1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 3
; RUN: opt < %s -mtriple=nvptx64-nvidia-cuda -passes=separate-const-offset-from-gep \
; RUN: -reassociate-geps-verify-no-dead-code -S | FileCheck %s
; Several unit tests for separate-const-offset-from-gep. The transformation
; heavily relies on TargetTransformInfo, so we put these tests under
; target-specific folders.
%struct.S = type { float, double }
@struct_array = global [1024 x %struct.S] zeroinitializer, align 16
@float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4
; We should not extract any struct field indices, because fields in a struct
; may have different types.
define ptr @struct(i32 %i) {
; CHECK-LABEL: define ptr @struct(
; CHECK-SAME: i32 [[I:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[I]] to i64
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr [1024 x %struct.S], ptr @struct_array, i64 0, i64 [[TMP0]], i32 1
; CHECK-NEXT: [[P2:%.*]] = getelementptr inbounds i8, ptr [[TMP1]], i64 80
; CHECK-NEXT: ret ptr [[P2]]
;
entry:
%add = add nsw i32 %i, 5
%idxprom = sext i32 %add to i64
%p = getelementptr inbounds [1024 x %struct.S], ptr @struct_array, i64 0, i64 %idxprom, i32 1
ret ptr %p
}
; We should be able to trace into sext(a + b) if a + b is non-negative
; (e.g., used as an index of an inbounds GEP) and one of a and b is
; non-negative.
define ptr @sext_add(i32 %i, i32 %j) {
; CHECK-LABEL: define ptr @sext_add(
; CHECK-SAME: i32 [[I:%.*]], i32 [[J:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = add i32 [[J]], -2
; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[TMP0]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = sext i32 [[I]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[TMP2]], i64 [[TMP1]]
; CHECK-NEXT: [[P1:%.*]] = getelementptr inbounds i8, ptr [[TMP3]], i64 128
; CHECK-NEXT: ret ptr [[P1]]
;
entry:
%0 = add i32 %i, 1
%1 = sext i32 %0 to i64 ; inbound sext(i + 1) = sext(i) + 1
%2 = add i32 %j, -2
; However, inbound sext(j + -2) != sext(j) + -2, e.g., j = INT_MIN
%3 = sext i32 %2 to i64
%p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %1, i64 %3
ret ptr %p
}
; We should be able to trace into sext/zext if it can be distributed to both
; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b)
;
; This test verifies we can transform
; gep base, a + sext(b +nsw 1), c + zext(d +nuw 1)
; to
; gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1
define ptr @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) {
; CHECK-LABEL: define ptr @ext_add_no_overflow(
; CHECK-SAME: i64 [[A:%.*]], i32 [[B:%.*]], i64 [[C:%.*]], i32 [[D:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[B]] to i64
; CHECK-NEXT: [[I2:%.*]] = add i64 [[A]], [[TMP1]]
; CHECK-NEXT: [[TMP2:%.*]] = zext i32 [[D]] to i64
; CHECK-NEXT: [[J4:%.*]] = add i64 [[C]], [[TMP2]]
; CHECK-NEXT: [[TMP3:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I2]], i64 [[J4]]
; CHECK-NEXT: [[P5:%.*]] = getelementptr inbounds i8, ptr [[TMP3]], i64 132
; CHECK-NEXT: ret ptr [[P5]]
;
%b1 = add nsw i32 %b, 1
%b2 = sext i32 %b1 to i64
%i = add i64 %a, %b2 ; i = a + sext(b +nsw 1)
%d1 = add nuw i32 %d, 1
%d2 = zext i32 %d1 to i64
%j = add i64 %c, %d2 ; j = c + zext(d +nuw 1)
%p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i, i64 %j
ret ptr %p
}
; Verifies we handle nested sext/zext correctly.
define void @sext_zext(i32 %a, i32 %b, ptr %out1, ptr %out2) {
; CHECK-LABEL: define void @sext_zext(
; CHECK-SAME: i32 [[A:%.*]], i32 [[B:%.*]], ptr [[OUT1:%.*]], ptr [[OUT2:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = add nsw i32 [[B]], 2
; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[TMP0]] to i48
; CHECK-NEXT: [[TMP2:%.*]] = zext i48 [[TMP1]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = sext i32 [[A]] to i48
; CHECK-NEXT: [[TMP4:%.*]] = zext i48 [[TMP3]] to i64
; CHECK-NEXT: [[TMP5:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[TMP4]], i64 [[TMP2]]
; CHECK-NEXT: [[P11:%.*]] = getelementptr i8, ptr [[TMP5]], i64 128
; CHECK-NEXT: store ptr [[P11]], ptr [[OUT1]], align 8
; CHECK-NEXT: [[TMP6:%.*]] = add nsw i32 [[B]], 4
; CHECK-NEXT: [[TMP7:%.*]] = zext i32 [[TMP6]] to i48
; CHECK-NEXT: [[TMP8:%.*]] = sext i48 [[TMP7]] to i64
; CHECK-NEXT: [[TMP9:%.*]] = zext i32 [[A]] to i48
; CHECK-NEXT: [[TMP10:%.*]] = sext i48 [[TMP9]] to i64
; CHECK-NEXT: [[TMP11:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[TMP10]], i64 [[TMP8]]
; CHECK-NEXT: [[P22:%.*]] = getelementptr i8, ptr [[TMP11]], i64 384
; CHECK-NEXT: store ptr [[P22]], ptr [[OUT2]], align 8
; CHECK-NEXT: ret void
;
entry:
%0 = add nsw nuw i32 %a, 1
%1 = sext i32 %0 to i48
%2 = zext i48 %1 to i64 ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1
%3 = add nsw i32 %b, 2
%4 = sext i32 %3 to i48
%5 = zext i48 %4 to i64 ; zext(sext(b +nsw 2)) != zext(sext(b)) + 2
%p1 = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %2, i64 %5
store ptr %p1, ptr %out1
%6 = add nuw i32 %a, 3
%7 = zext i32 %6 to i48
%8 = sext i48 %7 to i64 ; sext(zext(a +nuw 3)) = zext(a +nuw 3) = zext(a) + 3
%9 = add nsw i32 %b, 4
%10 = zext i32 %9 to i48
%11 = sext i48 %10 to i64 ; sext(zext(b +nsw 4)) != zext(b) + 4
%p2 = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %8, i64 %11
store ptr %p2, ptr %out2
ret void
}
; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if
; its operand is an OR and the two operands of the OR have no common bits.
define ptr @sext_or(i64 %a, i32 %b) {
; CHECK-LABEL: define ptr @sext_or(
; CHECK-SAME: i64 [[A:%.*]], i32 [[B:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[B1:%.*]] = shl i32 [[B]], 2
; CHECK-NEXT: [[B3:%.*]] = or i32 [[B1]], 4
; CHECK-NEXT: [[B3_EXT:%.*]] = sext i32 [[B3]] to i64
; CHECK-NEXT: [[J:%.*]] = add i64 [[A]], [[B3_EXT]]
; CHECK-NEXT: [[TMP0:%.*]] = zext i32 [[B1]] to i64
; CHECK-NEXT: [[I2:%.*]] = add i64 [[A]], [[TMP0]]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I2]], i64 [[J]]
; CHECK-NEXT: [[P3:%.*]] = getelementptr inbounds i8, ptr [[TMP1]], i64 128
; CHECK-NEXT: ret ptr [[P3]]
;
entry:
%b1 = shl i32 %b, 2
%b2 = or disjoint i32 %b1, 1 ; (b << 2) and 1 have no common bits
%b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits
%b2.ext = zext i32 %b2 to i64
%b3.ext = sext i32 %b3 to i64
%i = add i64 %a, %b2.ext
%j = add i64 %a, %b3.ext
%p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i, i64 %j
ret ptr %p
}
; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b +
; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't
; affected.
define ptr @expr(i64 %a, i64 %b, ptr %out) {
; CHECK-LABEL: define ptr @expr(
; CHECK-SAME: i64 [[A:%.*]], i64 [[B:%.*]], ptr [[OUT:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[B5:%.*]] = add i64 [[B]], 5
; CHECK-NEXT: [[I2:%.*]] = add i64 [[B]], [[A]]
; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I2]], i64 0
; CHECK-NEXT: [[P3:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 640
; CHECK-NEXT: store i64 [[B5]], ptr [[OUT]], align 8
; CHECK-NEXT: ret ptr [[P3]]
;
entry:
%b5 = add i64 %b, 5
%i = add i64 %b5, %a
%p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i, i64 0
store i64 %b5, ptr %out
ret ptr %p
}
; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8
define ptr @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) {
; CHECK-LABEL: define ptr @sext_expr(
; CHECK-SAME: i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]], i64 [[D:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[A]] to i64
; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[B]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = sext i32 [[C]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = add i64 [[TMP1]], [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = add i64 [[TMP0]], [[TMP3]]
; CHECK-NEXT: [[I1:%.*]] = add i64 [[D]], [[TMP4]]
; CHECK-NEXT: [[TMP5:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[I1]]
; CHECK-NEXT: [[P2:%.*]] = getelementptr inbounds i8, ptr [[TMP5]], i64 32
; CHECK-NEXT: ret ptr [[P2]]
;
entry:
%0 = add nsw i32 %c, 8
%1 = add nsw i32 %b, %0
%2 = add nsw i32 %a, %1
%3 = sext i32 %2 to i64
%i = add i64 %d, %3
%p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %i
ret ptr %p
}
; Verifies we handle "sub" correctly.
define ptr @sub(i64 %i, i64 %j) {
; CHECK-LABEL: define ptr @sub(
; CHECK-SAME: i64 [[I:%.*]], i64 [[J:%.*]]) {
; CHECK-NEXT: [[J22:%.*]] = sub i64 0, [[J]]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I]], i64 [[J22]]
; CHECK-NEXT: [[P3:%.*]] = getelementptr inbounds i8, ptr [[TMP1]], i64 -620
; CHECK-NEXT: ret ptr [[P3]]
;
%i2 = sub i64 %i, 5 ; i - 5
%j2 = sub i64 5, %j ; 5 - i
%p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i2, i64 %j2
ret ptr %p
}
%struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed
; Verifies we can emit correct uglygep if the address is not natually aligned.
define ptr @packed_struct(i32 %i, i32 %j) {
; CHECK-LABEL: define ptr @packed_struct(
; CHECK-SAME: i32 [[I:%.*]], i32 [[J:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[S:%.*]] = alloca [1024 x %struct.Packed], align 16
; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[I]] to i64
; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[J]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr [1024 x %struct.Packed], ptr [[S]], i64 0, i64 [[TMP0]], i32 1, i64 [[TMP1]]
; CHECK-NEXT: [[ARRAYIDX33:%.*]] = getelementptr inbounds i8, ptr [[TMP2]], i64 100
; CHECK-NEXT: ret ptr [[ARRAYIDX33]]
;
entry:
%s = alloca [1024 x %struct.Packed], align 16
%add = add nsw i32 %j, 3
%idxprom = sext i32 %add to i64
%add1 = add nsw i32 %i, 1
%idxprom2 = sext i32 %add1 to i64
%arrayidx3 = getelementptr inbounds [1024 x %struct.Packed], ptr %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom
ret ptr %arrayidx3
}
; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))",
; because "zext(b + 8) != zext(b) + 8"
define ptr @zext_expr(i32 %a, i32 %b) {
; CHECK-LABEL: define ptr @zext_expr(
; CHECK-SAME: i32 [[A:%.*]], i32 [[B:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = add i32 [[B]], 8
; CHECK-NEXT: [[TMP1:%.*]] = add nuw i32 [[A]], [[TMP0]]
; CHECK-NEXT: [[I:%.*]] = zext i32 [[TMP1]] to i64
; CHECK-NEXT: [[P:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[I]]
; CHECK-NEXT: ret ptr [[P]]
;
entry:
%0 = add i32 %b, 8
%1 = add nuw i32 %a, %0
%i = zext i32 %1 to i64
%p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %i
ret ptr %p
}
; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep
; should be considered sign-extended to the pointer size. Therefore,
; gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b
; because
; sext(a + b) != sext(a) + sext(b)
;
; This test verifies we do not illegitimately extract the 8 from
; gep base, (i32 a + 8)
define ptr @i32_add(i32 %a) {
; CHECK-LABEL: define ptr @i32_add(
; CHECK-SAME: i32 [[A:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[I:%.*]] = add i32 [[A]], 8
; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[I]] to i64
; CHECK-NEXT: [[P:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[IDXPROM]]
; CHECK-NEXT: ret ptr [[P]]
;
entry:
%i = add i32 %a, 8
%p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i32 %i
ret ptr %p
}
; Verifies that we compute the correct constant offset when the index is
; sign-extended and then zero-extended. The old version of our code failed to
; handle this case because it simply computed the constant offset as the
; sign-extended value of the constant part of the GEP index.
define ptr @apint(i1 %a) {
; CHECK-LABEL: define ptr @apint(
; CHECK-SAME: i1 [[A:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = sext i1 [[A]] to i4
; CHECK-NEXT: [[TMP1:%.*]] = zext i4 [[TMP0]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[TMP1]]
; CHECK-NEXT: [[P1:%.*]] = getelementptr i8, ptr [[TMP2]], i64 60
; CHECK-NEXT: ret ptr [[P1]]
;
entry:
%0 = add nsw nuw i1 %a, 1
%1 = sext i1 %0 to i4
%2 = zext i4 %1 to i64 ; zext (sext i1 1 to i4) to i64 = 15
%p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %2
ret ptr %p
}
; Do not trace into binary operators other than ADD, SUB, and OR.
define ptr @and(i64 %a) {
; CHECK-LABEL: define ptr @and(
; CHECK-SAME: i64 [[A:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = shl i64 [[A]], 2
; CHECK-NEXT: [[TMP1:%.*]] = and i64 [[TMP0]], 1
; CHECK-NEXT: [[P:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[TMP1]]
; CHECK-NEXT: ret ptr [[P]]
;
entry:
%0 = shl i64 %a, 2
%1 = and i64 %0, 1
%p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %1
ret ptr %p
}
; The code that rebuilds an OR expression used to be buggy, and failed on this
; test.
define ptr @shl_add_or(i64 %a, ptr %ptr) {
; CHECK-LABEL: define ptr @shl_add_or(
; CHECK-SAME: i64 [[A:%.*]], ptr [[PTR:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[SHL:%.*]] = shl i64 [[A]], 2
; CHECK-NEXT: [[OR2:%.*]] = add i64 [[SHL]], 1
; CHECK-NEXT: [[TMP0:%.*]] = getelementptr float, ptr [[PTR]], i64 [[OR2]]
; CHECK-NEXT: [[P3:%.*]] = getelementptr i8, ptr [[TMP0]], i64 48
; CHECK-NEXT: ret ptr [[P3]]
;
entry:
%shl = shl i64 %a, 2
%add = add i64 %shl, 12
%or = or disjoint i64 %add, 1
; ((a << 2) + 12) and 1 have no common bits. Therefore,
; SeparateConstOffsetFromGEP is able to extract the 12.
; TODO(jingyue): We could reassociate the expression to combine 12 and 1.
%p = getelementptr float, ptr %ptr, i64 %or
ret ptr %p
}
; The source code used to be buggy in checking
; (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0)
; where AccumulativeByteOffset is signed but ElementTypeSizeOfGEP is unsigned.
; The compiler would promote AccumulativeByteOffset to unsigned, causing
; unexpected results. For example, while -64 % (int64_t)24 != 0,
; -64 % (uint64_t)24 == 0.
%struct3 = type { i64, i32 }
%struct2 = type { %struct3, i32 }
%struct1 = type { i64, %struct2 }
%struct0 = type { i32, i32, ptr, [100 x %struct1] }
define ptr @sign_mod_unsign(ptr %ptr, i64 %idx) {
; CHECK-LABEL: define ptr @sign_mod_unsign(
; CHECK-SAME: ptr [[PTR:%.*]], i64 [[IDX:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [[STRUCT0:%.*]], ptr [[PTR]], i64 0, i32 3, i64 [[IDX]], i32 1
; CHECK-NEXT: [[PTR22:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 -64
; CHECK-NEXT: ret ptr [[PTR22]]
;
entry:
%arrayidx = add nsw i64 %idx, -2
%ptr2 = getelementptr inbounds %struct0, ptr %ptr, i64 0, i32 3, i64 %arrayidx, i32 1
ret ptr %ptr2
}
; Check that we can see through explicit trunc() instruction.
define ptr @trunk_explicit(ptr %ptr, i64 %idx) {
; CHECK-LABEL: define ptr @trunk_explicit(
; CHECK-SAME: ptr [[PTR:%.*]], i64 [[IDX:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [[STRUCT0:%.*]], ptr [[PTR]], i64 0, i32 3, i64 [[IDX]], i32 1
; CHECK-NEXT: [[PTR21:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 3216
; CHECK-NEXT: ret ptr [[PTR21]]
;
entry:
%idx0 = trunc i64 1 to i32
%ptr2 = getelementptr inbounds %struct0, ptr %ptr, i32 %idx0, i32 3, i64 %idx, i32 1
ret ptr %ptr2
}
; Check that we can deal with trunc inserted by
; canonicalizeArrayIndicesToPointerSize() if size of an index is larger than
; that of the pointer.
define ptr @trunk_long_idx(ptr %ptr, i64 %idx) {
; CHECK-LABEL: define ptr @trunk_long_idx(
; CHECK-SAME: ptr [[PTR:%.*]], i64 [[IDX:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [[STRUCT0:%.*]], ptr [[PTR]], i64 0, i32 3, i64 [[IDX]], i32 1
; CHECK-NEXT: [[PTR21:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 3216
; CHECK-NEXT: ret ptr [[PTR21]]
;
entry:
%ptr2 = getelementptr inbounds %struct0, ptr %ptr, i65 1, i32 3, i64 %idx, i32 1
ret ptr %ptr2
}
; Do not extract large constant offset that cannot be folded in to PTX
; addressing mode
define void @large_offset(ptr %out, i32 %in) {
; CHECK-LABEL: define void @large_offset(
; CHECK-SAME: ptr [[OUT:%.*]], i32 [[IN:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i32 [[TMP0]], 536870912
; CHECK-NEXT: [[IDX:%.*]] = zext nneg i32 [[ADD]] to i64
; CHECK-NEXT: [[GETELEM:%.*]] = getelementptr inbounds i32, ptr [[OUT]], i64 [[IDX]]
; CHECK-NEXT: store i32 [[IN]], ptr [[GETELEM]], align 4
; CHECK-NEXT: ret void
;
entry:
%0 = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
%add = add nuw nsw i32 %0, 536870912
%idx = zext nneg i32 %add to i64
%getElem = getelementptr inbounds i32, ptr %out, i64 %idx
store i32 %in, ptr %getElem, align 4
ret void
}
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
|