1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
//===- CSETest.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GISelMITest.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
#include "gtest/gtest.h"
namespace {
TEST_F(AArch64GISelMITest, TestCSE) {
setUp();
if (!TM)
GTEST_SKIP();
LLT s16{LLT::scalar(16)};
LLT s32{LLT::scalar(32)};
auto MIBInput = B.buildInstr(TargetOpcode::G_TRUNC, {s16}, {Copies[0]});
auto MIBInput1 = B.buildInstr(TargetOpcode::G_TRUNC, {s16}, {Copies[1]});
auto MIBAdd = B.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigFull>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
CSEB.setInsertPt(B.getMBB(), B.getInsertPt());
Register AddReg = MRI->createGenericVirtualRegister(s16);
auto MIBAddCopy =
CSEB.buildInstr(TargetOpcode::G_ADD, {AddReg}, {MIBInput, MIBInput});
EXPECT_EQ(MIBAddCopy->getOpcode(), TargetOpcode::COPY);
auto MIBAdd2 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
EXPECT_TRUE(&*MIBAdd == &*MIBAdd2);
auto MIBAdd4 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
EXPECT_TRUE(&*MIBAdd == &*MIBAdd4);
auto MIBAdd5 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput1});
EXPECT_TRUE(&*MIBAdd != &*MIBAdd5);
// Try building G_CONSTANTS.
auto MIBCst = CSEB.buildConstant(s32, 0);
auto MIBCst1 = CSEB.buildConstant(s32, 0);
EXPECT_TRUE(&*MIBCst == &*MIBCst1);
// Try the CFing of BinaryOps.
auto MIBCF1 = CSEB.buildInstr(TargetOpcode::G_ADD, {s32}, {MIBCst, MIBCst});
EXPECT_TRUE(&*MIBCF1 == &*MIBCst);
// Try out building FCONSTANTs.
auto MIBFP0 = CSEB.buildFConstant(s32, 1.0);
auto MIBFP0_1 = CSEB.buildFConstant(s32, 1.0);
EXPECT_TRUE(&*MIBFP0 == &*MIBFP0_1);
CSEInfo.print();
// Make sure buildConstant with a vector type doesn't crash, and the elements
// CSE.
auto Splat0 = CSEB.buildConstant(LLT::fixed_vector(2, s32), 0);
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR, Splat0->getOpcode());
EXPECT_EQ(Splat0.getReg(1), Splat0.getReg(2));
EXPECT_EQ(&*MIBCst, MRI->getVRegDef(Splat0.getReg(1)));
auto FSplat = CSEB.buildFConstant(LLT::fixed_vector(2, s32), 1.0);
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR, FSplat->getOpcode());
EXPECT_EQ(FSplat.getReg(1), FSplat.getReg(2));
EXPECT_EQ(&*MIBFP0, MRI->getVRegDef(FSplat.getReg(1)));
// Check G_UNMERGE_VALUES
auto MIBUnmerge = CSEB.buildUnmerge({s32, s32}, Copies[0]);
auto MIBUnmerge2 = CSEB.buildUnmerge({s32, s32}, Copies[0]);
EXPECT_TRUE(&*MIBUnmerge == &*MIBUnmerge2);
// Check G_BUILD_VECTOR
Register Reg1 = MRI->createGenericVirtualRegister(s32);
Register Reg2 = MRI->createGenericVirtualRegister(s32);
auto BuildVec1 =
CSEB.buildBuildVector(LLT::fixed_vector(4, 32), {Reg1, Reg2, Reg1, Reg2});
auto BuildVec2 =
CSEB.buildBuildVector(LLT::fixed_vector(4, 32), {Reg1, Reg2, Reg1, Reg2});
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR, BuildVec1->getOpcode());
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR, BuildVec2->getOpcode());
EXPECT_TRUE(&*BuildVec1 == &*BuildVec2);
// Check G_BUILD_VECTOR_TRUNC
auto BuildVecTrunc1 = CSEB.buildBuildVectorTrunc(LLT::fixed_vector(4, 16),
{Reg1, Reg2, Reg1, Reg2});
auto BuildVecTrunc2 = CSEB.buildBuildVectorTrunc(LLT::fixed_vector(4, 16),
{Reg1, Reg2, Reg1, Reg2});
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR_TRUNC, BuildVecTrunc1->getOpcode());
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR_TRUNC, BuildVecTrunc2->getOpcode());
EXPECT_TRUE(&*BuildVecTrunc1 == &*BuildVecTrunc2);
// Check G_IMPLICIT_DEF
auto Undef0 = CSEB.buildUndef(s32);
auto Undef1 = CSEB.buildUndef(s32);
EXPECT_EQ(&*Undef0, &*Undef1);
// If the observer is installed to the MF, CSE can also
// track new instructions built without the CSEBuilder and
// the newly built instructions are available for CSEing next
// time a build call is made through the CSEMIRBuilder.
// Additionally, the CSE implementation lazily hashes instructions
// (every build call) to give chance for the instruction to be fully
// built (say using .addUse().addDef().. so on).
GISelObserverWrapper WrapperObserver(&CSEInfo);
RAIIMFObsDelInstaller Installer(*MF, WrapperObserver);
MachineIRBuilder RegularBuilder(*MF);
RegularBuilder.setInsertPt(*EntryMBB, EntryMBB->begin());
auto NonCSEFMul = RegularBuilder.buildInstr(TargetOpcode::G_AND)
.addDef(MRI->createGenericVirtualRegister(s32))
.addUse(Copies[0])
.addUse(Copies[1]);
auto CSEFMul =
CSEB.buildInstr(TargetOpcode::G_AND, {s32}, {Copies[0], Copies[1]});
EXPECT_EQ(&*CSEFMul, &*NonCSEFMul);
auto ExtractMIB = CSEB.buildInstr(TargetOpcode::G_EXTRACT, {s16},
{Copies[0], static_cast<uint64_t>(0)});
auto ExtractMIB1 = CSEB.buildInstr(TargetOpcode::G_EXTRACT, {s16},
{Copies[0], static_cast<uint64_t>(0)});
auto ExtractMIB2 = CSEB.buildInstr(TargetOpcode::G_EXTRACT, {s16},
{Copies[0], static_cast<uint64_t>(1)});
EXPECT_EQ(&*ExtractMIB, &*ExtractMIB1);
EXPECT_NE(&*ExtractMIB, &*ExtractMIB2);
auto SextInRegMIB = CSEB.buildSExtInReg(s16, Copies[0], 0);
auto SextInRegMIB1 = CSEB.buildSExtInReg(s16, Copies[0], 0);
auto SextInRegMIB2 = CSEB.buildSExtInReg(s16, Copies[0], 1);
EXPECT_EQ(&*SextInRegMIB, &*SextInRegMIB1);
EXPECT_NE(&*SextInRegMIB, &*SextInRegMIB2);
}
TEST_F(AArch64GISelMITest, TestCSEConstantConfig) {
setUp();
if (!TM)
GTEST_SKIP();
LLT s16{LLT::scalar(16)};
auto MIBInput = B.buildInstr(TargetOpcode::G_TRUNC, {s16}, {Copies[0]});
auto MIBAdd = B.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
auto MIBZero = B.buildConstant(s16, 0);
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigConstantOnly>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
CSEB.setInsertPt(*EntryMBB, EntryMBB->begin());
auto MIBAdd1 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
// We should CSE constants only. Adds should not be CSEd.
EXPECT_TRUE(MIBAdd1->getOpcode() != TargetOpcode::COPY);
EXPECT_TRUE(&*MIBAdd1 != &*MIBAdd);
// We should CSE constant.
auto MIBZeroTmp = CSEB.buildConstant(s16, 0);
EXPECT_TRUE(&*MIBZero == &*MIBZeroTmp);
// Check G_IMPLICIT_DEF
auto Undef0 = CSEB.buildUndef(s16);
auto Undef1 = CSEB.buildUndef(s16);
EXPECT_EQ(&*Undef0, &*Undef1);
}
TEST_F(AArch64GISelMITest, TestCSEImmediateNextCSE) {
setUp();
if (!TM)
GTEST_SKIP();
LLT s32{LLT::scalar(32)};
// We want to check that when the CSE hit is on the next instruction, i.e. at
// the current insert pt, that the insertion point is moved ahead of the
// instruction.
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigConstantOnly>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
CSEB.buildConstant(s32, 0);
auto MIBCst2 = CSEB.buildConstant(s32, 2);
// Move the insert point before the second constant.
CSEB.setInsertPt(CSEB.getMBB(), --CSEB.getInsertPt());
auto MIBCst3 = CSEB.buildConstant(s32, 2);
EXPECT_TRUE(&*MIBCst2 == &*MIBCst3);
EXPECT_TRUE(CSEB.getInsertPt() == CSEB.getMBB().end());
}
TEST_F(AArch64GISelMITest, TestConstantFoldCTL) {
setUp();
if (!TM)
GTEST_SKIP();
LLT s32 = LLT::scalar(32);
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigConstantOnly>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
auto Cst8 = CSEB.buildConstant(s32, 8);
auto *CtlzDef = &*CSEB.buildCTLZ(s32, Cst8);
EXPECT_TRUE(CtlzDef->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(CtlzDef->getOperand(1).getCImm()->getZExtValue() == 28);
// Test vector.
auto Cst16 = CSEB.buildConstant(s32, 16);
auto Cst32 = CSEB.buildConstant(s32, 32);
auto Cst64 = CSEB.buildConstant(s32, 64);
LLT VecTy = LLT::fixed_vector(4, s32);
auto BV = CSEB.buildBuildVector(VecTy, {Cst8.getReg(0), Cst16.getReg(0),
Cst32.getReg(0), Cst64.getReg(0)});
CSEB.buildCTLZ(VecTy, BV);
auto CheckStr = R"(
; CHECK: [[CST8:%[0-9]+]]:_(s32) = G_CONSTANT i32 8
; CHECK: [[CST28:%[0-9]+]]:_(s32) = G_CONSTANT i32 28
; CHECK: [[CST16:%[0-9]+]]:_(s32) = G_CONSTANT i32 16
; CHECK: [[CST32:%[0-9]+]]:_(s32) = G_CONSTANT i32 32
; CHECK: [[CST64:%[0-9]+]]:_(s32) = G_CONSTANT i32 64
; CHECK: [[BV1:%[0-9]+]]:_(<4 x s32>) = G_BUILD_VECTOR [[CST8]]:_(s32), [[CST16]]:_(s32), [[CST32]]:_(s32), [[CST64]]:_(s32)
; CHECK: [[CST27:%[0-9]+]]:_(s32) = G_CONSTANT i32 27
; CHECK: [[CST26:%[0-9]+]]:_(s32) = G_CONSTANT i32 26
; CHECK: [[CST25:%[0-9]+]]:_(s32) = G_CONSTANT i32 25
; CHECK: [[BV2:%[0-9]+]]:_(<4 x s32>) = G_BUILD_VECTOR [[CST28]]:_(s32), [[CST27]]:_(s32), [[CST26]]:_(s32), [[CST25]]:_(s32)
)";
EXPECT_TRUE(CheckMachineFunction(*MF, CheckStr)) << *MF;
}
TEST_F(AArch64GISelMITest, TestConstantFoldCTT) {
setUp();
if (!TM)
GTEST_SKIP();
LLT s32 = LLT::scalar(32);
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigConstantOnly>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
auto Cst8 = CSEB.buildConstant(s32, 8);
auto *CttzDef = &*CSEB.buildCTTZ(s32, Cst8);
EXPECT_TRUE(CttzDef->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(CttzDef->getOperand(1).getCImm()->getZExtValue() == 3);
// Test vector.
auto Cst16 = CSEB.buildConstant(s32, 16);
auto Cst32 = CSEB.buildConstant(s32, 32);
auto Cst64 = CSEB.buildConstant(s32, 64);
LLT VecTy = LLT::fixed_vector(4, s32);
auto BV = CSEB.buildBuildVector(VecTy, {Cst8.getReg(0), Cst16.getReg(0),
Cst32.getReg(0), Cst64.getReg(0)});
CSEB.buildCTTZ(VecTy, BV);
auto CheckStr = R"(
; CHECK: [[CST8:%[0-9]+]]:_(s32) = G_CONSTANT i32 8
; CHECK: [[CST3:%[0-9]+]]:_(s32) = G_CONSTANT i32 3
; CHECK: [[CST16:%[0-9]+]]:_(s32) = G_CONSTANT i32 16
; CHECK: [[CST32:%[0-9]+]]:_(s32) = G_CONSTANT i32 32
; CHECK: [[CST64:%[0-9]+]]:_(s32) = G_CONSTANT i32 64
; CHECK: [[BV1:%[0-9]+]]:_(<4 x s32>) = G_BUILD_VECTOR [[CST8]]:_(s32), [[CST16]]:_(s32), [[CST32]]:_(s32), [[CST64]]:_(s32)
; CHECK: [[CST27:%[0-9]+]]:_(s32) = G_CONSTANT i32 4
; CHECK: [[CST26:%[0-9]+]]:_(s32) = G_CONSTANT i32 5
; CHECK: [[CST25:%[0-9]+]]:_(s32) = G_CONSTANT i32 6
; CHECK: [[BV2:%[0-9]+]]:_(<4 x s32>) = G_BUILD_VECTOR [[CST3]]:_(s32), [[CST27]]:_(s32), [[CST26]]:_(s32), [[CST25]]:_(s32)
)";
EXPECT_TRUE(CheckMachineFunction(*MF, CheckStr)) << *MF;
}
TEST_F(AArch64GISelMITest, TestConstantFoldICMP) {
setUp();
if (!TM)
GTEST_SKIP();
LLT s32 = LLT::scalar(32);
LLT s1 = LLT::scalar(1);
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigConstantOnly>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
auto One = CSEB.buildConstant(s32, 1);
auto Two = CSEB.buildConstant(s32, 2);
auto MinusOne = CSEB.buildConstant(s32, -1);
auto MinusTwo = CSEB.buildConstant(s32, -2);
// ICMP_EQ
{
auto I = CSEB.buildICmp(CmpInst::Predicate::ICMP_EQ, s1, One, One);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_NE
{
auto I = CSEB.buildICmp(CmpInst::Predicate::ICMP_NE, s1, One, Two);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_UGT
{
auto I = CSEB.buildICmp(CmpInst::Predicate::ICMP_UGT, s1, Two, One);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_UGE
{
auto I = CSEB.buildICmp(CmpInst::Predicate::ICMP_UGE, s1, One, One);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_ULT
{
auto I = CSEB.buildICmp(CmpInst::Predicate::ICMP_ULT, s1, One, Two);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_ULE
{
auto I = CSEB.buildICmp(CmpInst::Predicate::ICMP_ULE, s1, Two, Two);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_SGT
{
auto I =
CSEB.buildICmp(CmpInst::Predicate::ICMP_SGT, s1, MinusOne, MinusTwo);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_SGE
{
auto I =
CSEB.buildICmp(CmpInst::Predicate::ICMP_SGE, s1, MinusOne, MinusOne);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_SLT
{
auto I =
CSEB.buildICmp(CmpInst::Predicate::ICMP_SLT, s1, MinusTwo, MinusOne);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
// ICMP_SLE
{
auto I =
CSEB.buildICmp(CmpInst::Predicate::ICMP_SLE, s1, MinusTwo, MinusOne);
EXPECT_TRUE(I->getOpcode() == TargetOpcode::G_CONSTANT);
EXPECT_TRUE(I->getOperand(1).getCImm()->getZExtValue());
}
LLT VecTy = LLT::fixed_vector(2, s32);
LLT DstTy = LLT::fixed_vector(2, s1);
auto Three = CSEB.buildConstant(s32, 3);
auto MinusThree = CSEB.buildConstant(s32, -3);
auto OneOne = CSEB.buildBuildVector(VecTy, {One.getReg(0), One.getReg(0)});
auto OneTwo = CSEB.buildBuildVector(VecTy, {One.getReg(0), Two.getReg(0)});
auto TwoThree =
CSEB.buildBuildVector(VecTy, {Two.getReg(0), Three.getReg(0)});
auto MinusOneOne =
CSEB.buildBuildVector(VecTy, {MinusOne.getReg(0), MinusOne.getReg(0)});
auto MinusOneTwo =
CSEB.buildBuildVector(VecTy, {MinusOne.getReg(0), MinusTwo.getReg(0)});
auto MinusTwoThree =
CSEB.buildBuildVector(VecTy, {MinusTwo.getReg(0), MinusThree.getReg(0)});
// ICMP_EQ
CSEB.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, OneOne, OneOne);
// ICMP_NE
CSEB.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, OneOne, OneTwo);
// ICMP_UGT
CSEB.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, TwoThree, OneTwo);
// ICMP_UGE
CSEB.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, OneTwo, OneOne);
// ICMP_ULT
CSEB.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, OneOne, OneTwo);
// ICMP_ULE
CSEB.buildICmp(CmpInst::Predicate::ICMP_ULE, DstTy, OneTwo, OneOne);
// ICMP_SGT
CSEB.buildICmp(CmpInst::Predicate::ICMP_SGT, DstTy, MinusOneTwo,
MinusTwoThree);
// ICMP_SGE
CSEB.buildICmp(CmpInst::Predicate::ICMP_SGE, DstTy, MinusOneTwo, MinusOneOne);
// ICMP_SLT
CSEB.buildICmp(CmpInst::Predicate::ICMP_SLT, DstTy, MinusTwoThree,
MinusOneTwo);
// ICMP_SLE
CSEB.buildICmp(CmpInst::Predicate::ICMP_SLE, DstTy, MinusOneTwo, MinusOneOne);
auto CheckStr = R"(
; CHECK: [[One:%[0-9]+]]:_(s32) = G_CONSTANT i32 1
; CHECK: [[Two:%[0-9]+]]:_(s32) = G_CONSTANT i32 2
; CHECK: [[MinusOne:%[0-9]+]]:_(s32) = G_CONSTANT i32 -1
; CHECK: [[MinusTwo:%[0-9]+]]:_(s32) = G_CONSTANT i32 -2
; CHECK: [[True:%[0-9]+]]:_(s1) = G_CONSTANT i1 true
; CHECK: [[Three:%[0-9]+]]:_(s32) = G_CONSTANT i32 3
; CHECK: [[MinusThree:%[0-9]+]]:_(s32) = G_CONSTANT i32 -3
; CHECK: {{%[0-9]+}}:_(<2 x s32>) = G_BUILD_VECTOR [[One]]:_(s32), [[One]]:_(s32)
; CHECK: {{%[0-9]+}}:_(<2 x s32>) = G_BUILD_VECTOR [[One]]:_(s32), [[Two]]:_(s32)
; CHECK: {{%[0-9]+}}:_(<2 x s32>) = G_BUILD_VECTOR [[Two]]:_(s32), [[Three]]:_(s32)
; CHECK: {{%[0-9]+}}:_(<2 x s32>) = G_BUILD_VECTOR [[MinusOne]]:_(s32), [[MinusOne]]:_(s32)
; CHECK: {{%[0-9]+}}:_(<2 x s32>) = G_BUILD_VECTOR [[MinusOne]]:_(s32), [[MinusTwo]]:_(s32)
; CHECK: {{%[0-9]+}}:_(<2 x s32>) = G_BUILD_VECTOR [[MinusTwo]]:_(s32), [[MinusThree]]:_(s32)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[True]]:_(s1)
; CHECK: [[False:%[0-9]+]]:_(s1) = G_CONSTANT i1 false
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[False]]:_(s1), [[True]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[True]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[True]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[False]]:_(s1), [[True]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[False]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[True]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[False]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[True]]:_(s1)
; CHECK: {{%[0-9]+}}:_(<2 x s1>) = G_BUILD_VECTOR [[True]]:_(s1), [[True]]:_(s1)
)";
EXPECT_TRUE(CheckMachineFunction(*MF, CheckStr)) << *MF;
}
} // namespace
|