1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
//===-- BenchmarkRunner.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <cmath>
#include <memory>
#include <string>
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "Error.h"
#include "MCInstrDescView.h"
#include "MmapUtils.h"
#include "PerfHelper.h"
#include "SubprocessMemory.h"
#include "Target.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SystemZ/zOSSupport.h"
#ifdef __linux__
#ifdef HAVE_LIBPFM
#include <perfmon/perf_event.h>
#endif
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>
#if defined(__GLIBC__) && __has_include(<sys/rseq.h>) && defined(HAVE_BUILTIN_THREAD_POINTER)
#include <sys/rseq.h>
#if defined(RSEQ_SIG) && defined(SYS_rseq)
#define GLIBC_INITS_RSEQ
#endif
#endif
#endif // __linux__
namespace llvm {
namespace exegesis {
BenchmarkRunner::BenchmarkRunner(const LLVMState &State, Benchmark::ModeE Mode,
BenchmarkPhaseSelectorE BenchmarkPhaseSelector,
ExecutionModeE ExecutionMode,
ArrayRef<ValidationEvent> ValCounters)
: State(State), Mode(Mode), BenchmarkPhaseSelector(BenchmarkPhaseSelector),
ExecutionMode(ExecutionMode), ValidationCounters(ValCounters),
Scratch(std::make_unique<ScratchSpace>()) {}
BenchmarkRunner::~BenchmarkRunner() = default;
void BenchmarkRunner::FunctionExecutor::accumulateCounterValues(
const SmallVectorImpl<int64_t> &NewValues,
SmallVectorImpl<int64_t> *Result) {
const size_t NumValues = std::max(NewValues.size(), Result->size());
if (NumValues > Result->size())
Result->resize(NumValues, 0);
for (size_t I = 0, End = NewValues.size(); I < End; ++I)
(*Result)[I] += NewValues[I];
}
Expected<SmallVector<int64_t, 4>>
BenchmarkRunner::FunctionExecutor::runAndSample(
const char *Counters, ArrayRef<const char *> ValidationCounters,
SmallVectorImpl<int64_t> &ValidationCounterValues) const {
// We sum counts when there are several counters for a single ProcRes
// (e.g. P23 on SandyBridge).
SmallVector<int64_t, 4> CounterValues;
SmallVector<StringRef, 2> CounterNames;
StringRef(Counters).split(CounterNames, '+');
for (auto &CounterName : CounterNames) {
CounterName = CounterName.trim();
Expected<SmallVector<int64_t, 4>> ValueOrError = runWithCounter(
CounterName, ValidationCounters, ValidationCounterValues);
if (!ValueOrError)
return ValueOrError.takeError();
accumulateCounterValues(ValueOrError.get(), &CounterValues);
}
return CounterValues;
}
namespace {
class InProcessFunctionExecutorImpl : public BenchmarkRunner::FunctionExecutor {
public:
static Expected<std::unique_ptr<InProcessFunctionExecutorImpl>>
create(const LLVMState &State, object::OwningBinary<object::ObjectFile> Obj,
BenchmarkRunner::ScratchSpace *Scratch) {
Expected<ExecutableFunction> EF =
ExecutableFunction::create(State.createTargetMachine(), std::move(Obj));
if (!EF)
return EF.takeError();
return std::unique_ptr<InProcessFunctionExecutorImpl>(
new InProcessFunctionExecutorImpl(State, std::move(*EF), Scratch));
}
private:
InProcessFunctionExecutorImpl(const LLVMState &State,
ExecutableFunction Function,
BenchmarkRunner::ScratchSpace *Scratch)
: State(State), Function(std::move(Function)), Scratch(Scratch) {}
static void accumulateCounterValues(const SmallVector<int64_t, 4> &NewValues,
SmallVector<int64_t, 4> *Result) {
const size_t NumValues = std::max(NewValues.size(), Result->size());
if (NumValues > Result->size())
Result->resize(NumValues, 0);
for (size_t I = 0, End = NewValues.size(); I < End; ++I)
(*Result)[I] += NewValues[I];
}
Expected<SmallVector<int64_t, 4>> runWithCounter(
StringRef CounterName, ArrayRef<const char *> ValidationCounters,
SmallVectorImpl<int64_t> &ValidationCounterValues) const override {
const ExegesisTarget &ET = State.getExegesisTarget();
char *const ScratchPtr = Scratch->ptr();
auto CounterOrError =
ET.createCounter(CounterName, State, ValidationCounters);
if (!CounterOrError)
return CounterOrError.takeError();
pfm::CounterGroup *Counter = CounterOrError.get().get();
Scratch->clear();
{
auto PS = ET.withSavedState();
CrashRecoveryContext CRC;
CrashRecoveryContext::Enable();
const bool Crashed = !CRC.RunSafely([this, Counter, ScratchPtr]() {
Counter->start();
this->Function(ScratchPtr);
Counter->stop();
});
CrashRecoveryContext::Disable();
PS.reset();
if (Crashed) {
#ifdef LLVM_ON_UNIX
// See "Exit Status for Commands":
// https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xcu_chap02.html
constexpr const int kSigOffset = 128;
return make_error<SnippetSignal>(CRC.RetCode - kSigOffset);
#else
// The exit code of the process on windows is not meaningful as a
// signal, so simply pass in -1 as the signal into the error.
return make_error<SnippetSignal>(-1);
#endif // LLVM_ON_UNIX
}
}
auto ValidationValuesOrErr = Counter->readValidationCountersOrError();
if (!ValidationValuesOrErr)
return ValidationValuesOrErr.takeError();
ArrayRef RealValidationValues = *ValidationValuesOrErr;
for (size_t I = 0; I < RealValidationValues.size(); ++I)
ValidationCounterValues[I] = RealValidationValues[I];
return Counter->readOrError(Function.getFunctionBytes());
}
const LLVMState &State;
const ExecutableFunction Function;
BenchmarkRunner::ScratchSpace *const Scratch;
};
#ifdef __linux__
// The following class implements a function executor that executes the
// benchmark code within a subprocess rather than within the main llvm-exegesis
// process. This allows for much more control over the execution context of the
// snippet, particularly with regard to memory. This class performs all the
// necessary functions to create the subprocess, execute the snippet in the
// subprocess, and report results/handle errors.
class SubProcessFunctionExecutorImpl
: public BenchmarkRunner::FunctionExecutor {
public:
static Expected<std::unique_ptr<SubProcessFunctionExecutorImpl>>
create(const LLVMState &State, object::OwningBinary<object::ObjectFile> Obj,
const BenchmarkKey &Key) {
Expected<ExecutableFunction> EF =
ExecutableFunction::create(State.createTargetMachine(), std::move(Obj));
if (!EF)
return EF.takeError();
return std::unique_ptr<SubProcessFunctionExecutorImpl>(
new SubProcessFunctionExecutorImpl(State, std::move(*EF), Key));
}
private:
SubProcessFunctionExecutorImpl(const LLVMState &State,
ExecutableFunction Function,
const BenchmarkKey &Key)
: State(State), Function(std::move(Function)), Key(Key) {}
enum ChildProcessExitCodeE {
CounterFDReadFailed = 1,
RSeqDisableFailed,
FunctionDataMappingFailed,
AuxiliaryMemorySetupFailed
};
StringRef childProcessExitCodeToString(int ExitCode) const {
switch (ExitCode) {
case ChildProcessExitCodeE::CounterFDReadFailed:
return "Counter file descriptor read failed";
case ChildProcessExitCodeE::RSeqDisableFailed:
return "Disabling restartable sequences failed";
case ChildProcessExitCodeE::FunctionDataMappingFailed:
return "Failed to map memory for assembled snippet";
case ChildProcessExitCodeE::AuxiliaryMemorySetupFailed:
return "Failed to setup auxiliary memory";
default:
return "Child process returned with unknown exit code";
}
}
Error sendFileDescriptorThroughSocket(int SocketFD, int FD) const {
struct msghdr Message = {};
char Buffer[CMSG_SPACE(sizeof(FD))];
memset(Buffer, 0, sizeof(Buffer));
Message.msg_control = Buffer;
Message.msg_controllen = sizeof(Buffer);
struct cmsghdr *ControlMessage = CMSG_FIRSTHDR(&Message);
ControlMessage->cmsg_level = SOL_SOCKET;
ControlMessage->cmsg_type = SCM_RIGHTS;
ControlMessage->cmsg_len = CMSG_LEN(sizeof(FD));
memcpy(CMSG_DATA(ControlMessage), &FD, sizeof(FD));
Message.msg_controllen = CMSG_SPACE(sizeof(FD));
ssize_t BytesWritten = sendmsg(SocketFD, &Message, 0);
if (BytesWritten < 0)
return make_error<Failure>("Failed to write FD to socket: " +
Twine(strerror(errno)));
return Error::success();
}
Expected<int> getFileDescriptorFromSocket(int SocketFD) const {
struct msghdr Message = {};
char ControlBuffer[256];
Message.msg_control = ControlBuffer;
Message.msg_controllen = sizeof(ControlBuffer);
ssize_t BytesRead = recvmsg(SocketFD, &Message, 0);
if (BytesRead < 0)
return make_error<Failure>("Failed to read FD from socket: " +
Twine(strerror(errno)));
struct cmsghdr *ControlMessage = CMSG_FIRSTHDR(&Message);
int FD;
if (ControlMessage->cmsg_len != CMSG_LEN(sizeof(FD)))
return make_error<Failure>("Failed to get correct number of bytes for "
"file descriptor from socket.");
memcpy(&FD, CMSG_DATA(ControlMessage), sizeof(FD));
return FD;
}
Error
runParentProcess(pid_t ChildPID, int WriteFD, StringRef CounterName,
SmallVectorImpl<int64_t> &CounterValues,
ArrayRef<const char *> ValidationCounters,
SmallVectorImpl<int64_t> &ValidationCounterValues) const {
auto WriteFDClose = make_scope_exit([WriteFD]() { close(WriteFD); });
const ExegesisTarget &ET = State.getExegesisTarget();
auto CounterOrError =
ET.createCounter(CounterName, State, ValidationCounters, ChildPID);
if (!CounterOrError)
return CounterOrError.takeError();
pfm::CounterGroup *Counter = CounterOrError.get().get();
// Make sure to attach to the process (and wait for the sigstop to be
// delivered and for the process to continue) before we write to the counter
// file descriptor. Attaching to the process before writing to the socket
// ensures that the subprocess at most has blocked on the read call. If we
// attach afterwards, the subprocess might exit before we get to the attach
// call due to effects like scheduler contention, introducing transient
// failures.
if (ptrace(PTRACE_ATTACH, ChildPID, NULL, NULL) != 0)
return make_error<Failure>("Failed to attach to the child process: " +
Twine(strerror(errno)));
if (waitpid(ChildPID, NULL, 0) == -1) {
return make_error<Failure>(
"Failed to wait for child process to stop after attaching: " +
Twine(strerror(errno)));
}
if (ptrace(PTRACE_CONT, ChildPID, NULL, NULL) != 0)
return make_error<Failure>(
"Failed to continue execution of the child process: " +
Twine(strerror(errno)));
int CounterFileDescriptor = Counter->getFileDescriptor();
Error SendError =
sendFileDescriptorThroughSocket(WriteFD, CounterFileDescriptor);
if (SendError)
return SendError;
int ChildStatus;
if (waitpid(ChildPID, &ChildStatus, 0) == -1) {
return make_error<Failure>(
"Waiting for the child process to complete failed: " +
Twine(strerror(errno)));
}
if (WIFEXITED(ChildStatus)) {
int ChildExitCode = WEXITSTATUS(ChildStatus);
if (ChildExitCode == 0) {
// The child exited succesfully, read counter values and return
// success.
auto CounterValueOrErr = Counter->readOrError();
if (!CounterValueOrErr)
return CounterValueOrErr.takeError();
CounterValues = std::move(*CounterValueOrErr);
auto ValidationValuesOrErr = Counter->readValidationCountersOrError();
if (!ValidationValuesOrErr)
return ValidationValuesOrErr.takeError();
ArrayRef RealValidationValues = *ValidationValuesOrErr;
for (size_t I = 0; I < RealValidationValues.size(); ++I)
ValidationCounterValues[I] = RealValidationValues[I];
return Error::success();
}
// The child exited, but not successfully.
return make_error<Failure>(
"Child benchmarking process exited with non-zero exit code: " +
childProcessExitCodeToString(ChildExitCode));
}
// An error was encountered running the snippet, process it
siginfo_t ChildSignalInfo;
if (ptrace(PTRACE_GETSIGINFO, ChildPID, NULL, &ChildSignalInfo) == -1) {
return make_error<Failure>("Getting signal info from the child failed: " +
Twine(strerror(errno)));
}
// Send SIGKILL rather than SIGTERM as the child process has no SIGTERM
// handlers to run, and calling SIGTERM would mean that ptrace will force
// it to block in the signal-delivery-stop for the SIGSEGV/other signals,
// and upon exit.
if (kill(ChildPID, SIGKILL) == -1)
return make_error<Failure>("Failed to kill child benchmarking proces: " +
Twine(strerror(errno)));
// Wait for the process to exit so that there are no zombie processes left
// around.
if (waitpid(ChildPID, NULL, 0) == -1)
return make_error<Failure>("Failed to wait for process to die: " +
Twine(strerror(errno)));
if (ChildSignalInfo.si_signo == SIGSEGV)
return make_error<SnippetSegmentationFault>(
reinterpret_cast<intptr_t>(ChildSignalInfo.si_addr));
return make_error<SnippetSignal>(ChildSignalInfo.si_signo);
}
Error createSubProcessAndRunBenchmark(
StringRef CounterName, SmallVectorImpl<int64_t> &CounterValues,
ArrayRef<const char *> ValidationCounters,
SmallVectorImpl<int64_t> &ValidationCounterValues) const {
int PipeFiles[2];
int PipeSuccessOrErr = socketpair(AF_UNIX, SOCK_DGRAM, 0, PipeFiles);
if (PipeSuccessOrErr != 0) {
return make_error<Failure>(
"Failed to create a pipe for interprocess communication between "
"llvm-exegesis and the benchmarking subprocess: " +
Twine(strerror(errno)));
}
SubprocessMemory SPMemory;
Error MemoryInitError = SPMemory.initializeSubprocessMemory(getpid());
if (MemoryInitError)
return MemoryInitError;
Error AddMemDefError =
SPMemory.addMemoryDefinition(Key.MemoryValues, getpid());
if (AddMemDefError)
return AddMemDefError;
long ParentTID = SubprocessMemory::getCurrentTID();
pid_t ParentOrChildPID = fork();
if (ParentOrChildPID == -1) {
return make_error<Failure>("Failed to create child process: " +
Twine(strerror(errno)));
}
if (ParentOrChildPID == 0) {
// We are in the child process, close the write end of the pipe.
close(PipeFiles[1]);
// Unregister handlers, signal handling is now handled through ptrace in
// the host process.
sys::unregisterHandlers();
runChildSubprocess(PipeFiles[0], Key, ParentTID);
// The child process terminates in the above function, so we should never
// get to this point.
llvm_unreachable("Child process didn't exit when expected.");
}
// Close the read end of the pipe as we only need to write to the subprocess
// from the parent process.
close(PipeFiles[0]);
return runParentProcess(ParentOrChildPID, PipeFiles[1], CounterName,
CounterValues, ValidationCounters,
ValidationCounterValues);
}
void disableCoreDumps() const {
struct rlimit rlim;
rlim.rlim_cur = 0;
setrlimit(RLIMIT_CORE, &rlim);
}
[[noreturn]] void runChildSubprocess(int Pipe, const BenchmarkKey &Key,
long ParentTID) const {
// Disable core dumps in the child process as otherwise everytime we
// encounter an execution failure like a segmentation fault, we will create
// a core dump. We report the information directly rather than require the
// user inspect a core dump.
disableCoreDumps();
// The following occurs within the benchmarking subprocess.
pid_t ParentPID = getppid();
Expected<int> CounterFileDescriptorOrError =
getFileDescriptorFromSocket(Pipe);
if (!CounterFileDescriptorOrError)
exit(ChildProcessExitCodeE::CounterFDReadFailed);
int CounterFileDescriptor = *CounterFileDescriptorOrError;
// Glibc versions greater than 2.35 automatically call rseq during
// initialization. Unmapping the region that glibc sets up for this causes
// segfaults in the program. Unregister the rseq region so that we can safely
// unmap it later
#ifdef GLIBC_INITS_RSEQ
unsigned int RseqStructSize = __rseq_size;
// Glibc v2.40 (the change is also expected to be backported to v2.35)
// changes the definition of __rseq_size to be the usable area of the struct
// rather than the actual size of the struct. v2.35 uses only 20 bytes of
// the 32 byte struct. For now, it should be safe to assume that if the
// usable size is less than 32, the actual size of the struct will be 32
// bytes given alignment requirements.
if (__rseq_size < 32)
RseqStructSize = 32;
long RseqDisableOutput =
syscall(SYS_rseq, (intptr_t)__builtin_thread_pointer() + __rseq_offset,
RseqStructSize, RSEQ_FLAG_UNREGISTER, RSEQ_SIG);
if (RseqDisableOutput != 0)
exit(ChildProcessExitCodeE::RSeqDisableFailed);
#endif // GLIBC_INITS_RSEQ
// The frontend that generates the memory annotation structures should
// validate that the address to map the snippet in at is a multiple of
// the page size. Assert that this is true here.
assert(Key.SnippetAddress % getpagesize() == 0 &&
"The snippet address needs to be aligned to a page boundary.");
size_t FunctionDataCopySize = this->Function.FunctionBytes.size();
void *MapAddress = NULL;
int MapFlags = MAP_PRIVATE | MAP_ANONYMOUS;
if (Key.SnippetAddress != 0) {
MapAddress = reinterpret_cast<void *>(Key.SnippetAddress);
MapFlags |= MAP_FIXED_NOREPLACE;
}
char *FunctionDataCopy =
(char *)mmap(MapAddress, FunctionDataCopySize, PROT_READ | PROT_WRITE,
MapFlags, 0, 0);
if ((intptr_t)FunctionDataCopy == -1)
exit(ChildProcessExitCodeE::FunctionDataMappingFailed);
memcpy(FunctionDataCopy, this->Function.FunctionBytes.data(),
this->Function.FunctionBytes.size());
mprotect(FunctionDataCopy, FunctionDataCopySize, PROT_READ | PROT_EXEC);
Expected<int> AuxMemFDOrError =
SubprocessMemory::setupAuxiliaryMemoryInSubprocess(
Key.MemoryValues, ParentPID, ParentTID, CounterFileDescriptor);
if (!AuxMemFDOrError)
exit(ChildProcessExitCodeE::AuxiliaryMemorySetupFailed);
((void (*)(size_t, int))(intptr_t)FunctionDataCopy)(FunctionDataCopySize,
*AuxMemFDOrError);
exit(0);
}
Expected<SmallVector<int64_t, 4>> runWithCounter(
StringRef CounterName, ArrayRef<const char *> ValidationCounters,
SmallVectorImpl<int64_t> &ValidationCounterValues) const override {
SmallVector<int64_t, 4> Value(1, 0);
Error PossibleBenchmarkError = createSubProcessAndRunBenchmark(
CounterName, Value, ValidationCounters, ValidationCounterValues);
if (PossibleBenchmarkError)
return std::move(PossibleBenchmarkError);
return Value;
}
const LLVMState &State;
const ExecutableFunction Function;
const BenchmarkKey &Key;
};
#endif // __linux__
} // namespace
Expected<SmallString<0>> BenchmarkRunner::assembleSnippet(
const BenchmarkCode &BC, const SnippetRepetitor &Repetitor,
unsigned MinInstructions, unsigned LoopBodySize,
bool GenerateMemoryInstructions) const {
const std::vector<MCInst> &Instructions = BC.Key.Instructions;
SmallString<0> Buffer;
raw_svector_ostream OS(Buffer);
if (Error E = assembleToStream(
State.getExegesisTarget(), State.createTargetMachine(), BC.LiveIns,
Repetitor.Repeat(Instructions, MinInstructions, LoopBodySize,
GenerateMemoryInstructions),
OS, BC.Key, GenerateMemoryInstructions)) {
return std::move(E);
}
return Buffer;
}
Expected<BenchmarkRunner::RunnableConfiguration>
BenchmarkRunner::getRunnableConfiguration(
const BenchmarkCode &BC, unsigned MinInstructions, unsigned LoopBodySize,
const SnippetRepetitor &Repetitor) const {
RunnableConfiguration RC;
Benchmark &BenchmarkResult = RC.BenchmarkResult;
BenchmarkResult.Mode = Mode;
BenchmarkResult.CpuName =
std::string(State.getTargetMachine().getTargetCPU());
BenchmarkResult.LLVMTriple =
State.getTargetMachine().getTargetTriple().normalize();
BenchmarkResult.MinInstructions = MinInstructions;
BenchmarkResult.Info = BC.Info;
const std::vector<MCInst> &Instructions = BC.Key.Instructions;
bool GenerateMemoryInstructions = ExecutionMode == ExecutionModeE::SubProcess;
BenchmarkResult.Key = BC.Key;
// Assemble at least kMinInstructionsForSnippet instructions by repeating
// the snippet for debug/analysis. This is so that the user clearly
// understands that the inside instructions are repeated.
if (BenchmarkPhaseSelector > BenchmarkPhaseSelectorE::PrepareSnippet) {
const int MinInstructionsForSnippet = 4 * Instructions.size();
const int LoopBodySizeForSnippet = 2 * Instructions.size();
auto Snippet =
assembleSnippet(BC, Repetitor, MinInstructionsForSnippet,
LoopBodySizeForSnippet, GenerateMemoryInstructions);
if (Error E = Snippet.takeError())
return std::move(E);
if (auto Err = getBenchmarkFunctionBytes(*Snippet,
BenchmarkResult.AssembledSnippet))
return std::move(Err);
}
// Assemble enough repetitions of the snippet so we have at least
// MinInstructions instructions.
if (BenchmarkPhaseSelector >
BenchmarkPhaseSelectorE::PrepareAndAssembleSnippet) {
auto Snippet =
assembleSnippet(BC, Repetitor, BenchmarkResult.MinInstructions,
LoopBodySize, GenerateMemoryInstructions);
if (Error E = Snippet.takeError())
return std::move(E);
RC.ObjectFile = getObjectFromBuffer(*Snippet);
}
return std::move(RC);
}
Expected<std::unique_ptr<BenchmarkRunner::FunctionExecutor>>
BenchmarkRunner::createFunctionExecutor(
object::OwningBinary<object::ObjectFile> ObjectFile,
const BenchmarkKey &Key) const {
switch (ExecutionMode) {
case ExecutionModeE::InProcess: {
auto InProcessExecutorOrErr = InProcessFunctionExecutorImpl::create(
State, std::move(ObjectFile), Scratch.get());
if (!InProcessExecutorOrErr)
return InProcessExecutorOrErr.takeError();
return std::move(*InProcessExecutorOrErr);
}
case ExecutionModeE::SubProcess: {
#ifdef __linux__
auto SubProcessExecutorOrErr = SubProcessFunctionExecutorImpl::create(
State, std::move(ObjectFile), Key);
if (!SubProcessExecutorOrErr)
return SubProcessExecutorOrErr.takeError();
return std::move(*SubProcessExecutorOrErr);
#else
return make_error<Failure>(
"The subprocess execution mode is only supported on Linux");
#endif
}
}
llvm_unreachable("ExecutionMode is outside expected range");
}
std::pair<Error, Benchmark> BenchmarkRunner::runConfiguration(
RunnableConfiguration &&RC,
const std::optional<StringRef> &DumpFile) const {
Benchmark &BenchmarkResult = RC.BenchmarkResult;
object::OwningBinary<object::ObjectFile> &ObjectFile = RC.ObjectFile;
if (DumpFile && BenchmarkPhaseSelector >
BenchmarkPhaseSelectorE::PrepareAndAssembleSnippet) {
auto ObjectFilePath =
writeObjectFile(ObjectFile.getBinary()->getData(), *DumpFile);
if (Error E = ObjectFilePath.takeError()) {
return {std::move(E), std::move(BenchmarkResult)};
}
outs() << "Check generated assembly with: /usr/bin/objdump -d "
<< *ObjectFilePath << "\n";
}
if (BenchmarkPhaseSelector < BenchmarkPhaseSelectorE::Measure) {
BenchmarkResult.Error = "actual measurements skipped.";
return {Error::success(), std::move(BenchmarkResult)};
}
Expected<std::unique_ptr<BenchmarkRunner::FunctionExecutor>> Executor =
createFunctionExecutor(std::move(ObjectFile), RC.BenchmarkResult.Key);
if (!Executor)
return {Executor.takeError(), std::move(BenchmarkResult)};
auto NewMeasurements = runMeasurements(**Executor);
if (Error E = NewMeasurements.takeError()) {
return {std::move(E), std::move(BenchmarkResult)};
}
assert(BenchmarkResult.MinInstructions > 0 && "invalid MinInstructions");
for (BenchmarkMeasure &BM : *NewMeasurements) {
// Scale the measurements by the number of instructions.
BM.PerInstructionValue /= BenchmarkResult.MinInstructions;
// Scale the measurements by the number of times the entire snippet is
// repeated.
BM.PerSnippetValue /=
std::ceil(BenchmarkResult.MinInstructions /
static_cast<double>(BenchmarkResult.Key.Instructions.size()));
}
BenchmarkResult.Measurements = std::move(*NewMeasurements);
return {Error::success(), std::move(BenchmarkResult)};
}
Expected<std::string>
BenchmarkRunner::writeObjectFile(StringRef Buffer, StringRef FileName) const {
int ResultFD = 0;
SmallString<256> ResultPath = FileName;
if (Error E = errorCodeToError(
FileName.empty() ? sys::fs::createTemporaryFile("snippet", "o",
ResultFD, ResultPath)
: sys::fs::openFileForReadWrite(
FileName, ResultFD, sys::fs::CD_CreateAlways,
sys::fs::OF_None)))
return std::move(E);
raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/);
OFS.write(Buffer.data(), Buffer.size());
OFS.flush();
return std::string(ResultPath);
}
static bool EventLessThan(const std::pair<ValidationEvent, const char *> LHS,
const ValidationEvent RHS) {
return static_cast<int>(LHS.first) < static_cast<int>(RHS);
}
Error BenchmarkRunner::getValidationCountersToRun(
SmallVector<const char *> &ValCountersToRun) const {
const PfmCountersInfo &PCI = State.getPfmCounters();
ValCountersToRun.reserve(ValidationCounters.size());
ValCountersToRun.reserve(ValidationCounters.size());
ArrayRef TargetValidationEvents(PCI.ValidationEvents,
PCI.NumValidationEvents);
for (const ValidationEvent RequestedValEvent : ValidationCounters) {
auto ValCounterIt =
lower_bound(TargetValidationEvents, RequestedValEvent, EventLessThan);
if (ValCounterIt == TargetValidationEvents.end() ||
ValCounterIt->first != RequestedValEvent)
return make_error<Failure>("Cannot create validation counter");
assert(ValCounterIt->first == RequestedValEvent &&
"The array of validation events from the target should be sorted");
ValCountersToRun.push_back(ValCounterIt->second);
}
return Error::success();
}
BenchmarkRunner::FunctionExecutor::~FunctionExecutor() {}
} // namespace exegesis
} // namespace llvm
|