1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
|
//===-- ProfileGenerator.cpp - Profile Generator ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ProfileGenerator.h"
#include "ErrorHandling.h"
#include "MissingFrameInferrer.h"
#include "PerfReader.h"
#include "ProfiledBinary.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include <algorithm>
#include <float.h>
#include <unordered_set>
#include <utility>
cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
cl::Required,
cl::desc("Output profile file"));
static cl::alias OutputA("o", cl::desc("Alias for --output"),
cl::aliasopt(OutputFilename));
static cl::opt<SampleProfileFormat> OutputFormat(
"format", cl::desc("Format of output profile"), cl::init(SPF_Ext_Binary),
cl::values(
clEnumValN(SPF_Binary, "binary", "Binary encoding (default)"),
clEnumValN(SPF_Ext_Binary, "extbinary", "Extensible binary encoding"),
clEnumValN(SPF_Text, "text", "Text encoding"),
clEnumValN(SPF_GCC, "gcc",
"GCC encoding (only meaningful for -sample)")));
static cl::opt<bool> UseMD5(
"use-md5", cl::Hidden,
cl::desc("Use md5 to represent function names in the output profile (only "
"meaningful for -extbinary)"));
static cl::opt<bool> PopulateProfileSymbolList(
"populate-profile-symbol-list", cl::init(false), cl::Hidden,
cl::desc("Populate profile symbol list (only meaningful for -extbinary)"));
static cl::opt<bool> FillZeroForAllFuncs(
"fill-zero-for-all-funcs", cl::init(false), cl::Hidden,
cl::desc("Attribute all functions' range with zero count "
"even it's not hit by any samples."));
static cl::opt<int32_t, true> RecursionCompression(
"compress-recursion",
cl::desc("Compressing recursion by deduplicating adjacent frame "
"sequences up to the specified size. -1 means no size limit."),
cl::Hidden,
cl::location(llvm::sampleprof::CSProfileGenerator::MaxCompressionSize));
static cl::opt<bool>
TrimColdProfile("trim-cold-profile",
cl::desc("If the total count of the profile is smaller "
"than threshold, it will be trimmed."));
static cl::opt<bool> CSProfMergeColdContext(
"csprof-merge-cold-context", cl::init(true),
cl::desc("If the total count of context profile is smaller than "
"the threshold, it will be merged into context-less base "
"profile."));
static cl::opt<uint32_t> CSProfMaxColdContextDepth(
"csprof-max-cold-context-depth", cl::init(1),
cl::desc("Keep the last K contexts while merging cold profile. 1 means the "
"context-less base profile"));
static cl::opt<int, true> CSProfMaxContextDepth(
"csprof-max-context-depth",
cl::desc("Keep the last K contexts while merging profile. -1 means no "
"depth limit."),
cl::location(llvm::sampleprof::CSProfileGenerator::MaxContextDepth));
static cl::opt<double> ProfileDensityThreshold(
"profile-density-threshold", llvm::cl::init(50),
llvm::cl::desc("If the profile density is below the given threshold, it "
"will be suggested to increase the sampling rate."),
llvm::cl::Optional);
static cl::opt<bool> ShowDensity("show-density", llvm::cl::init(false),
llvm::cl::desc("show profile density details"),
llvm::cl::Optional);
static cl::opt<int> ProfileDensityCutOffHot(
"profile-density-cutoff-hot", llvm::cl::init(990000),
llvm::cl::desc("Total samples cutoff for functions used to calculate "
"profile density."));
static cl::opt<bool> UpdateTotalSamples(
"update-total-samples", llvm::cl::init(false),
llvm::cl::desc(
"Update total samples by accumulating all its body samples."),
llvm::cl::Optional);
static cl::opt<bool> GenCSNestedProfile(
"gen-cs-nested-profile", cl::Hidden, cl::init(true),
cl::desc("Generate nested function profiles for CSSPGO"));
cl::opt<bool> InferMissingFrames(
"infer-missing-frames", llvm::cl::init(true),
llvm::cl::desc(
"Infer missing call frames due to compiler tail call elimination."),
llvm::cl::Optional);
extern cl::opt<bool> LeadingIPOnly;
using namespace llvm;
using namespace sampleprof;
namespace llvm {
extern cl::opt<int> ProfileSummaryCutoffHot;
extern cl::opt<bool> UseContextLessSummary;
namespace sampleprof {
// Initialize the MaxCompressionSize to -1 which means no size limit
int32_t CSProfileGenerator::MaxCompressionSize = -1;
int CSProfileGenerator::MaxContextDepth = -1;
bool ProfileGeneratorBase::UseFSDiscriminator = false;
std::unique_ptr<ProfileGeneratorBase>
ProfileGeneratorBase::create(ProfiledBinary *Binary,
const ContextSampleCounterMap *SampleCounters,
bool ProfileIsCS) {
std::unique_ptr<ProfileGeneratorBase> Generator;
if (ProfileIsCS) {
Generator.reset(new CSProfileGenerator(Binary, SampleCounters));
} else {
Generator.reset(new ProfileGenerator(Binary, SampleCounters));
}
ProfileGeneratorBase::UseFSDiscriminator = Binary->useFSDiscriminator();
FunctionSamples::ProfileIsFS = Binary->useFSDiscriminator();
return Generator;
}
std::unique_ptr<ProfileGeneratorBase>
ProfileGeneratorBase::create(ProfiledBinary *Binary, SampleProfileMap &Profiles,
bool ProfileIsCS) {
std::unique_ptr<ProfileGeneratorBase> Generator;
if (ProfileIsCS) {
Generator.reset(new CSProfileGenerator(Binary, Profiles));
} else {
Generator.reset(new ProfileGenerator(Binary, std::move(Profiles)));
}
ProfileGeneratorBase::UseFSDiscriminator = Binary->useFSDiscriminator();
FunctionSamples::ProfileIsFS = Binary->useFSDiscriminator();
return Generator;
}
void ProfileGeneratorBase::write(std::unique_ptr<SampleProfileWriter> Writer,
SampleProfileMap &ProfileMap) {
// Populate profile symbol list if extended binary format is used.
ProfileSymbolList SymbolList;
if (PopulateProfileSymbolList && OutputFormat == SPF_Ext_Binary) {
Binary->populateSymbolListFromDWARF(SymbolList);
Writer->setProfileSymbolList(&SymbolList);
}
if (std::error_code EC = Writer->write(ProfileMap))
exitWithError(std::move(EC));
}
void ProfileGeneratorBase::write() {
auto WriterOrErr = SampleProfileWriter::create(OutputFilename, OutputFormat);
if (std::error_code EC = WriterOrErr.getError())
exitWithError(EC, OutputFilename);
if (UseMD5) {
if (OutputFormat != SPF_Ext_Binary)
WithColor::warning() << "-use-md5 is ignored. Specify "
"--format=extbinary to enable it\n";
else
WriterOrErr.get()->setUseMD5();
}
write(std::move(WriterOrErr.get()), ProfileMap);
}
void ProfileGeneratorBase::showDensitySuggestion(double Density) {
if (Density == 0.0)
WithColor::warning() << "The output profile is empty or the "
"--profile-density-cutoff-hot option is "
"set too low. Please check your command.\n";
else if (Density < ProfileDensityThreshold)
WithColor::warning()
<< "Sample PGO is estimated to optimize better with "
<< format("%.1f", ProfileDensityThreshold / Density)
<< "x more samples. Please consider increasing sampling rate or "
"profiling for longer duration to get more samples.\n";
if (ShowDensity)
outs() << "Functions with density >= " << format("%.1f", Density)
<< " account for "
<< format("%.2f",
static_cast<double>(ProfileDensityCutOffHot) / 10000)
<< "% total sample counts.\n";
}
bool ProfileGeneratorBase::filterAmbiguousProfile(FunctionSamples &FS) {
for (const auto &Prefix : FuncPrefixsToFilter) {
if (FS.getFuncName().starts_with(Prefix))
return true;
}
// Filter the function profiles for the inlinees. It's useful for fuzzy
// profile matching which flattens the profile and inlinees' samples are
// merged into top-level function.
for (auto &Callees :
const_cast<CallsiteSampleMap &>(FS.getCallsiteSamples())) {
auto &CalleesMap = Callees.second;
for (auto I = CalleesMap.begin(); I != CalleesMap.end();) {
auto FS = I++;
if (filterAmbiguousProfile(FS->second))
CalleesMap.erase(FS);
}
}
return false;
}
// For built-in local initialization function such as __cxx_global_var_init,
// __tls_init prefix function, there could be multiple versions of the functions
// in the final binary. However, in the profile generation, we call
// getCanonicalFnName to canonicalize the names which strips the suffixes.
// Therefore, samples from different functions queries the same profile and the
// samples are merged. As the functions are essentially different, entries of
// the merged profile are ambiguous. In sample loader, the IR from one version
// would be attributed towards a merged entries, which is inaccurate. Especially
// for fuzzy profile matching, it gets multiple callsites(from different
// function) but used to match one callsite, which misleads the matching and
// causes a lot of false positives report. Hence, we want to filter them out
// from the profile map during the profile generation time. The profiles are all
// cold functions, it won't have perf impact.
void ProfileGeneratorBase::filterAmbiguousProfile(SampleProfileMap &Profiles) {
for (auto I = ProfileMap.begin(); I != ProfileMap.end();) {
auto FS = I++;
if (filterAmbiguousProfile(FS->second))
ProfileMap.erase(FS);
}
}
void ProfileGeneratorBase::findDisjointRanges(RangeSample &DisjointRanges,
const RangeSample &Ranges) {
/*
Regions may overlap with each other. Using the boundary info, find all
disjoint ranges and their sample count. BoundaryPoint contains the count
multiple samples begin/end at this points.
|<--100-->| Sample1
|<------200------>| Sample2
A B C
In the example above,
Sample1 begins at A, ends at B, its value is 100.
Sample2 beings at A, ends at C, its value is 200.
For A, BeginCount is the sum of sample begins at A, which is 300 and no
samples ends at A, so EndCount is 0.
Then boundary points A, B, and C with begin/end counts are:
A: (300, 0)
B: (0, 100)
C: (0, 200)
*/
struct BoundaryPoint {
// Sum of sample counts beginning at this point
uint64_t BeginCount = UINT64_MAX;
// Sum of sample counts ending at this point
uint64_t EndCount = UINT64_MAX;
// Is the begin point of a zero range.
bool IsZeroRangeBegin = false;
// Is the end point of a zero range.
bool IsZeroRangeEnd = false;
void addBeginCount(uint64_t Count) {
if (BeginCount == UINT64_MAX)
BeginCount = 0;
BeginCount += Count;
}
void addEndCount(uint64_t Count) {
if (EndCount == UINT64_MAX)
EndCount = 0;
EndCount += Count;
}
};
/*
For the above example. With boundary points, follwing logic finds two
disjoint region of
[A,B]: 300
[B+1,C]: 200
If there is a boundary point that both begin and end, the point itself
becomes a separate disjoint region. For example, if we have original
ranges of
|<--- 100 --->|
|<--- 200 --->|
A B C
there are three boundary points with their begin/end counts of
A: (100, 0)
B: (200, 100)
C: (0, 200)
the disjoint ranges would be
[A, B-1]: 100
[B, B]: 300
[B+1, C]: 200.
Example for zero value range:
|<--- 100 --->|
|<--- 200 --->|
|<--------------- 0 ----------------->|
A B C D E F
[A, B-1] : 0
[B, C] : 100
[C+1, D-1]: 0
[D, E] : 200
[E+1, F] : 0
*/
std::map<uint64_t, BoundaryPoint> Boundaries;
for (const auto &Item : Ranges) {
assert(Item.first.first <= Item.first.second &&
"Invalid instruction range");
auto &BeginPoint = Boundaries[Item.first.first];
auto &EndPoint = Boundaries[Item.first.second];
uint64_t Count = Item.second;
BeginPoint.addBeginCount(Count);
EndPoint.addEndCount(Count);
if (Count == 0) {
BeginPoint.IsZeroRangeBegin = true;
EndPoint.IsZeroRangeEnd = true;
}
}
// Use UINT64_MAX to indicate there is no existing range between BeginAddress
// and the next valid address
uint64_t BeginAddress = UINT64_MAX;
int ZeroRangeDepth = 0;
uint64_t Count = 0;
for (const auto &Item : Boundaries) {
uint64_t Address = Item.first;
const BoundaryPoint &Point = Item.second;
if (Point.BeginCount != UINT64_MAX) {
if (BeginAddress != UINT64_MAX)
DisjointRanges[{BeginAddress, Address - 1}] = Count;
Count += Point.BeginCount;
BeginAddress = Address;
ZeroRangeDepth += Point.IsZeroRangeBegin;
}
if (Point.EndCount != UINT64_MAX) {
assert((BeginAddress != UINT64_MAX) &&
"First boundary point cannot be 'end' point");
DisjointRanges[{BeginAddress, Address}] = Count;
assert(Count >= Point.EndCount && "Mismatched live ranges");
Count -= Point.EndCount;
BeginAddress = Address + 1;
ZeroRangeDepth -= Point.IsZeroRangeEnd;
// If the remaining count is zero and it's no longer in a zero range, this
// means we consume all the ranges before, thus mark BeginAddress as
// UINT64_MAX. e.g. supposing we have two non-overlapping ranges:
// [<---- 10 ---->]
// [<---- 20 ---->]
// A B C D
// The BeginAddress(B+1) will reset to invalid(UINT64_MAX), so we won't
// have the [B+1, C-1] zero range.
if (Count == 0 && ZeroRangeDepth == 0)
BeginAddress = UINT64_MAX;
}
}
}
void ProfileGeneratorBase::updateBodySamplesforFunctionProfile(
FunctionSamples &FunctionProfile, const SampleContextFrame &LeafLoc,
uint64_t Count) {
// Use the maximum count of samples with same line location
uint32_t Discriminator = getBaseDiscriminator(LeafLoc.Location.Discriminator);
if (LeadingIPOnly) {
// When computing an IP-based profile we take the SUM of counts at the
// location instead of applying duplication factors and taking the MAX.
FunctionProfile.addBodySamples(LeafLoc.Location.LineOffset, Discriminator,
Count);
} else {
// Otherwise, use duplication factor to compensate for loop
// unroll/vectorization. Note that this is only needed when we're taking
// MAX of the counts at the location instead of SUM.
Count *= getDuplicationFactor(LeafLoc.Location.Discriminator);
ErrorOr<uint64_t> R = FunctionProfile.findSamplesAt(
LeafLoc.Location.LineOffset, Discriminator);
uint64_t PreviousCount = R ? R.get() : 0;
if (PreviousCount <= Count) {
FunctionProfile.addBodySamples(LeafLoc.Location.LineOffset, Discriminator,
Count - PreviousCount);
}
}
}
void ProfileGeneratorBase::updateTotalSamples() {
for (auto &Item : ProfileMap) {
FunctionSamples &FunctionProfile = Item.second;
FunctionProfile.updateTotalSamples();
}
}
void ProfileGeneratorBase::updateCallsiteSamples() {
for (auto &Item : ProfileMap) {
FunctionSamples &FunctionProfile = Item.second;
FunctionProfile.updateCallsiteSamples();
}
}
void ProfileGeneratorBase::updateFunctionSamples() {
updateCallsiteSamples();
if (UpdateTotalSamples)
updateTotalSamples();
}
void ProfileGeneratorBase::collectProfiledFunctions() {
std::unordered_set<const BinaryFunction *> ProfiledFunctions;
if (collectFunctionsFromRawProfile(ProfiledFunctions))
Binary->setProfiledFunctions(ProfiledFunctions);
else if (collectFunctionsFromLLVMProfile(ProfiledFunctions))
Binary->setProfiledFunctions(ProfiledFunctions);
else
llvm_unreachable("Unsupported input profile");
}
bool ProfileGeneratorBase::collectFunctionsFromRawProfile(
std::unordered_set<const BinaryFunction *> &ProfiledFunctions) {
if (!SampleCounters)
return false;
// Go through all the stacks, ranges and branches in sample counters, use
// the start of the range to look up the function it belongs and record the
// function.
for (const auto &CI : *SampleCounters) {
if (const auto *CtxKey = dyn_cast<AddrBasedCtxKey>(CI.first.getPtr())) {
for (auto StackAddr : CtxKey->Context) {
if (FuncRange *FRange = Binary->findFuncRange(StackAddr))
ProfiledFunctions.insert(FRange->Func);
}
}
for (auto Item : CI.second.RangeCounter) {
uint64_t StartAddress = Item.first.first;
if (FuncRange *FRange = Binary->findFuncRange(StartAddress))
ProfiledFunctions.insert(FRange->Func);
}
for (auto Item : CI.second.BranchCounter) {
uint64_t SourceAddress = Item.first.first;
uint64_t TargetAddress = Item.first.second;
if (FuncRange *FRange = Binary->findFuncRange(SourceAddress))
ProfiledFunctions.insert(FRange->Func);
if (FuncRange *FRange = Binary->findFuncRange(TargetAddress))
ProfiledFunctions.insert(FRange->Func);
}
}
return true;
}
bool ProfileGenerator::collectFunctionsFromLLVMProfile(
std::unordered_set<const BinaryFunction *> &ProfiledFunctions) {
for (const auto &FS : ProfileMap) {
if (auto *Func = Binary->getBinaryFunction(FS.second.getFunction()))
ProfiledFunctions.insert(Func);
}
return true;
}
bool CSProfileGenerator::collectFunctionsFromLLVMProfile(
std::unordered_set<const BinaryFunction *> &ProfiledFunctions) {
for (auto *Node : ContextTracker) {
if (!Node->getFuncName().empty())
if (auto *Func = Binary->getBinaryFunction(Node->getFuncName()))
ProfiledFunctions.insert(Func);
}
return true;
}
FunctionSamples &
ProfileGenerator::getTopLevelFunctionProfile(FunctionId FuncName) {
SampleContext Context(FuncName);
return ProfileMap.create(Context);
}
void ProfileGenerator::generateProfile() {
collectProfiledFunctions();
if (Binary->usePseudoProbes())
Binary->decodePseudoProbe();
if (SampleCounters) {
if (Binary->usePseudoProbes()) {
generateProbeBasedProfile();
} else {
generateLineNumBasedProfile();
}
}
postProcessProfiles();
}
void ProfileGenerator::postProcessProfiles() {
computeSummaryAndThreshold(ProfileMap);
trimColdProfiles(ProfileMap, ColdCountThreshold);
filterAmbiguousProfile(ProfileMap);
calculateAndShowDensity(ProfileMap);
}
void ProfileGenerator::trimColdProfiles(const SampleProfileMap &Profiles,
uint64_t ColdCntThreshold) {
if (!TrimColdProfile)
return;
// Move cold profiles into a tmp container.
std::vector<hash_code> ColdProfileHashes;
for (const auto &I : ProfileMap) {
if (I.second.getTotalSamples() < ColdCntThreshold)
ColdProfileHashes.emplace_back(I.first);
}
// Remove the cold profile from ProfileMap.
for (const auto &I : ColdProfileHashes)
ProfileMap.erase(I);
}
void ProfileGenerator::generateLineNumBasedProfile() {
assert(SampleCounters->size() == 1 &&
"Must have one entry for profile generation.");
const SampleCounter &SC = SampleCounters->begin()->second;
// Fill in function body samples
populateBodySamplesForAllFunctions(SC.RangeCounter);
// Fill in boundary sample counts as well as call site samples for calls
populateBoundarySamplesForAllFunctions(SC.BranchCounter);
updateFunctionSamples();
}
void ProfileGenerator::generateProbeBasedProfile() {
assert(SampleCounters->size() == 1 &&
"Must have one entry for profile generation.");
// Enable pseudo probe functionalities in SampleProf
FunctionSamples::ProfileIsProbeBased = true;
const SampleCounter &SC = SampleCounters->begin()->second;
// Fill in function body samples
populateBodySamplesWithProbesForAllFunctions(SC.RangeCounter);
// Fill in boundary sample counts as well as call site samples for calls
populateBoundarySamplesWithProbesForAllFunctions(SC.BranchCounter);
updateFunctionSamples();
}
void ProfileGenerator::populateBodySamplesWithProbesForAllFunctions(
const RangeSample &RangeCounter) {
ProbeCounterMap ProbeCounter;
// preprocessRangeCounter returns disjoint ranges, so no longer to redo it
// inside extractProbesFromRange.
extractProbesFromRange(preprocessRangeCounter(RangeCounter), ProbeCounter,
false);
for (const auto &PI : ProbeCounter) {
const MCDecodedPseudoProbe *Probe = PI.first;
uint64_t Count = PI.second;
SampleContextFrameVector FrameVec;
Binary->getInlineContextForProbe(Probe, FrameVec, true);
FunctionSamples &FunctionProfile =
getLeafProfileAndAddTotalSamples(FrameVec, Count);
FunctionProfile.addBodySamples(Probe->getIndex(), Probe->getDiscriminator(),
Count);
if (Probe->isEntry())
FunctionProfile.addHeadSamples(Count);
}
}
void ProfileGenerator::populateBoundarySamplesWithProbesForAllFunctions(
const BranchSample &BranchCounters) {
for (const auto &Entry : BranchCounters) {
uint64_t SourceAddress = Entry.first.first;
uint64_t TargetAddress = Entry.first.second;
uint64_t Count = Entry.second;
assert(Count != 0 && "Unexpected zero weight branch");
StringRef CalleeName = getCalleeNameForAddress(TargetAddress);
if (CalleeName.size() == 0)
continue;
const MCDecodedPseudoProbe *CallProbe =
Binary->getCallProbeForAddr(SourceAddress);
if (CallProbe == nullptr)
continue;
// Record called target sample and its count.
SampleContextFrameVector FrameVec;
Binary->getInlineContextForProbe(CallProbe, FrameVec, true);
if (!FrameVec.empty()) {
FunctionSamples &FunctionProfile =
getLeafProfileAndAddTotalSamples(FrameVec, 0);
FunctionProfile.addCalledTargetSamples(
FrameVec.back().Location.LineOffset,
FrameVec.back().Location.Discriminator,
FunctionId(CalleeName), Count);
}
}
}
FunctionSamples &ProfileGenerator::getLeafProfileAndAddTotalSamples(
const SampleContextFrameVector &FrameVec, uint64_t Count) {
// Get top level profile
FunctionSamples *FunctionProfile =
&getTopLevelFunctionProfile(FrameVec[0].Func);
FunctionProfile->addTotalSamples(Count);
if (Binary->usePseudoProbes()) {
const auto *FuncDesc = Binary->getFuncDescForGUID(
FunctionProfile->getFunction().getHashCode());
FunctionProfile->setFunctionHash(FuncDesc->FuncHash);
}
for (size_t I = 1; I < FrameVec.size(); I++) {
LineLocation Callsite(
FrameVec[I - 1].Location.LineOffset,
getBaseDiscriminator(FrameVec[I - 1].Location.Discriminator));
FunctionSamplesMap &SamplesMap =
FunctionProfile->functionSamplesAt(Callsite);
auto Ret =
SamplesMap.emplace(FrameVec[I].Func, FunctionSamples());
if (Ret.second) {
SampleContext Context(FrameVec[I].Func);
Ret.first->second.setContext(Context);
}
FunctionProfile = &Ret.first->second;
FunctionProfile->addTotalSamples(Count);
if (Binary->usePseudoProbes()) {
const auto *FuncDesc = Binary->getFuncDescForGUID(
FunctionProfile->getFunction().getHashCode());
FunctionProfile->setFunctionHash(FuncDesc->FuncHash);
}
}
return *FunctionProfile;
}
RangeSample
ProfileGenerator::preprocessRangeCounter(const RangeSample &RangeCounter) {
RangeSample Ranges(RangeCounter.begin(), RangeCounter.end());
if (FillZeroForAllFuncs) {
for (auto &FuncI : Binary->getAllBinaryFunctions()) {
for (auto &R : FuncI.second.Ranges) {
Ranges[{R.first, R.second - 1}] += 0;
}
}
} else {
// For each range, we search for all ranges of the function it belongs to
// and initialize it with zero count, so it remains zero if doesn't hit any
// samples. This is to be consistent with compiler that interpret zero count
// as unexecuted(cold).
for (const auto &I : RangeCounter) {
uint64_t StartAddress = I.first.first;
for (const auto &Range : Binary->getRanges(StartAddress))
Ranges[{Range.first, Range.second - 1}] += 0;
}
}
RangeSample DisjointRanges;
findDisjointRanges(DisjointRanges, Ranges);
return DisjointRanges;
}
void ProfileGenerator::populateBodySamplesForAllFunctions(
const RangeSample &RangeCounter) {
for (const auto &Range : preprocessRangeCounter(RangeCounter)) {
uint64_t RangeBegin = Range.first.first;
uint64_t RangeEnd = Range.first.second;
uint64_t Count = Range.second;
InstructionPointer IP(Binary, RangeBegin, true);
// Disjoint ranges may have range in the middle of two instr,
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
// can be Addr1+1 to Addr2-1. We should ignore such range.
if (IP.Address > RangeEnd)
continue;
do {
const SampleContextFrameVector FrameVec =
Binary->getFrameLocationStack(IP.Address);
if (!FrameVec.empty()) {
// FIXME: As accumulating total count per instruction caused some
// regression, we changed to accumulate total count per byte as a
// workaround. Tuning hotness threshold on the compiler side might be
// necessary in the future.
FunctionSamples &FunctionProfile = getLeafProfileAndAddTotalSamples(
FrameVec, Count * Binary->getInstSize(IP.Address));
updateBodySamplesforFunctionProfile(FunctionProfile, FrameVec.back(),
Count);
}
} while (IP.advance() && IP.Address <= RangeEnd);
}
}
StringRef
ProfileGeneratorBase::getCalleeNameForAddress(uint64_t TargetAddress) {
// Get the function range by branch target if it's a call branch.
auto *FRange = Binary->findFuncRangeForStartAddr(TargetAddress);
// We won't accumulate sample count for a range whose start is not the real
// function entry such as outlined function or inner labels.
if (!FRange || !FRange->IsFuncEntry)
return StringRef();
return FunctionSamples::getCanonicalFnName(FRange->getFuncName());
}
void ProfileGenerator::populateBoundarySamplesForAllFunctions(
const BranchSample &BranchCounters) {
for (const auto &Entry : BranchCounters) {
uint64_t SourceAddress = Entry.first.first;
uint64_t TargetAddress = Entry.first.second;
uint64_t Count = Entry.second;
assert(Count != 0 && "Unexpected zero weight branch");
StringRef CalleeName = getCalleeNameForAddress(TargetAddress);
if (CalleeName.size() == 0)
continue;
// Record called target sample and its count.
const SampleContextFrameVector &FrameVec =
Binary->getCachedFrameLocationStack(SourceAddress);
if (!FrameVec.empty()) {
FunctionSamples &FunctionProfile =
getLeafProfileAndAddTotalSamples(FrameVec, 0);
FunctionProfile.addCalledTargetSamples(
FrameVec.back().Location.LineOffset,
getBaseDiscriminator(FrameVec.back().Location.Discriminator),
FunctionId(CalleeName), Count);
}
// Add head samples for callee.
FunctionSamples &CalleeProfile =
getTopLevelFunctionProfile(FunctionId(CalleeName));
CalleeProfile.addHeadSamples(Count);
}
}
void ProfileGeneratorBase::calculateBodySamplesAndSize(
const FunctionSamples &FSamples, uint64_t &TotalBodySamples,
uint64_t &FuncBodySize) {
// Note that ideally the size should be the number of function instruction.
// However, for probe-based profile, we don't have the accurate instruction
// count for each probe, instead, the probe sample is the samples count for
// the block, which is equivelant to
// total_instruction_samples/num_of_instruction in one block. Hence, we use
// the number of probe as a proxy for the function's size.
FuncBodySize += FSamples.getBodySamples().size();
// The accumulated body samples re-calculated here could be different from the
// TotalSamples(getTotalSamples) field of FunctionSamples for line-number
// based profile. The reason is that TotalSamples is the sum of all the
// samples of the machine instruction in one source-code line, however, the
// entry of Bodysamples is the only max number of them, so the TotalSamples is
// usually much bigger than the accumulated body samples as one souce-code
// line can emit many machine instructions. We observed a regression when we
// switched to use the accumulated body samples(by using
// -update-total-samples). Hence, it's safer to re-calculate here to avoid
// such discrepancy. There is no problem for probe-based profile, as the
// TotalSamples is exactly the same as the accumulated body samples.
for (const auto &I : FSamples.getBodySamples())
TotalBodySamples += I.second.getSamples();
for (const auto &CallsiteSamples : FSamples.getCallsiteSamples())
for (const auto &Callee : CallsiteSamples.second) {
// For binary-level density, the inlinees' samples and size should be
// included in the calculation.
calculateBodySamplesAndSize(Callee.second, TotalBodySamples,
FuncBodySize);
}
}
// Calculate Profile-density:
// Calculate the density for each function and sort them in descending order,
// keep accumulating their total samples unitl it exceeds the
// percentage_threshold(cut-off) of total profile samples, the profile-density
// is the last(minimum) function-density of the processed functions, which means
// all the functions hot to perf are on good density if the profile-density is
// good. The percentage_threshold(--profile-density-cutoff-hot) is configurable
// depending on how much regression the system want to tolerate.
double
ProfileGeneratorBase::calculateDensity(const SampleProfileMap &Profiles) {
double ProfileDensity = 0.0;
uint64_t TotalProfileSamples = 0;
// A list of the function profile density and its total samples.
std::vector<std::pair<double, uint64_t>> FuncDensityList;
for (const auto &I : Profiles) {
uint64_t TotalBodySamples = 0;
uint64_t FuncBodySize = 0;
calculateBodySamplesAndSize(I.second, TotalBodySamples, FuncBodySize);
if (FuncBodySize == 0)
continue;
double FuncDensity = static_cast<double>(TotalBodySamples) / FuncBodySize;
TotalProfileSamples += TotalBodySamples;
FuncDensityList.emplace_back(FuncDensity, TotalBodySamples);
}
// Sorted by the density in descending order.
llvm::stable_sort(FuncDensityList, [&](const std::pair<double, uint64_t> &A,
const std::pair<double, uint64_t> &B) {
if (A.first != B.first)
return A.first > B.first;
return A.second < B.second;
});
uint64_t AccumulatedSamples = 0;
uint32_t I = 0;
assert(ProfileDensityCutOffHot <= 1000000 &&
"The cutoff value is greater than 1000000(100%)");
while (AccumulatedSamples < TotalProfileSamples *
static_cast<float>(ProfileDensityCutOffHot) /
1000000 &&
I < FuncDensityList.size()) {
AccumulatedSamples += FuncDensityList[I].second;
ProfileDensity = FuncDensityList[I].first;
I++;
}
return ProfileDensity;
}
void ProfileGeneratorBase::calculateAndShowDensity(
const SampleProfileMap &Profiles) {
double Density = calculateDensity(Profiles);
showDensitySuggestion(Density);
}
FunctionSamples *
CSProfileGenerator::getOrCreateFunctionSamples(ContextTrieNode *ContextNode,
bool WasLeafInlined) {
FunctionSamples *FProfile = ContextNode->getFunctionSamples();
if (!FProfile) {
FSamplesList.emplace_back();
FProfile = &FSamplesList.back();
FProfile->setFunction(ContextNode->getFuncName());
ContextNode->setFunctionSamples(FProfile);
}
// Update ContextWasInlined attribute for existing contexts.
// The current function can be called in two ways:
// - when processing a probe of the current frame
// - when processing the entry probe of an inlinee's frame, which
// is then used to update the callsite count of the current frame.
// The two can happen in any order, hence here we are making sure
// `ContextWasInlined` is always set as expected.
// TODO: Note that the former does not always happen if no probes of the
// current frame has samples, and if the latter happens, we could lose the
// attribute. This should be fixed.
if (WasLeafInlined)
FProfile->getContext().setAttribute(ContextWasInlined);
return FProfile;
}
ContextTrieNode *
CSProfileGenerator::getOrCreateContextNode(const SampleContextFrames Context,
bool WasLeafInlined) {
ContextTrieNode *ContextNode =
ContextTracker.getOrCreateContextPath(Context, true);
getOrCreateFunctionSamples(ContextNode, WasLeafInlined);
return ContextNode;
}
void CSProfileGenerator::generateProfile() {
FunctionSamples::ProfileIsCS = true;
collectProfiledFunctions();
if (Binary->usePseudoProbes()) {
Binary->decodePseudoProbe();
if (InferMissingFrames)
initializeMissingFrameInferrer();
}
if (SampleCounters) {
if (Binary->usePseudoProbes()) {
generateProbeBasedProfile();
} else {
generateLineNumBasedProfile();
}
}
if (Binary->getTrackFuncContextSize())
computeSizeForProfiledFunctions();
postProcessProfiles();
}
void CSProfileGenerator::initializeMissingFrameInferrer() {
Binary->getMissingContextInferrer()->initialize(SampleCounters);
}
void CSProfileGenerator::inferMissingFrames(
const SmallVectorImpl<uint64_t> &Context,
SmallVectorImpl<uint64_t> &NewContext) {
Binary->inferMissingFrames(Context, NewContext);
}
void CSProfileGenerator::computeSizeForProfiledFunctions() {
for (auto *Func : Binary->getProfiledFunctions())
Binary->computeInlinedContextSizeForFunc(Func);
// Flush the symbolizer to save memory.
Binary->flushSymbolizer();
}
void CSProfileGenerator::updateFunctionSamples() {
for (auto *Node : ContextTracker) {
FunctionSamples *FSamples = Node->getFunctionSamples();
if (FSamples) {
if (UpdateTotalSamples)
FSamples->updateTotalSamples();
FSamples->updateCallsiteSamples();
}
}
}
void CSProfileGenerator::generateLineNumBasedProfile() {
for (const auto &CI : *SampleCounters) {
const auto *CtxKey = cast<StringBasedCtxKey>(CI.first.getPtr());
ContextTrieNode *ContextNode = &getRootContext();
// Sample context will be empty if the jump is an external-to-internal call
// pattern, the head samples should be added for the internal function.
if (!CtxKey->Context.empty()) {
// Get or create function profile for the range
ContextNode =
getOrCreateContextNode(CtxKey->Context, CtxKey->WasLeafInlined);
// Fill in function body samples
populateBodySamplesForFunction(*ContextNode->getFunctionSamples(),
CI.second.RangeCounter);
}
// Fill in boundary sample counts as well as call site samples for calls
populateBoundarySamplesForFunction(ContextNode, CI.second.BranchCounter);
}
// Fill in call site value sample for inlined calls and also use context to
// infer missing samples. Since we don't have call count for inlined
// functions, we estimate it from inlinee's profile using the entry of the
// body sample.
populateInferredFunctionSamples(getRootContext());
updateFunctionSamples();
}
void CSProfileGenerator::populateBodySamplesForFunction(
FunctionSamples &FunctionProfile, const RangeSample &RangeCounter) {
// Compute disjoint ranges first, so we can use MAX
// for calculating count for each location.
RangeSample Ranges;
findDisjointRanges(Ranges, RangeCounter);
for (const auto &Range : Ranges) {
uint64_t RangeBegin = Range.first.first;
uint64_t RangeEnd = Range.first.second;
uint64_t Count = Range.second;
// Disjoint ranges have introduce zero-filled gap that
// doesn't belong to current context, filter them out.
if (Count == 0)
continue;
InstructionPointer IP(Binary, RangeBegin, true);
// Disjoint ranges may have range in the middle of two instr,
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
// can be Addr1+1 to Addr2-1. We should ignore such range.
if (IP.Address > RangeEnd)
continue;
do {
auto LeafLoc = Binary->getInlineLeafFrameLoc(IP.Address);
if (LeafLoc) {
// Recording body sample for this specific context
updateBodySamplesforFunctionProfile(FunctionProfile, *LeafLoc, Count);
FunctionProfile.addTotalSamples(Count);
}
} while (IP.advance() && IP.Address <= RangeEnd);
}
}
void CSProfileGenerator::populateBoundarySamplesForFunction(
ContextTrieNode *Node, const BranchSample &BranchCounters) {
for (const auto &Entry : BranchCounters) {
uint64_t SourceAddress = Entry.first.first;
uint64_t TargetAddress = Entry.first.second;
uint64_t Count = Entry.second;
assert(Count != 0 && "Unexpected zero weight branch");
StringRef CalleeName = getCalleeNameForAddress(TargetAddress);
if (CalleeName.size() == 0)
continue;
ContextTrieNode *CallerNode = Node;
LineLocation CalleeCallSite(0, 0);
if (CallerNode != &getRootContext()) {
// Record called target sample and its count
auto LeafLoc = Binary->getInlineLeafFrameLoc(SourceAddress);
if (LeafLoc) {
CallerNode->getFunctionSamples()->addCalledTargetSamples(
LeafLoc->Location.LineOffset,
getBaseDiscriminator(LeafLoc->Location.Discriminator),
FunctionId(CalleeName),
Count);
// Record head sample for called target(callee)
CalleeCallSite = LeafLoc->Location;
}
}
ContextTrieNode *CalleeNode =
CallerNode->getOrCreateChildContext(CalleeCallSite,
FunctionId(CalleeName));
FunctionSamples *CalleeProfile = getOrCreateFunctionSamples(CalleeNode);
CalleeProfile->addHeadSamples(Count);
}
}
void CSProfileGenerator::populateInferredFunctionSamples(
ContextTrieNode &Node) {
// There is no call jmp sample between the inliner and inlinee, we need to use
// the inlinee's context to infer inliner's context, i.e. parent(inliner)'s
// sample depends on child(inlinee)'s sample, so traverse the tree in
// post-order.
for (auto &It : Node.getAllChildContext())
populateInferredFunctionSamples(It.second);
FunctionSamples *CalleeProfile = Node.getFunctionSamples();
if (!CalleeProfile)
return;
// If we already have head sample counts, we must have value profile
// for call sites added already. Skip to avoid double counting.
if (CalleeProfile->getHeadSamples())
return;
ContextTrieNode *CallerNode = Node.getParentContext();
// If we don't have context, nothing to do for caller's call site.
// This could happen for entry point function.
if (CallerNode == &getRootContext())
return;
LineLocation CallerLeafFrameLoc = Node.getCallSiteLoc();
FunctionSamples &CallerProfile = *getOrCreateFunctionSamples(CallerNode);
// Since we don't have call count for inlined functions, we
// estimate it from inlinee's profile using entry body sample.
uint64_t EstimatedCallCount = CalleeProfile->getHeadSamplesEstimate();
// If we don't have samples with location, use 1 to indicate live.
if (!EstimatedCallCount && !CalleeProfile->getBodySamples().size())
EstimatedCallCount = 1;
CallerProfile.addCalledTargetSamples(CallerLeafFrameLoc.LineOffset,
CallerLeafFrameLoc.Discriminator,
Node.getFuncName(), EstimatedCallCount);
CallerProfile.addBodySamples(CallerLeafFrameLoc.LineOffset,
CallerLeafFrameLoc.Discriminator,
EstimatedCallCount);
CallerProfile.addTotalSamples(EstimatedCallCount);
}
void CSProfileGenerator::convertToProfileMap(
ContextTrieNode &Node, SampleContextFrameVector &Context) {
FunctionSamples *FProfile = Node.getFunctionSamples();
if (FProfile) {
Context.emplace_back(Node.getFuncName(), LineLocation(0, 0));
// Save the new context for future references.
SampleContextFrames NewContext = *Contexts.insert(Context).first;
auto Ret = ProfileMap.emplace(NewContext, std::move(*FProfile));
FunctionSamples &NewProfile = Ret.first->second;
NewProfile.getContext().setContext(NewContext);
Context.pop_back();
}
for (auto &It : Node.getAllChildContext()) {
ContextTrieNode &ChildNode = It.second;
Context.emplace_back(Node.getFuncName(), ChildNode.getCallSiteLoc());
convertToProfileMap(ChildNode, Context);
Context.pop_back();
}
}
void CSProfileGenerator::convertToProfileMap() {
assert(ProfileMap.empty() &&
"ProfileMap should be empty before converting from the trie");
assert(IsProfileValidOnTrie &&
"Do not convert the trie twice, it's already destroyed");
SampleContextFrameVector Context;
for (auto &It : getRootContext().getAllChildContext())
convertToProfileMap(It.second, Context);
IsProfileValidOnTrie = false;
}
void CSProfileGenerator::postProcessProfiles() {
// Compute hot/cold threshold based on profile. This will be used for cold
// context profile merging/trimming.
computeSummaryAndThreshold();
// Run global pre-inliner to adjust/merge context profile based on estimated
// inline decisions.
if (EnableCSPreInliner) {
ContextTracker.populateFuncToCtxtMap();
CSPreInliner(ContextTracker, *Binary, Summary.get()).run();
// Turn off the profile merger by default unless it is explicitly enabled.
if (!CSProfMergeColdContext.getNumOccurrences())
CSProfMergeColdContext = false;
}
convertToProfileMap();
// Trim and merge cold context profile using cold threshold above.
if (TrimColdProfile || CSProfMergeColdContext) {
SampleContextTrimmer(ProfileMap)
.trimAndMergeColdContextProfiles(
HotCountThreshold, TrimColdProfile, CSProfMergeColdContext,
CSProfMaxColdContextDepth, EnableCSPreInliner);
}
if (GenCSNestedProfile) {
ProfileConverter CSConverter(ProfileMap);
CSConverter.convertCSProfiles();
FunctionSamples::ProfileIsCS = false;
}
filterAmbiguousProfile(ProfileMap);
ProfileGeneratorBase::calculateAndShowDensity(ProfileMap);
}
void ProfileGeneratorBase::computeSummaryAndThreshold(
SampleProfileMap &Profiles) {
SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
Summary = Builder.computeSummaryForProfiles(Profiles);
HotCountThreshold = ProfileSummaryBuilder::getHotCountThreshold(
(Summary->getDetailedSummary()));
ColdCountThreshold = ProfileSummaryBuilder::getColdCountThreshold(
(Summary->getDetailedSummary()));
}
void CSProfileGenerator::computeSummaryAndThreshold() {
// Always merge and use context-less profile map to compute summary.
SampleProfileMap ContextLessProfiles;
ContextTracker.createContextLessProfileMap(ContextLessProfiles);
// Set the flag below to avoid merging the profile again in
// computeSummaryAndThreshold
FunctionSamples::ProfileIsCS = false;
assert(
(!UseContextLessSummary.getNumOccurrences() || UseContextLessSummary) &&
"Don't set --profile-summary-contextless to false for profile "
"generation");
ProfileGeneratorBase::computeSummaryAndThreshold(ContextLessProfiles);
// Recover the old value.
FunctionSamples::ProfileIsCS = true;
}
void ProfileGeneratorBase::extractProbesFromRange(
const RangeSample &RangeCounter, ProbeCounterMap &ProbeCounter,
bool FindDisjointRanges) {
const RangeSample *PRanges = &RangeCounter;
RangeSample Ranges;
if (FindDisjointRanges) {
findDisjointRanges(Ranges, RangeCounter);
PRanges = &Ranges;
}
for (const auto &Range : *PRanges) {
uint64_t RangeBegin = Range.first.first;
uint64_t RangeEnd = Range.first.second;
uint64_t Count = Range.second;
InstructionPointer IP(Binary, RangeBegin, true);
// Disjoint ranges may have range in the middle of two instr,
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
// can be Addr1+1 to Addr2-1. We should ignore such range.
if (IP.Address > RangeEnd)
continue;
do {
const AddressProbesMap &Address2ProbesMap =
Binary->getAddress2ProbesMap();
auto It = Address2ProbesMap.find(IP.Address);
if (It != Address2ProbesMap.end()) {
for (const auto &Probe : It->second) {
ProbeCounter[&Probe] += Count;
}
}
} while (IP.advance() && IP.Address <= RangeEnd);
}
}
static void extractPrefixContextStack(SampleContextFrameVector &ContextStack,
const SmallVectorImpl<uint64_t> &AddrVec,
ProfiledBinary *Binary) {
SmallVector<const MCDecodedPseudoProbe *, 16> Probes;
for (auto Address : reverse(AddrVec)) {
const MCDecodedPseudoProbe *CallProbe =
Binary->getCallProbeForAddr(Address);
// These could be the cases when a probe is not found at a calliste. Cutting
// off the context from here since the inliner will not know how to consume
// a context with unknown callsites.
// 1. for functions that are not sampled when
// --decode-probe-for-profiled-functions-only is on.
// 2. for a merged callsite. Callsite merging may cause the loss of original
// probe IDs.
// 3. for an external callsite.
if (!CallProbe)
break;
Probes.push_back(CallProbe);
}
std::reverse(Probes.begin(), Probes.end());
// Extract context stack for reusing, leaf context stack will be added
// compressed while looking up function profile.
for (const auto *P : Probes) {
Binary->getInlineContextForProbe(P, ContextStack, true);
}
}
void CSProfileGenerator::generateProbeBasedProfile() {
// Enable pseudo probe functionalities in SampleProf
FunctionSamples::ProfileIsProbeBased = true;
for (const auto &CI : *SampleCounters) {
const AddrBasedCtxKey *CtxKey =
dyn_cast<AddrBasedCtxKey>(CI.first.getPtr());
// Fill in function body samples from probes, also infer caller's samples
// from callee's probe
populateBodySamplesWithProbes(CI.second.RangeCounter, CtxKey);
// Fill in boundary samples for a call probe
populateBoundarySamplesWithProbes(CI.second.BranchCounter, CtxKey);
}
}
void CSProfileGenerator::populateBodySamplesWithProbes(
const RangeSample &RangeCounter, const AddrBasedCtxKey *CtxKey) {
ProbeCounterMap ProbeCounter;
// Extract the top frame probes by looking up each address among the range in
// the Address2ProbeMap
extractProbesFromRange(RangeCounter, ProbeCounter);
std::unordered_map<MCDecodedPseudoProbeInlineTree *,
std::unordered_set<FunctionSamples *>>
FrameSamples;
for (const auto &PI : ProbeCounter) {
const MCDecodedPseudoProbe *Probe = PI.first;
uint64_t Count = PI.second;
// Disjoint ranges have introduce zero-filled gap that
// doesn't belong to current context, filter them out.
if (!Probe->isBlock() || Count == 0)
continue;
ContextTrieNode *ContextNode = getContextNodeForLeafProbe(CtxKey, Probe);
FunctionSamples &FunctionProfile = *ContextNode->getFunctionSamples();
// Record the current frame and FunctionProfile whenever samples are
// collected for non-danglie probes. This is for reporting all of the
// zero count probes of the frame later.
FrameSamples[Probe->getInlineTreeNode()].insert(&FunctionProfile);
FunctionProfile.addBodySamples(Probe->getIndex(), Probe->getDiscriminator(),
Count);
FunctionProfile.addTotalSamples(Count);
if (Probe->isEntry()) {
FunctionProfile.addHeadSamples(Count);
// Look up for the caller's function profile
const auto *InlinerDesc = Binary->getInlinerDescForProbe(Probe);
ContextTrieNode *CallerNode = ContextNode->getParentContext();
if (InlinerDesc != nullptr && CallerNode != &getRootContext()) {
// Since the context id will be compressed, we have to use callee's
// context id to infer caller's context id to ensure they share the
// same context prefix.
uint64_t CallerIndex = ContextNode->getCallSiteLoc().LineOffset;
uint64_t CallerDiscriminator = ContextNode->getCallSiteLoc().Discriminator;
assert(CallerIndex &&
"Inferred caller's location index shouldn't be zero!");
assert(!CallerDiscriminator &&
"Callsite probe should not have a discriminator!");
FunctionSamples &CallerProfile =
*getOrCreateFunctionSamples(CallerNode);
CallerProfile.setFunctionHash(InlinerDesc->FuncHash);
CallerProfile.addBodySamples(CallerIndex, CallerDiscriminator, Count);
CallerProfile.addTotalSamples(Count);
CallerProfile.addCalledTargetSamples(CallerIndex, CallerDiscriminator,
ContextNode->getFuncName(), Count);
}
}
}
// Assign zero count for remaining probes without sample hits to
// differentiate from probes optimized away, of which the counts are unknown
// and will be inferred by the compiler.
for (auto &I : FrameSamples) {
for (auto *FunctionProfile : I.second) {
for (auto *Probe : I.first->getProbes()) {
FunctionProfile->addBodySamples(Probe->getIndex(),
Probe->getDiscriminator(), 0);
}
}
}
}
void CSProfileGenerator::populateBoundarySamplesWithProbes(
const BranchSample &BranchCounter, const AddrBasedCtxKey *CtxKey) {
for (const auto &BI : BranchCounter) {
uint64_t SourceAddress = BI.first.first;
uint64_t TargetAddress = BI.first.second;
uint64_t Count = BI.second;
const MCDecodedPseudoProbe *CallProbe =
Binary->getCallProbeForAddr(SourceAddress);
if (CallProbe == nullptr)
continue;
FunctionSamples &FunctionProfile =
getFunctionProfileForLeafProbe(CtxKey, CallProbe);
FunctionProfile.addBodySamples(CallProbe->getIndex(), 0, Count);
FunctionProfile.addTotalSamples(Count);
StringRef CalleeName = getCalleeNameForAddress(TargetAddress);
if (CalleeName.size() == 0)
continue;
FunctionProfile.addCalledTargetSamples(CallProbe->getIndex(),
CallProbe->getDiscriminator(),
FunctionId(CalleeName), Count);
}
}
ContextTrieNode *CSProfileGenerator::getContextNodeForLeafProbe(
const AddrBasedCtxKey *CtxKey, const MCDecodedPseudoProbe *LeafProbe) {
const SmallVectorImpl<uint64_t> *PContext = &CtxKey->Context;
SmallVector<uint64_t, 16> NewContext;
if (InferMissingFrames) {
SmallVector<uint64_t, 16> Context = CtxKey->Context;
// Append leaf frame for a complete inference.
Context.push_back(LeafProbe->getAddress());
inferMissingFrames(Context, NewContext);
// Pop out the leaf probe that was pushed in above.
NewContext.pop_back();
PContext = &NewContext;
}
SampleContextFrameVector ContextStack;
extractPrefixContextStack(ContextStack, *PContext, Binary);
// Explicitly copy the context for appending the leaf context
SampleContextFrameVector NewContextStack(ContextStack.begin(),
ContextStack.end());
Binary->getInlineContextForProbe(LeafProbe, NewContextStack, true);
// For leaf inlined context with the top frame, we should strip off the top
// frame's probe id, like:
// Inlined stack: [foo:1, bar:2], the ContextId will be "foo:1 @ bar"
auto LeafFrame = NewContextStack.back();
LeafFrame.Location = LineLocation(0, 0);
NewContextStack.pop_back();
// Compress the context string except for the leaf frame
CSProfileGenerator::compressRecursionContext(NewContextStack);
CSProfileGenerator::trimContext(NewContextStack);
NewContextStack.push_back(LeafFrame);
const auto *FuncDesc = Binary->getFuncDescForGUID(LeafProbe->getGuid());
bool WasLeafInlined = LeafProbe->getInlineTreeNode()->hasInlineSite();
ContextTrieNode *ContextNode =
getOrCreateContextNode(NewContextStack, WasLeafInlined);
ContextNode->getFunctionSamples()->setFunctionHash(FuncDesc->FuncHash);
return ContextNode;
}
FunctionSamples &CSProfileGenerator::getFunctionProfileForLeafProbe(
const AddrBasedCtxKey *CtxKey, const MCDecodedPseudoProbe *LeafProbe) {
return *getContextNodeForLeafProbe(CtxKey, LeafProbe)->getFunctionSamples();
}
} // end namespace sampleprof
} // end namespace llvm
|