1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
//===- ReduceOpcodes.cpp - Specialized Delta Pass -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Try to replace instructions that are likely to codegen to simpler or smaller
// sequences. This is a fuzzy and target specific concept.
//
//===----------------------------------------------------------------------===//
#include "ReduceOpcodes.h"
#include "Delta.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
using namespace llvm;
// Assume outgoing undef arguments aren't relevant.
// TODO: Maybe skip any trivial constant arguments.
static bool shouldIgnoreArgument(const Value *V) {
return isa<UndefValue>(V);
}
static Value *replaceIntrinsic(Module &M, IntrinsicInst *II,
Intrinsic::ID NewIID,
ArrayRef<Type *> Tys = std::nullopt) {
Function *NewFunc = Intrinsic::getDeclaration(&M, NewIID, Tys);
II->setCalledFunction(NewFunc);
return II;
}
static Value *reduceIntrinsic(Oracle &O, Module &M, IntrinsicInst *II) {
IRBuilder<> B(II);
switch (II->getIntrinsicID()) {
case Intrinsic::sqrt:
if (O.shouldKeep())
return nullptr;
return B.CreateFMul(II->getArgOperand(0),
ConstantFP::get(II->getType(), 2.0));
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::minimum:
case Intrinsic::maximum:
case Intrinsic::amdgcn_fmul_legacy:
if (O.shouldKeep())
return nullptr;
return B.CreateFMul(II->getArgOperand(0), II->getArgOperand(1));
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::amdgcn_workitem_id_z:
if (O.shouldKeep())
return nullptr;
return replaceIntrinsic(M, II, Intrinsic::amdgcn_workitem_id_x);
case Intrinsic::amdgcn_workgroup_id_y:
case Intrinsic::amdgcn_workgroup_id_z:
if (O.shouldKeep())
return nullptr;
return replaceIntrinsic(M, II, Intrinsic::amdgcn_workgroup_id_x);
case Intrinsic::amdgcn_div_fixup:
case Intrinsic::amdgcn_fma_legacy:
if (O.shouldKeep())
return nullptr;
return replaceIntrinsic(M, II, Intrinsic::fma, {II->getType()});
default:
return nullptr;
}
}
/// Look for calls that look like they could be replaced with a load or store.
static bool callLooksLikeLoadStore(CallBase *CB, Value *&DataArg,
Value *&PtrArg) {
const bool IsStore = CB->getType()->isVoidTy();
PtrArg = nullptr;
DataArg = nullptr;
for (Value *Arg : CB->args()) {
if (shouldIgnoreArgument(Arg))
continue;
if (!Arg->getType()->isSized())
return false;
if (!PtrArg && Arg->getType()->isPointerTy()) {
PtrArg = Arg;
continue;
}
if (!IsStore || DataArg)
return false;
DataArg = Arg;
}
if (IsStore && !DataArg) {
// FIXME: For typed pointers, use element type?
DataArg = ConstantInt::get(IntegerType::getInt32Ty(CB->getContext()), 0);
}
// If we didn't find any arguments, we can fill in the pointer.
if (!PtrArg) {
unsigned AS = CB->getDataLayout().getAllocaAddrSpace();
PointerType *PtrTy =
PointerType::get(DataArg ? DataArg->getType()
: IntegerType::getInt32Ty(CB->getContext()),
AS);
PtrArg = ConstantPointerNull::get(PtrTy);
}
return true;
}
// TODO: Replace 2 pointer argument calls with memcpy
static Value *tryReplaceCallWithLoadStore(Oracle &O, Module &M, CallBase *CB) {
Value *PtrArg = nullptr;
Value *DataArg = nullptr;
if (!callLooksLikeLoadStore(CB, DataArg, PtrArg) || O.shouldKeep())
return nullptr;
IRBuilder<> B(CB);
if (DataArg)
return B.CreateStore(DataArg, PtrArg, true);
return B.CreateLoad(CB->getType(), PtrArg, true);
}
static bool callLooksLikeOperator(CallBase *CB,
SmallVectorImpl<Value *> &OperatorArgs) {
Type *ReturnTy = CB->getType();
if (!ReturnTy->isFirstClassType())
return false;
for (Value *Arg : CB->args()) {
if (shouldIgnoreArgument(Arg))
continue;
if (Arg->getType() != ReturnTy)
return false;
OperatorArgs.push_back(Arg);
}
return true;
}
static Value *tryReplaceCallWithOperator(Oracle &O, Module &M, CallBase *CB) {
SmallVector<Value *, 4> Arguments;
if (!callLooksLikeOperator(CB, Arguments) || Arguments.size() > 3)
return nullptr;
if (O.shouldKeep())
return nullptr;
IRBuilder<> B(CB);
if (CB->getType()->isFPOrFPVectorTy()) {
switch (Arguments.size()) {
case 1:
return B.CreateFNeg(Arguments[0]);
case 2:
return B.CreateFMul(Arguments[0], Arguments[1]);
case 3:
return B.CreateIntrinsic(Intrinsic::fma, {CB->getType()}, Arguments);
default:
return nullptr;
}
llvm_unreachable("all argument sizes handled");
}
if (CB->getType()->isIntOrIntVectorTy()) {
switch (Arguments.size()) {
case 1:
return B.CreateUnaryIntrinsic(Intrinsic::bswap, Arguments[0]);
case 2:
return B.CreateAnd(Arguments[0], Arguments[1]);
case 3:
return B.CreateIntrinsic(Intrinsic::fshl, {CB->getType()}, Arguments);
default:
return nullptr;
}
llvm_unreachable("all argument sizes handled");
}
return nullptr;
}
static Value *reduceInstruction(Oracle &O, Module &M, Instruction &I) {
IRBuilder<> B(&I);
// TODO: fp binary operator with constant to fneg
switch (I.getOpcode()) {
case Instruction::FDiv:
case Instruction::FRem:
if (O.shouldKeep())
return nullptr;
// Divisions tends to codegen into a long sequence or a library call.
return B.CreateFMul(I.getOperand(0), I.getOperand(1));
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
if (O.shouldKeep())
return nullptr;
// Divisions tends to codegen into a long sequence or a library call.
return B.CreateMul(I.getOperand(0), I.getOperand(1));
case Instruction::Add:
case Instruction::Sub: {
if (O.shouldKeep())
return nullptr;
// Add/sub are more likely codegen to instructions with carry out side
// effects.
return B.CreateOr(I.getOperand(0), I.getOperand(1));
}
case Instruction::Call: {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
return reduceIntrinsic(O, M, II);
CallBase *CB = cast<CallBase>(&I);
if (Value *NewOp = tryReplaceCallWithOperator(O, M, CB))
return NewOp;
if (Value *NewOp = tryReplaceCallWithLoadStore(O, M, CB))
return NewOp;
return nullptr;
}
default:
return nullptr;
}
return nullptr;
}
static void replaceOpcodesInModule(Oracle &O, ReducerWorkItem &WorkItem) {
Module &Mod = WorkItem.getModule();
for (Function &F : Mod) {
for (BasicBlock &BB : F)
for (Instruction &I : make_early_inc_range(BB)) {
Instruction *Replacement =
dyn_cast_or_null<Instruction>(reduceInstruction(O, Mod, I));
if (Replacement && Replacement != &I) {
if (isa<FPMathOperator>(Replacement))
Replacement->copyFastMathFlags(&I);
Replacement->copyIRFlags(&I);
Replacement->copyMetadata(I);
Replacement->takeName(&I);
I.replaceAllUsesWith(Replacement);
I.eraseFromParent();
}
}
}
}
void llvm::reduceOpcodesDeltaPass(TestRunner &Test) {
runDeltaPass(Test, replaceOpcodesInModule, "Reducing Opcodes");
}
|