1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
//===- llvm/unittest/Support/ParallelTest.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Parallel.h unit tests.
///
//===----------------------------------------------------------------------===//
#include "llvm/Support/Parallel.h"
#include "llvm/Support/ThreadPool.h"
#include "gtest/gtest.h"
#include <array>
#include <random>
uint32_t array[1024 * 1024];
using namespace llvm;
// Tests below are hanging up on mingw. Investigating.
#if !defined(__MINGW32__)
TEST(Parallel, sort) {
std::mt19937 randEngine;
std::uniform_int_distribution<uint32_t> dist;
for (auto &i : array)
i = dist(randEngine);
parallelSort(std::begin(array), std::end(array));
ASSERT_TRUE(llvm::is_sorted(array));
}
TEST(Parallel, parallel_for) {
// We need to test the case with a TaskSize > 1. We are white-box testing
// here. The TaskSize is calculated as (End - Begin) / 1024 at the time of
// writing.
uint32_t range[2050];
std::fill(range, range + 2050, 1);
parallelFor(0, 2049, [&range](size_t I) { ++range[I]; });
uint32_t expected[2049];
std::fill(expected, expected + 2049, 2);
ASSERT_TRUE(std::equal(range, range + 2049, expected));
// Check that we don't write past the end of the requested range.
ASSERT_EQ(range[2049], 1u);
}
TEST(Parallel, TransformReduce) {
// Sum an empty list, check that it works.
auto identity = [](uint32_t v) { return v; };
uint32_t sum = parallelTransformReduce(ArrayRef<uint32_t>(), 0U,
std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 0U);
// Sum the lengths of these strings in parallel.
const char *strs[] = {"a", "ab", "abc", "abcd", "abcde", "abcdef"};
size_t lenSum =
parallelTransformReduce(strs, static_cast<size_t>(0), std::plus<size_t>(),
[](const char *s) { return strlen(s); });
EXPECT_EQ(lenSum, static_cast<size_t>(21));
// Check that we handle non-divisible task sizes as above.
uint32_t range[2050];
std::fill(std::begin(range), std::end(range), 1);
sum = parallelTransformReduce(range, 0U, std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 2050U);
std::fill(std::begin(range), std::end(range), 2);
sum = parallelTransformReduce(range, 0U, std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 4100U);
// Avoid one large task.
uint32_t range2[3060];
std::fill(std::begin(range2), std::end(range2), 1);
sum = parallelTransformReduce(range2, 0U, std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 3060U);
}
TEST(Parallel, ForEachError) {
int nums[] = {1, 2, 3, 4, 5, 6};
Error e = parallelForEachError(nums, [](int v) -> Error {
if ((v & 1) == 0)
return createStringError(std::errc::invalid_argument, "asdf");
return Error::success();
});
EXPECT_TRUE(e.isA<ErrorList>());
std::string errText = toString(std::move(e));
EXPECT_EQ(errText, std::string("asdf\nasdf\nasdf"));
}
TEST(Parallel, TaskGroupSequentialFor) {
size_t Count = 0;
{
parallel::TaskGroup tg;
for (size_t Idx = 0; Idx < 500; Idx++)
tg.spawn([&Count, Idx]() { EXPECT_EQ(Count++, Idx); }, true);
}
EXPECT_EQ(Count, 500ul);
}
#if LLVM_ENABLE_THREADS
TEST(Parallel, NestedTaskGroup) {
// This test checks:
// 1. Root TaskGroup is in Parallel mode.
// 2. Nested TaskGroup is not in Parallel mode.
parallel::TaskGroup tg;
tg.spawn([&]() {
EXPECT_TRUE(tg.isParallel() || (parallel::strategy.ThreadsRequested == 1));
});
tg.spawn([&]() {
parallel::TaskGroup nestedTG;
EXPECT_FALSE(nestedTG.isParallel());
nestedTG.spawn([&]() {
// Check that root TaskGroup is in Parallel mode.
EXPECT_TRUE(tg.isParallel() ||
(parallel::strategy.ThreadsRequested == 1));
// Check that nested TaskGroup is not in Parallel mode.
EXPECT_FALSE(nestedTG.isParallel());
});
});
}
TEST(Parallel, ParallelNestedTaskGroup) {
// This test checks that it is possible to have several TaskGroups
// run from different threads in Parallel mode.
std::atomic<size_t> Count{0};
{
std::function<void()> Fn = [&]() {
parallel::TaskGroup tg;
tg.spawn([&]() {
// Check that root TaskGroup is in Parallel mode.
EXPECT_TRUE(tg.isParallel() ||
(parallel::strategy.ThreadsRequested == 1));
// Check that nested TaskGroup is not in Parallel mode.
parallel::TaskGroup nestedTG;
EXPECT_FALSE(nestedTG.isParallel());
++Count;
nestedTG.spawn([&]() {
// Check that root TaskGroup is in Parallel mode.
EXPECT_TRUE(tg.isParallel() ||
(parallel::strategy.ThreadsRequested == 1));
// Check that nested TaskGroup is not in Parallel mode.
EXPECT_FALSE(nestedTG.isParallel());
++Count;
});
});
};
DefaultThreadPool Pool;
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.wait();
}
EXPECT_EQ(Count, 12ul);
}
#endif
#endif
|