcounter, %val
%counterPlus1 = add i32 %counter, 1
br i1 %cond, label %exit, label %loop
exit:
%select = select i1 %neg_bool_counter, float 1.000000e+00, float 0.000000e+00
store float %select, ptr %addr
ret void
}
define void @divergent_i1_phi_used_inside_loop_bigger_loop_body(float %val, float %pre_cond_val, ptr %addr, ptr %addr_if, ptr %addr_else) {
; GFX10-LABEL: divergent_i1_phi_used_inside_loop_bigger_loop_body:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: s_mov_b32 s4, 0
; GFX10-NEXT: v_cmp_lt_f32_e64 s5, 1.0, v1
; GFX10-NEXT: v_mov_b32_e32 v1, 0x3e8
; GFX10-NEXT: v_mov_b32_e32 v8, s4
; GFX10-NEXT: ; implicit-def: $sgpr6
; GFX10-NEXT: s_branch .LBB3_2
; GFX10-NEXT: .LBB3_1: ; %loop_body
; GFX10-NEXT: ; in Loop: Header=BB3_2 Depth=1
; GFX10-NEXT: v_cvt_f32_u32_e32 v9, v8
; GFX10-NEXT: s_xor_b32 s5, s5, -1
; GFX10-NEXT: v_add_nc_u32_e32 v8, 1, v8
; GFX10-NEXT: v_cmp_gt_f32_e32 vcc_lo, v9, v0
; GFX10-NEXT: s_or_b32 s4, vcc_lo, s4
; GFX10-NEXT: s_andn2_b32 s6, s6, exec_lo
; GFX10-NEXT: s_and_b32 s7, exec_lo, s5
; GFX10-NEXT: s_or_b32 s6, s6, s7
; GFX10-NEXT: s_andn2_b32 exec_lo, exec_lo, s4
; GFX10-NEXT: s_cbranch_execz .LBB3_6
; GFX10-NEXT: .LBB3_2: ; %loop_start
; GFX10-NEXT: ; =>This Inner Loop Header: Depth=1
; GFX10-NEXT: v_cmp_ge_i32_e32 vcc_lo, 0x3e8, v8
; GFX10-NEXT: s_mov_b32 s7, 1
; GFX10-NEXT: s_cbranch_vccz .LBB3_4
; GFX10-NEXT: ; %bb.3: ; %else
; GFX10-NEXT: ; in Loop: Header=BB3_2 Depth=1
; GFX10-NEXT: s_mov_b32 s7, 0
; GFX10-NEXT: flat_store_dword v[6:7], v1
; GFX10-NEXT: .LBB3_4: ; %Flow
; GFX10-NEXT: ; in Loop: Header=BB3_2 Depth=1
; GFX10-NEXT: s_xor_b32 s7, s7, 1
; GFX10-NEXT: s_and_b32 s7, s7, 1
; GFX10-NEXT: s_cmp_lg_u32 s7, 0
; GFX10-NEXT: s_cbranch_scc1 .LBB3_1
; GFX10-NEXT: ; %bb.5: ; %if
; GFX10-NEXT: ; in Loop: Header=BB3_2 Depth=1
; GFX10-NEXT: flat_store_dword v[4:5], v1
; GFX10-NEXT: s_branch .LBB3_1
; GFX10-NEXT: .LBB3_6: ; %exit
; GFX10-NEXT: s_or_b32 exec_lo, exec_lo, s4
; GFX10-NEXT: v_cndmask_b32_e64 v0, 0, 1.0, s6
; GFX10-NEXT: flat_store_dword v[2:3], v0
; GFX10-NEXT: s_waitcnt lgkmcnt(0)
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%pre_cond = fcmp ogt float %pre_cond_val, 1.0
br label %loop_start
loop_start:
%counter = phi i32 [ 0, %entry ], [ %counterPlus1, %loop_body ]
%bool_counter = phi i1 [ %pre_cond, %entry ], [ %neg_bool_counter, %loop_body ]
%cond_break = icmp sgt i32 %counter, 1000
br i1 %cond_break, label %if, label %else
if:
store i32 1000, ptr %addr_if
br label %loop_body
else:
store i32 1000, ptr %addr_else
br label %loop_body
loop_body:
%neg_bool_counter = xor i1 %bool_counter, true
%fcounter = uitofp i32 %counter to float
%cond = fcmp ogt float %fcounter, %val
%counterPlus1 = add i32 %counter, 1
br i1 %cond, label %exit, label %loop_start
exit:
%select = select i1 %neg_bool_counter, float 1.000000e+00, float 0.000000e+00
store float %select, ptr %addr
ret void
}
; There is a divergent, according to machine uniformity info, g_brcond branch
; here, not lowered to si_if because of "amdgpu-flat-work-group-size"="1,1".
define amdgpu_cs void @single_lane_execution_attribute(i32 inreg %.userdata0, <3 x i32> inreg %.WorkgroupId, <3 x i32> %.LocalInvocationId) #0 {
; GFX10-LABEL: single_lane_execution_attribute:
; GFX10: ; %bb.0: ; %.entry
; GFX10-NEXT: s_getpc_b64 s[4:5]
; GFX10-NEXT: s_mov_b32 s12, 0
; GFX10-NEXT: s_mov_b32 s13, -1
; GFX10-NEXT: s_mov_b32 s2, s0
; GFX10-NEXT: s_and_b64 s[4:5], s[4:5], s[12:13]
; GFX10-NEXT: s_mov_b32 s3, s12
; GFX10-NEXT: v_mbcnt_lo_u32_b32 v1, -1, 0
; GFX10-NEXT: s_or_b64 s[2:3], s[4:5], s[2:3]
; GFX10-NEXT: s_load_dwordx8 s[4:11], s[2:3], 0x0
; GFX10-NEXT: v_mbcnt_hi_u32_b32 v1, -1, v1
; GFX10-NEXT: v_lshlrev_b32_e32 v2, 2, v1
; GFX10-NEXT: v_and_b32_e32 v3, 1, v1
; GFX10-NEXT: v_xor_b32_e32 v3, 1, v3
; GFX10-NEXT: v_and_b32_e32 v3, 1, v3
; GFX10-NEXT: s_waitcnt lgkmcnt(0)
; GFX10-NEXT: buffer_load_dword v2, v2, s[4:7], 0 offen
; GFX10-NEXT: v_cmp_ne_u32_e32 vcc_lo, 0, v3
; GFX10-NEXT: ; implicit-def: $vgpr3
; GFX10-NEXT: s_waitcnt vmcnt(0)
; GFX10-NEXT: v_cmp_eq_u32_e64 s0, 0, v2
; GFX10-NEXT: s_cbranch_vccnz .LBB4_4
; GFX10-NEXT: ; %bb.1: ; %.preheader.preheader
; GFX10-NEXT: v_mov_b32_e32 v3, s12
; GFX10-NEXT: v_mov_b32_e32 v4, s12
; GFX10-NEXT: .LBB4_2: ; %.preheader
; GFX10-NEXT: ; =>This Inner Loop Header: Depth=1
; GFX10-NEXT: buffer_load_dword v5, v3, s[4:7], 0 offen
; GFX10-NEXT: v_add_nc_u32_e32 v1, -1, v1
; GFX10-NEXT: v_add_nc_u32_e32 v3, 4, v3
; GFX10-NEXT: v_cmp_ne_u32_e32 vcc_lo, 0, v1
; GFX10-NEXT: s_waitcnt vmcnt(0)
; GFX10-NEXT: v_add_nc_u32_e32 v4, v5, v4
; GFX10-NEXT: s_cbranch_vccnz .LBB4_2
; GFX10-NEXT: ; %bb.3: ; %.preheader._crit_edge
; GFX10-NEXT: v_cmp_eq_u32_e32 vcc_lo, v4, v2
; GFX10-NEXT: s_mov_b32 s13, 0
; GFX10-NEXT: s_or_b32 s2, s0, vcc_lo
; GFX10-NEXT: v_cndmask_b32_e64 v3, 0, 1, s2
; GFX10-NEXT: .LBB4_4: ; %Flow
; GFX10-NEXT: s_and_b32 vcc_lo, exec_lo, s13
; GFX10-NEXT: s_cbranch_vccz .LBB4_6
; GFX10-NEXT: ; %bb.5: ; %.19
; GFX10-NEXT: v_cndmask_b32_e64 v1, 0, 1, s0
; GFX10-NEXT: v_or_b32_e32 v3, 2, v1
; GFX10-NEXT: .LBB4_6: ; %.22
; GFX10-NEXT: v_add_lshl_u32 v0, v0, s1, 2
; GFX10-NEXT: buffer_store_dword v3, v0, s[8:11], 0 offen
; GFX10-NEXT: s_endpgm
.entry:
%.0 = call i64 @llvm.amdgcn.s.getpc()
%.1 = and i64 %.0, -4294967296
%.2 = zext i32 %.userdata0 to i64
%.3 = or i64 %.1, %.2
%.4 = inttoptr i64 %.3 to ptr addrspace(4)
%.5 = getelementptr i8, ptr addrspace(4) %.4, i64 16
%.6 = load <4 x i32>, ptr addrspace(4) %.5, align 16
%.7 = load <4 x i32>, ptr addrspace(4) %.4, align 16
%.8 = call i32 @llvm.amdgcn.mbcnt.lo(i32 -1, i32 0)
%.9 = call i32 @llvm.amdgcn.mbcnt.hi(i32 -1, i32 %.8)
%.fr11 = freeze i32 %.9
%.idx = shl i32 %.fr11, 2
%.10 = call i32 @llvm.amdgcn.raw.buffer.load.i32(<4 x i32> %.7, i32 %.idx, i32 0, i32 0)
%.11 = icmp eq i32 %.10, 0
%.12 = and i32 %.fr11, 1
%.not = icmp eq i32 %.12, 0
br i1 %.not, label %.19, label %.preheader
.preheader: ; preds = %.entry, %.preheader
%._96.02 = phi i32 [ %.15, %.preheader ], [ 0, %.entry ]
%._50.01 = phi i32 [ %.14, %.preheader ], [ 0, %.entry ]
%.idx5 = shl i32 %._96.02, 2
%.13 = call i32 @llvm.amdgcn.raw.buffer.load.i32(<4 x i32> %.7, i32 %.idx5, i32 0, i32 0)
%.14 = add i32 %.13, %._50.01
%.15 = add nuw i32 %._96.02, 1
%.exitcond.not = icmp eq i32 %.15, %.fr11
br i1 %.exitcond.not, label %.preheader._crit_edge, label %.preheader
.preheader._crit_edge: ; preds = %.preheader
%.16 = icmp eq i32 %.14, %.10
%.17 = or i1 %.11, %.16
%.18 = zext i1 %.17 to i32
br label %.22
.19: ; preds = %.entry
%.20 = zext i1 %.11 to i32
%.21 = or i32 %.20, 2
br label %.22
.22: ; preds = %.19, %.preheader._crit_edge
%._51.0 = phi i32 [ %.18, %.preheader._crit_edge ], [ %.21, %.19 ]
%.WorkgroupId.i0 = extractelement <3 x i32> %.WorkgroupId, i64 0
%.LocalInvocationId.i0 = extractelement <3 x i32> %.LocalInvocationId, i64 0
%.i0 = add i32 %.LocalInvocationId.i0, %.WorkgroupId.i0
%.idx6 = shl i32 %.i0, 2
call void @llvm.amdgcn.raw.buffer.store.i32(i32 %._51.0, <4 x i32> %.6, i32 %.idx6, i32 0, i32 0)
ret void
}
; Function Attrs: nocallback nofree nosync nounwind willreturn memory(none)
declare i32 @llvm.amdgcn.mbcnt.lo(i32, i32)
; Function Attrs: nocallback nofree nosync nounwind willreturn memory(none)
declare i32 @llvm.amdgcn.mbcnt.hi(i32, i32)
; Function Attrs: nocallback nofree nosync nounwind speculatable willreturn memory(none)
declare i64 @llvm.amdgcn.s.getpc()
; Function Attrs: nocallback nofree nosync nounwind willreturn memory(read)
declare i32 @llvm.amdgcn.raw.buffer.load.i32(<4 x i32>, i32, i32, i32 immarg)
; Function Attrs: nocallback nofree nosync nounwind willreturn memory(write)
declare void @llvm.amdgcn.raw.buffer.store.i32(i32, <4 x i32>, i32, i32, i32 immarg)
attributes #0 = { nounwind memory(readwrite) "amdgpu-flat-work-group-size"="1,1" }
|