1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
|
//===- GlobalISelCombinerMatchTableEmitter.cpp - --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Generate a combiner implementation for GlobalISel from a declarative
/// syntax using GlobalISelMatchTable.
///
/// Usually, TableGen backends use "assert is an error" as a means to report
/// invalid input. They try to diagnose common case but don't try very hard and
/// crashes can be common. This backend aims to behave closer to how a language
/// compiler frontend would behave: we try extra hard to diagnose invalid inputs
/// early, and any crash should be considered a bug (= a feature or diagnostic
/// is missing).
///
/// While this can make the backend a bit more complex than it needs to be, it
/// pays off because MIR patterns can get complicated. Giving useful error
/// messages to combine writers can help boost their productivity.
///
/// As with anything, a good balance has to be found. We also don't want to
/// write hundreds of lines of code to detect edge cases. In practice, crashing
/// very occasionally, or giving poor errors in some rare instances, is fine.
///
//===----------------------------------------------------------------------===//
#include "Basic/CodeGenIntrinsics.h"
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenTarget.h"
#include "Common/GlobalISel/CXXPredicates.h"
#include "Common/GlobalISel/CodeExpander.h"
#include "Common/GlobalISel/CodeExpansions.h"
#include "Common/GlobalISel/CombinerUtils.h"
#include "Common/GlobalISel/GlobalISelMatchTable.h"
#include "Common/GlobalISel/GlobalISelMatchTableExecutorEmitter.h"
#include "Common/GlobalISel/PatternParser.h"
#include "Common/GlobalISel/Patterns.h"
#include "Common/SubtargetFeatureInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cstdint>
using namespace llvm;
using namespace llvm::gi;
#define DEBUG_TYPE "gicombiner-emitter"
namespace {
cl::OptionCategory
GICombinerEmitterCat("Options for -gen-global-isel-combiner");
cl::opt<bool> StopAfterParse(
"gicombiner-stop-after-parse",
cl::desc("Stop processing after parsing rules and dump state"),
cl::cat(GICombinerEmitterCat));
cl::list<std::string>
SelectedCombiners("combiners", cl::desc("Emit the specified combiners"),
cl::cat(GICombinerEmitterCat), cl::CommaSeparated);
cl::opt<bool> DebugCXXPreds(
"gicombiner-debug-cxxpreds",
cl::desc("Add Contextual/Debug comments to all C++ predicates"),
cl::cat(GICombinerEmitterCat));
cl::opt<bool> DebugTypeInfer("gicombiner-debug-typeinfer",
cl::desc("Print type inference debug logs"),
cl::cat(GICombinerEmitterCat));
constexpr StringLiteral CXXCustomActionPrefix = "GICXXCustomAction_";
constexpr StringLiteral CXXPredPrefix = "GICXXPred_MI_Predicate_";
constexpr StringLiteral MatchDataClassName = "GIDefMatchData";
//===- CodeExpansions Helpers --------------------------------------------===//
void declareInstExpansion(CodeExpansions &CE, const InstructionMatcher &IM,
StringRef Name) {
CE.declare(Name, "State.MIs[" + to_string(IM.getInsnVarID()) + "]");
}
void declareInstExpansion(CodeExpansions &CE, const BuildMIAction &A,
StringRef Name) {
// Note: we use redeclare here because this may overwrite a matcher inst
// expansion.
CE.redeclare(Name, "OutMIs[" + to_string(A.getInsnID()) + "]");
}
void declareOperandExpansion(CodeExpansions &CE, const OperandMatcher &OM,
StringRef Name) {
CE.declare(Name, "State.MIs[" + to_string(OM.getInsnVarID()) +
"]->getOperand(" + to_string(OM.getOpIdx()) + ")");
}
void declareTempRegExpansion(CodeExpansions &CE, unsigned TempRegID,
StringRef Name) {
CE.declare(Name, "State.TempRegisters[" + to_string(TempRegID) + "]");
}
//===- Misc. Helpers -----------------------------------------------------===//
template <typename Container> auto keys(Container &&C) {
return map_range(C, [](auto &Entry) -> auto & { return Entry.first; });
}
template <typename Container> auto values(Container &&C) {
return map_range(C, [](auto &Entry) -> auto & { return Entry.second; });
}
std::string getIsEnabledPredicateEnumName(unsigned CombinerRuleID) {
return "GICXXPred_Simple_IsRule" + to_string(CombinerRuleID) + "Enabled";
}
//===- MatchTable Helpers ------------------------------------------------===//
LLTCodeGen getLLTCodeGen(const PatternType &PT) {
return *MVTToLLT(getValueType(PT.getLLTRecord()));
}
LLTCodeGenOrTempType getLLTCodeGenOrTempType(const PatternType &PT,
RuleMatcher &RM) {
assert(!PT.isNone());
if (PT.isLLT())
return getLLTCodeGen(PT);
assert(PT.isTypeOf());
auto &OM = RM.getOperandMatcher(PT.getTypeOfOpName());
return OM.getTempTypeIdx(RM);
}
//===- PrettyStackTrace Helpers ------------------------------------------===//
class PrettyStackTraceParse : public PrettyStackTraceEntry {
const Record &Def;
public:
PrettyStackTraceParse(const Record &Def) : Def(Def) {}
void print(raw_ostream &OS) const override {
if (Def.isSubClassOf("GICombineRule"))
OS << "Parsing GICombineRule '" << Def.getName() << "'";
else if (Def.isSubClassOf(PatFrag::ClassName))
OS << "Parsing " << PatFrag::ClassName << " '" << Def.getName() << "'";
else
OS << "Parsing '" << Def.getName() << "'";
OS << '\n';
}
};
class PrettyStackTraceEmit : public PrettyStackTraceEntry {
const Record &Def;
const Pattern *Pat = nullptr;
public:
PrettyStackTraceEmit(const Record &Def, const Pattern *Pat = nullptr)
: Def(Def), Pat(Pat) {}
void print(raw_ostream &OS) const override {
if (Def.isSubClassOf("GICombineRule"))
OS << "Emitting GICombineRule '" << Def.getName() << "'";
else if (Def.isSubClassOf(PatFrag::ClassName))
OS << "Emitting " << PatFrag::ClassName << " '" << Def.getName() << "'";
else
OS << "Emitting '" << Def.getName() << "'";
if (Pat)
OS << " [" << Pat->getKindName() << " '" << Pat->getName() << "']";
OS << '\n';
}
};
//===- CombineRuleOperandTypeChecker --------------------------------------===//
/// This is a wrapper around OperandTypeChecker specialized for Combiner Rules.
/// On top of doing the same things as OperandTypeChecker, this also attempts to
/// infer as many types as possible for temporary register defs & immediates in
/// apply patterns.
///
/// The inference is trivial and leverages the MCOI OperandTypes encoded in
/// CodeGenInstructions to infer types across patterns in a CombineRule. It's
/// thus very limited and only supports CodeGenInstructions (but that's the main
/// use case so it's fine).
///
/// We only try to infer untyped operands in apply patterns when they're temp
/// reg defs, or immediates. Inference always outputs a `TypeOf<$x>` where $x is
/// a named operand from a match pattern.
class CombineRuleOperandTypeChecker : private OperandTypeChecker {
public:
CombineRuleOperandTypeChecker(const Record &RuleDef,
const OperandTable &MatchOpTable)
: OperandTypeChecker(RuleDef.getLoc()), RuleDef(RuleDef),
MatchOpTable(MatchOpTable) {}
/// Records and checks a 'match' pattern.
bool processMatchPattern(InstructionPattern &P);
/// Records and checks an 'apply' pattern.
bool processApplyPattern(InstructionPattern &P);
/// Propagates types, then perform type inference and do a second round of
/// propagation in the apply patterns only if any types were inferred.
void propagateAndInferTypes();
private:
/// TypeEquivalenceClasses are groups of operands of an instruction that share
/// a common type.
///
/// e.g. [[a, b], [c, d]] means a and b have the same type, and c and
/// d have the same type too. b/c and a/d don't have to have the same type,
/// though.
using TypeEquivalenceClasses = EquivalenceClasses<StringRef>;
/// \returns true for `OPERAND_GENERIC_` 0 through 5.
/// These are the MCOI types that can be registers. The other MCOI types are
/// either immediates, or fancier operands used only post-ISel, so we don't
/// care about them for combiners.
static bool canMCOIOperandTypeBeARegister(StringRef MCOIType) {
// Assume OPERAND_GENERIC_0 through 5 can be registers. The other MCOI
// OperandTypes are either never used in gMIR, or not relevant (e.g.
// OPERAND_GENERIC_IMM, which is definitely never a register).
return MCOIType.drop_back(1).ends_with("OPERAND_GENERIC_");
}
/// Finds the "MCOI::"" operand types for each operand of \p CGP.
///
/// This is a bit trickier than it looks because we need to handle variadic
/// in/outs.
///
/// e.g. for
/// (G_BUILD_VECTOR $vec, $x, $y) ->
/// [MCOI::OPERAND_GENERIC_0, MCOI::OPERAND_GENERIC_1,
/// MCOI::OPERAND_GENERIC_1]
///
/// For unknown types (which can happen in variadics where varargs types are
/// inconsistent), a unique name is given, e.g. "unknown_type_0".
static std::vector<std::string>
getMCOIOperandTypes(const CodeGenInstructionPattern &CGP);
/// Adds the TypeEquivalenceClasses for \p P in \p OutTECs.
void getInstEqClasses(const InstructionPattern &P,
TypeEquivalenceClasses &OutTECs) const;
/// Calls `getInstEqClasses` on all patterns of the rule to produce the whole
/// rule's TypeEquivalenceClasses.
TypeEquivalenceClasses getRuleEqClasses() const;
/// Tries to infer the type of the \p ImmOpIdx -th operand of \p IP using \p
/// TECs.
///
/// This is achieved by trying to find a named operand in \p IP that shares
/// the same type as \p ImmOpIdx, and using \ref inferNamedOperandType on that
/// operand instead.
///
/// \returns the inferred type or an empty PatternType if inference didn't
/// succeed.
PatternType inferImmediateType(const InstructionPattern &IP,
unsigned ImmOpIdx,
const TypeEquivalenceClasses &TECs) const;
/// Looks inside \p TECs to infer \p OpName's type.
///
/// \returns the inferred type or an empty PatternType if inference didn't
/// succeed.
PatternType inferNamedOperandType(const InstructionPattern &IP,
StringRef OpName,
const TypeEquivalenceClasses &TECs,
bool AllowSelf = false) const;
const Record &RuleDef;
SmallVector<InstructionPattern *, 8> MatchPats;
SmallVector<InstructionPattern *, 8> ApplyPats;
const OperandTable &MatchOpTable;
};
bool CombineRuleOperandTypeChecker::processMatchPattern(InstructionPattern &P) {
MatchPats.push_back(&P);
return check(P, /*CheckTypeOf*/ [](const auto &) {
// GITypeOf in 'match' is currently always rejected by the
// CombineRuleBuilder after inference is done.
return true;
});
}
bool CombineRuleOperandTypeChecker::processApplyPattern(InstructionPattern &P) {
ApplyPats.push_back(&P);
return check(P, /*CheckTypeOf*/ [&](const PatternType &Ty) {
// GITypeOf<"$x"> can only be used if "$x" is a matched operand.
const auto OpName = Ty.getTypeOfOpName();
if (MatchOpTable.lookup(OpName).Found)
return true;
PrintError(RuleDef.getLoc(), "'" + OpName + "' ('" + Ty.str() +
"') does not refer to a matched operand!");
return false;
});
}
void CombineRuleOperandTypeChecker::propagateAndInferTypes() {
/// First step here is to propagate types using the OperandTypeChecker. That
/// way we ensure all uses of a given register have consistent types.
propagateTypes();
/// Build the TypeEquivalenceClasses for the whole rule.
const TypeEquivalenceClasses TECs = getRuleEqClasses();
/// Look at the apply patterns and find operands that need to be
/// inferred. We then try to find an equivalence class that they're a part of
/// and select the best operand to use for the `GITypeOf` type. We prioritize
/// defs of matched instructions because those are guaranteed to be registers.
bool InferredAny = false;
for (auto *Pat : ApplyPats) {
for (unsigned K = 0; K < Pat->operands_size(); ++K) {
auto &Op = Pat->getOperand(K);
// We only want to take a look at untyped defs or immediates.
if ((!Op.isDef() && !Op.hasImmValue()) || Op.getType())
continue;
// Infer defs & named immediates.
if (Op.isDef() || Op.isNamedImmediate()) {
// Check it's not a redefinition of a matched operand.
// In such cases, inference is not necessary because we just copy
// operands and don't create temporary registers.
if (MatchOpTable.lookup(Op.getOperandName()).Found)
continue;
// Inference is needed here, so try to do it.
if (PatternType Ty =
inferNamedOperandType(*Pat, Op.getOperandName(), TECs)) {
if (DebugTypeInfer)
errs() << "INFER: " << Op.describe() << " -> " << Ty.str() << '\n';
Op.setType(Ty);
InferredAny = true;
}
continue;
}
// Infer immediates
if (Op.hasImmValue()) {
if (PatternType Ty = inferImmediateType(*Pat, K, TECs)) {
if (DebugTypeInfer)
errs() << "INFER: " << Op.describe() << " -> " << Ty.str() << '\n';
Op.setType(Ty);
InferredAny = true;
}
continue;
}
}
}
// If we've inferred any types, we want to propagate them across the apply
// patterns. Type inference only adds GITypeOf types that point to Matched
// operands, so we definitely don't want to propagate types into the match
// patterns as well, otherwise bad things happen.
if (InferredAny) {
OperandTypeChecker OTC(RuleDef.getLoc());
for (auto *Pat : ApplyPats) {
if (!OTC.check(*Pat, [&](const auto &) { return true; }))
PrintFatalError(RuleDef.getLoc(),
"OperandTypeChecker unexpectedly failed on '" +
Pat->getName() + "' during Type Inference");
}
OTC.propagateTypes();
if (DebugTypeInfer) {
errs() << "Apply patterns for rule " << RuleDef.getName()
<< " after inference:\n";
for (auto *Pat : ApplyPats) {
errs() << " ";
Pat->print(errs(), /*PrintName*/ true);
errs() << '\n';
}
errs() << '\n';
}
}
}
PatternType CombineRuleOperandTypeChecker::inferImmediateType(
const InstructionPattern &IP, unsigned ImmOpIdx,
const TypeEquivalenceClasses &TECs) const {
// We can only infer CGPs (except intrinsics).
const auto *CGP = dyn_cast<CodeGenInstructionPattern>(&IP);
if (!CGP || CGP->isIntrinsic())
return {};
// For CGPs, we try to infer immediates by trying to infer another named
// operand that shares its type.
//
// e.g.
// Pattern: G_BUILD_VECTOR $x, $y, 0
// MCOIs: [MCOI::OPERAND_GENERIC_0, MCOI::OPERAND_GENERIC_1,
// MCOI::OPERAND_GENERIC_1]
// $y has the same type as 0, so we can infer $y and get the type 0 should
// have.
// We infer immediates by looking for a named operand that shares the same
// MCOI type.
const auto MCOITypes = getMCOIOperandTypes(*CGP);
StringRef ImmOpTy = MCOITypes[ImmOpIdx];
for (const auto &[Idx, Ty] : enumerate(MCOITypes)) {
if (Idx != ImmOpIdx && Ty == ImmOpTy) {
const auto &Op = IP.getOperand(Idx);
if (!Op.isNamedOperand())
continue;
// Named operand with the same name, try to infer that.
if (PatternType InferTy = inferNamedOperandType(IP, Op.getOperandName(),
TECs, /*AllowSelf=*/true))
return InferTy;
}
}
return {};
}
PatternType CombineRuleOperandTypeChecker::inferNamedOperandType(
const InstructionPattern &IP, StringRef OpName,
const TypeEquivalenceClasses &TECs, bool AllowSelf) const {
// This is the simplest possible case, we just need to find a TEC that
// contains OpName. Look at all operands in equivalence class and try to
// find a suitable one. If `AllowSelf` is true, the operand itself is also
// considered suitable.
// Check for a def of a matched pattern. This is guaranteed to always
// be a register so we can blindly use that.
StringRef GoodOpName;
for (auto It = TECs.findLeader(OpName); It != TECs.member_end(); ++It) {
if (!AllowSelf && *It == OpName)
continue;
const auto LookupRes = MatchOpTable.lookup(*It);
if (LookupRes.Def) // Favor defs
return PatternType::getTypeOf(*It);
// Otherwise just save this in case we don't find any def.
if (GoodOpName.empty() && LookupRes.Found)
GoodOpName = *It;
}
if (!GoodOpName.empty())
return PatternType::getTypeOf(GoodOpName);
// No good operand found, give up.
return {};
}
std::vector<std::string> CombineRuleOperandTypeChecker::getMCOIOperandTypes(
const CodeGenInstructionPattern &CGP) {
// FIXME?: Should we cache this? We call it twice when inferring immediates.
static unsigned UnknownTypeIdx = 0;
std::vector<std::string> OpTypes;
auto &CGI = CGP.getInst();
Record *VarArgsTy = CGI.TheDef->isSubClassOf("GenericInstruction")
? CGI.TheDef->getValueAsOptionalDef("variadicOpsType")
: nullptr;
std::string VarArgsTyName =
VarArgsTy ? ("MCOI::" + VarArgsTy->getValueAsString("OperandType")).str()
: ("unknown_type_" + Twine(UnknownTypeIdx++)).str();
// First, handle defs.
for (unsigned K = 0; K < CGI.Operands.NumDefs; ++K)
OpTypes.push_back(CGI.Operands[K].OperandType);
// Then, handle variadic defs if there are any.
if (CGP.hasVariadicDefs()) {
for (unsigned K = CGI.Operands.NumDefs; K < CGP.getNumInstDefs(); ++K)
OpTypes.push_back(VarArgsTyName);
}
// If we had variadic defs, the op idx in the pattern won't match the op idx
// in the CGI anymore.
int CGIOpOffset = int(CGI.Operands.NumDefs) - CGP.getNumInstDefs();
assert(CGP.hasVariadicDefs() ? (CGIOpOffset <= 0) : (CGIOpOffset == 0));
// Handle all remaining use operands, including variadic ones.
for (unsigned K = CGP.getNumInstDefs(); K < CGP.getNumInstOperands(); ++K) {
unsigned CGIOpIdx = K + CGIOpOffset;
if (CGIOpIdx >= CGI.Operands.size()) {
assert(CGP.isVariadic());
OpTypes.push_back(VarArgsTyName);
} else {
OpTypes.push_back(CGI.Operands[CGIOpIdx].OperandType);
}
}
assert(OpTypes.size() == CGP.operands_size());
return OpTypes;
}
void CombineRuleOperandTypeChecker::getInstEqClasses(
const InstructionPattern &P, TypeEquivalenceClasses &OutTECs) const {
// Determine the TypeEquivalenceClasses by:
// - Getting the MCOI Operand Types.
// - Creating a Map of MCOI Type -> [Operand Indexes]
// - Iterating over the map, filtering types we don't like, and just adding
// the array of Operand Indexes to \p OutTECs.
// We can only do this on CodeGenInstructions that aren't intrinsics. Other
// InstructionPatterns have no type inference information associated with
// them.
// TODO: We could try to extract some info from CodeGenIntrinsic to
// guide inference.
// TODO: Could we add some inference information to builtins at least? e.g.
// ReplaceReg should always replace with a reg of the same type, for instance.
// Though, those patterns are often used alone so it might not be worth the
// trouble to infer their types.
auto *CGP = dyn_cast<CodeGenInstructionPattern>(&P);
if (!CGP || CGP->isIntrinsic())
return;
const auto MCOITypes = getMCOIOperandTypes(*CGP);
assert(MCOITypes.size() == P.operands_size());
MapVector<StringRef, SmallVector<unsigned, 0>> TyToOpIdx;
for (const auto &[Idx, Ty] : enumerate(MCOITypes))
TyToOpIdx[Ty].push_back(Idx);
if (DebugTypeInfer)
errs() << "\tGroups for " << P.getName() << ":\t";
for (const auto &[Ty, Idxs] : TyToOpIdx) {
if (!canMCOIOperandTypeBeARegister(Ty))
continue;
if (DebugTypeInfer)
errs() << '[';
StringRef Sep = "";
// We only collect named operands.
StringRef Leader;
for (unsigned Idx : Idxs) {
const auto &Op = P.getOperand(Idx);
if (!Op.isNamedOperand())
continue;
const auto OpName = Op.getOperandName();
if (DebugTypeInfer) {
errs() << Sep << OpName;
Sep = ", ";
}
if (Leader.empty())
OutTECs.insert((Leader = OpName));
else
OutTECs.unionSets(Leader, OpName);
}
if (DebugTypeInfer)
errs() << "] ";
}
if (DebugTypeInfer)
errs() << '\n';
}
CombineRuleOperandTypeChecker::TypeEquivalenceClasses
CombineRuleOperandTypeChecker::getRuleEqClasses() const {
StringMap<unsigned> OpNameToEqClassIdx;
TypeEquivalenceClasses TECs;
if (DebugTypeInfer)
errs() << "Rule Operand Type Equivalence Classes for " << RuleDef.getName()
<< ":\n";
for (const auto *Pat : MatchPats)
getInstEqClasses(*Pat, TECs);
for (const auto *Pat : ApplyPats)
getInstEqClasses(*Pat, TECs);
if (DebugTypeInfer) {
errs() << "Final Type Equivalence Classes: ";
for (auto ClassIt = TECs.begin(); ClassIt != TECs.end(); ++ClassIt) {
// only print non-empty classes.
if (auto MembIt = TECs.member_begin(ClassIt);
MembIt != TECs.member_end()) {
errs() << '[';
StringRef Sep = "";
for (; MembIt != TECs.member_end(); ++MembIt) {
errs() << Sep << *MembIt;
Sep = ", ";
}
errs() << "] ";
}
}
errs() << '\n';
}
return TECs;
}
//===- MatchData Handling -------------------------------------------------===//
struct MatchDataDef {
MatchDataDef(StringRef Symbol, StringRef Type) : Symbol(Symbol), Type(Type) {}
StringRef Symbol;
StringRef Type;
/// \returns the desired variable name for this MatchData.
std::string getVarName() const {
// Add a prefix in case the symbol name is very generic and conflicts with
// something else.
return "GIMatchData_" + Symbol.str();
}
};
//===- CombineRuleBuilder -------------------------------------------------===//
/// Parses combine rule and builds a small intermediate representation to tie
/// patterns together and emit RuleMatchers to match them. This may emit more
/// than one RuleMatcher, e.g. for `wip_match_opcode`.
///
/// Memory management for `Pattern` objects is done through `std::unique_ptr`.
/// In most cases, there are two stages to a pattern's lifetime:
/// - Creation in a `parse` function
/// - The unique_ptr is stored in a variable, and may be destroyed if the
/// pattern is found to be semantically invalid.
/// - Ownership transfer into a `PatternMap`
/// - Once a pattern is moved into either the map of Match or Apply
/// patterns, it is known to be valid and it never moves back.
class CombineRuleBuilder {
public:
using PatternMap = MapVector<StringRef, std::unique_ptr<Pattern>>;
using PatternAlternatives = DenseMap<const Pattern *, unsigned>;
CombineRuleBuilder(const CodeGenTarget &CGT,
SubtargetFeatureInfoMap &SubtargetFeatures,
Record &RuleDef, unsigned ID,
std::vector<RuleMatcher> &OutRMs)
: Parser(CGT, RuleDef.getLoc()), CGT(CGT),
SubtargetFeatures(SubtargetFeatures), RuleDef(RuleDef), RuleID(ID),
OutRMs(OutRMs) {}
/// Parses all fields in the RuleDef record.
bool parseAll();
/// Emits all RuleMatchers into the vector of RuleMatchers passed in the
/// constructor.
bool emitRuleMatchers();
void print(raw_ostream &OS) const;
void dump() const { print(dbgs()); }
/// Debug-only verification of invariants.
#ifndef NDEBUG
void verify() const;
#endif
private:
const CodeGenInstruction &getGConstant() const {
return CGT.getInstruction(RuleDef.getRecords().getDef("G_CONSTANT"));
}
void PrintError(Twine Msg) const { ::PrintError(&RuleDef, Msg); }
void PrintWarning(Twine Msg) const { ::PrintWarning(RuleDef.getLoc(), Msg); }
void PrintNote(Twine Msg) const { ::PrintNote(RuleDef.getLoc(), Msg); }
void print(raw_ostream &OS, const PatternAlternatives &Alts) const;
bool addApplyPattern(std::unique_ptr<Pattern> Pat);
bool addMatchPattern(std::unique_ptr<Pattern> Pat);
/// Adds the expansions from \see MatchDatas to \p CE.
void declareAllMatchDatasExpansions(CodeExpansions &CE) const;
/// Adds a matcher \p P to \p IM, expanding its code using \p CE.
/// Note that the predicate is added on the last InstructionMatcher.
///
/// \p Alts is only used if DebugCXXPreds is enabled.
void addCXXPredicate(RuleMatcher &M, const CodeExpansions &CE,
const CXXPattern &P, const PatternAlternatives &Alts);
bool hasOnlyCXXApplyPatterns() const;
bool hasEraseRoot() const;
// Infer machine operand types and check their consistency.
bool typecheckPatterns();
/// For all PatFragPatterns, add a new entry in PatternAlternatives for each
/// PatternList it contains. This is multiplicative, so if we have 2
/// PatFrags with 3 alternatives each, we get 2*3 permutations added to
/// PermutationsToEmit. The "MaxPermutations" field controls how many
/// permutations are allowed before an error is emitted and this function
/// returns false. This is a simple safeguard to prevent combination of
/// PatFrags from generating enormous amounts of rules.
bool buildPermutationsToEmit();
/// Checks additional semantics of the Patterns.
bool checkSemantics();
/// Creates a new RuleMatcher with some boilerplate
/// settings/actions/predicates, and and adds it to \p OutRMs.
/// \see addFeaturePredicates too.
///
/// \param Alts Current set of alternatives, for debug comment.
/// \param AdditionalComment Comment string to be added to the
/// `DebugCommentAction`.
RuleMatcher &addRuleMatcher(const PatternAlternatives &Alts,
Twine AdditionalComment = "");
bool addFeaturePredicates(RuleMatcher &M);
bool findRoots();
bool buildRuleOperandsTable();
bool parseDefs(const DagInit &Def);
bool emitMatchPattern(CodeExpansions &CE, const PatternAlternatives &Alts,
const InstructionPattern &IP);
bool emitMatchPattern(CodeExpansions &CE, const PatternAlternatives &Alts,
const AnyOpcodePattern &AOP);
bool emitPatFragMatchPattern(CodeExpansions &CE,
const PatternAlternatives &Alts, RuleMatcher &RM,
InstructionMatcher *IM,
const PatFragPattern &PFP,
DenseSet<const Pattern *> &SeenPats);
bool emitApplyPatterns(CodeExpansions &CE, RuleMatcher &M);
bool emitCXXMatchApply(CodeExpansions &CE, RuleMatcher &M,
ArrayRef<CXXPattern *> Matchers);
// Recursively visits InstructionPatterns from P to build up the
// RuleMatcher actions.
bool emitInstructionApplyPattern(CodeExpansions &CE, RuleMatcher &M,
const InstructionPattern &P,
DenseSet<const Pattern *> &SeenPats,
StringMap<unsigned> &OperandToTempRegID);
bool emitCodeGenInstructionApplyImmOperand(RuleMatcher &M,
BuildMIAction &DstMI,
const CodeGenInstructionPattern &P,
const InstructionOperand &O);
bool emitBuiltinApplyPattern(CodeExpansions &CE, RuleMatcher &M,
const BuiltinPattern &P,
StringMap<unsigned> &OperandToTempRegID);
// Recursively visits CodeGenInstructionPattern from P to build up the
// RuleMatcher/InstructionMatcher. May create new InstructionMatchers as
// needed.
using OperandMapperFnRef =
function_ref<InstructionOperand(const InstructionOperand &)>;
using OperandDefLookupFn =
function_ref<const InstructionPattern *(StringRef)>;
bool emitCodeGenInstructionMatchPattern(
CodeExpansions &CE, const PatternAlternatives &Alts, RuleMatcher &M,
InstructionMatcher &IM, const CodeGenInstructionPattern &P,
DenseSet<const Pattern *> &SeenPats, OperandDefLookupFn LookupOperandDef,
OperandMapperFnRef OperandMapper = [](const auto &O) { return O; });
PatternParser Parser;
const CodeGenTarget &CGT;
SubtargetFeatureInfoMap &SubtargetFeatures;
Record &RuleDef;
const unsigned RuleID;
std::vector<RuleMatcher> &OutRMs;
// For InstructionMatcher::addOperand
unsigned AllocatedTemporariesBaseID = 0;
/// The root of the pattern.
StringRef RootName;
/// These maps have ownership of the actual Pattern objects.
/// They both map a Pattern's name to the Pattern instance.
PatternMap MatchPats;
PatternMap ApplyPats;
/// Operand tables to tie match/apply patterns together.
OperandTable MatchOpTable;
OperandTable ApplyOpTable;
/// Set by findRoots.
Pattern *MatchRoot = nullptr;
SmallDenseSet<InstructionPattern *, 2> ApplyRoots;
SmallVector<MatchDataDef, 2> MatchDatas;
SmallVector<PatternAlternatives, 1> PermutationsToEmit;
};
bool CombineRuleBuilder::parseAll() {
auto StackTrace = PrettyStackTraceParse(RuleDef);
if (!parseDefs(*RuleDef.getValueAsDag("Defs")))
return false;
if (!Parser.parsePatternList(
*RuleDef.getValueAsDag("Match"),
[this](auto Pat) { return addMatchPattern(std::move(Pat)); }, "match",
(RuleDef.getName() + "_match").str()))
return false;
if (!Parser.parsePatternList(
*RuleDef.getValueAsDag("Apply"),
[this](auto Pat) { return addApplyPattern(std::move(Pat)); }, "apply",
(RuleDef.getName() + "_apply").str()))
return false;
if (!buildRuleOperandsTable() || !typecheckPatterns() || !findRoots() ||
!checkSemantics() || !buildPermutationsToEmit())
return false;
LLVM_DEBUG(verify());
return true;
}
bool CombineRuleBuilder::emitRuleMatchers() {
auto StackTrace = PrettyStackTraceEmit(RuleDef);
assert(MatchRoot);
CodeExpansions CE;
assert(!PermutationsToEmit.empty());
for (const auto &Alts : PermutationsToEmit) {
switch (MatchRoot->getKind()) {
case Pattern::K_AnyOpcode: {
if (!emitMatchPattern(CE, Alts, *cast<AnyOpcodePattern>(MatchRoot)))
return false;
break;
}
case Pattern::K_PatFrag:
case Pattern::K_Builtin:
case Pattern::K_CodeGenInstruction:
if (!emitMatchPattern(CE, Alts, *cast<InstructionPattern>(MatchRoot)))
return false;
break;
case Pattern::K_CXX:
PrintError("C++ code cannot be the root of a rule!");
return false;
default:
llvm_unreachable("unknown pattern kind!");
}
}
return true;
}
void CombineRuleBuilder::print(raw_ostream &OS) const {
OS << "(CombineRule name:" << RuleDef.getName() << " id:" << RuleID
<< " root:" << RootName << '\n';
if (!MatchDatas.empty()) {
OS << " (MatchDatas\n";
for (const auto &MD : MatchDatas) {
OS << " (MatchDataDef symbol:" << MD.Symbol << " type:" << MD.Type
<< ")\n";
}
OS << " )\n";
}
const auto &SeenPFs = Parser.getSeenPatFrags();
if (!SeenPFs.empty()) {
OS << " (PatFrags\n";
for (const auto *PF : Parser.getSeenPatFrags()) {
PF->print(OS, /*Indent=*/" ");
OS << '\n';
}
OS << " )\n";
}
const auto DumpPats = [&](StringRef Name, const PatternMap &Pats) {
OS << " (" << Name << " ";
if (Pats.empty()) {
OS << "<empty>)\n";
return;
}
OS << '\n';
for (const auto &[Name, Pat] : Pats) {
OS << " ";
if (Pat.get() == MatchRoot)
OS << "<match_root>";
if (isa<InstructionPattern>(Pat.get()) &&
ApplyRoots.contains(cast<InstructionPattern>(Pat.get())))
OS << "<apply_root>";
OS << Name << ":";
Pat->print(OS, /*PrintName=*/false);
OS << '\n';
}
OS << " )\n";
};
DumpPats("MatchPats", MatchPats);
DumpPats("ApplyPats", ApplyPats);
MatchOpTable.print(OS, "MatchPats", /*Indent*/ " ");
ApplyOpTable.print(OS, "ApplyPats", /*Indent*/ " ");
if (PermutationsToEmit.size() > 1) {
OS << " (PermutationsToEmit\n";
for (const auto &Perm : PermutationsToEmit) {
OS << " ";
print(OS, Perm);
OS << ",\n";
}
OS << " )\n";
}
OS << ")\n";
}
#ifndef NDEBUG
void CombineRuleBuilder::verify() const {
const auto VerifyPats = [&](const PatternMap &Pats) {
for (const auto &[Name, Pat] : Pats) {
if (!Pat)
PrintFatalError("null pattern in pattern map!");
if (Name != Pat->getName()) {
Pat->dump();
PrintFatalError("Pattern name mismatch! Map name: " + Name +
", Pat name: " + Pat->getName());
}
// Sanity check: the map should point to the same data as the Pattern.
// Both strings are allocated in the pool using insertStrRef.
if (Name.data() != Pat->getName().data()) {
dbgs() << "Map StringRef: '" << Name << "' @ "
<< (const void *)Name.data() << '\n';
dbgs() << "Pat String: '" << Pat->getName() << "' @ "
<< (const void *)Pat->getName().data() << '\n';
PrintFatalError("StringRef stored in the PatternMap is not referencing "
"the same string as its Pattern!");
}
}
};
VerifyPats(MatchPats);
VerifyPats(ApplyPats);
// Check there are no wip_match_opcode patterns in the "apply" patterns.
if (any_of(ApplyPats,
[&](auto &E) { return isa<AnyOpcodePattern>(E.second.get()); })) {
dump();
PrintFatalError(
"illegal wip_match_opcode pattern in the 'apply' patterns!");
}
// Check there are no nullptrs in ApplyRoots.
if (ApplyRoots.contains(nullptr)) {
PrintFatalError(
"CombineRuleBuilder's ApplyRoots set contains a null pointer!");
}
}
#endif
void CombineRuleBuilder::print(raw_ostream &OS,
const PatternAlternatives &Alts) const {
SmallVector<std::string, 1> Strings(
map_range(Alts, [](const auto &PatAndPerm) {
return PatAndPerm.first->getName().str() + "[" +
to_string(PatAndPerm.second) + "]";
}));
// Sort so output is deterministic for tests. Otherwise it's sorted by pointer
// values.
sort(Strings);
OS << "[" << join(Strings, ", ") << "]";
}
bool CombineRuleBuilder::addApplyPattern(std::unique_ptr<Pattern> Pat) {
StringRef Name = Pat->getName();
if (ApplyPats.contains(Name)) {
PrintError("'" + Name + "' apply pattern defined more than once!");
return false;
}
if (isa<AnyOpcodePattern>(Pat.get())) {
PrintError("'" + Name +
"': wip_match_opcode is not supported in apply patterns");
return false;
}
if (isa<PatFragPattern>(Pat.get())) {
PrintError("'" + Name + "': using " + PatFrag::ClassName +
" is not supported in apply patterns");
return false;
}
if (auto *CXXPat = dyn_cast<CXXPattern>(Pat.get()))
CXXPat->setIsApply();
ApplyPats[Name] = std::move(Pat);
return true;
}
bool CombineRuleBuilder::addMatchPattern(std::unique_ptr<Pattern> Pat) {
StringRef Name = Pat->getName();
if (MatchPats.contains(Name)) {
PrintError("'" + Name + "' match pattern defined more than once!");
return false;
}
// For now, none of the builtins can appear in 'match'.
if (const auto *BP = dyn_cast<BuiltinPattern>(Pat.get())) {
PrintError("'" + BP->getInstName() +
"' cannot be used in a 'match' pattern");
return false;
}
MatchPats[Name] = std::move(Pat);
return true;
}
void CombineRuleBuilder::declareAllMatchDatasExpansions(
CodeExpansions &CE) const {
for (const auto &MD : MatchDatas)
CE.declare(MD.Symbol, MD.getVarName());
}
void CombineRuleBuilder::addCXXPredicate(RuleMatcher &M,
const CodeExpansions &CE,
const CXXPattern &P,
const PatternAlternatives &Alts) {
// FIXME: Hack so C++ code is executed last. May not work for more complex
// patterns.
auto &IM = *std::prev(M.insnmatchers().end());
auto Loc = RuleDef.getLoc();
const auto AddComment = [&](raw_ostream &OS) {
OS << "// Pattern Alternatives: ";
print(OS, Alts);
OS << '\n';
};
const auto &ExpandedCode =
DebugCXXPreds ? P.expandCode(CE, Loc, AddComment) : P.expandCode(CE, Loc);
IM->addPredicate<GenericInstructionPredicateMatcher>(
ExpandedCode.getEnumNameWithPrefix(CXXPredPrefix));
}
bool CombineRuleBuilder::hasOnlyCXXApplyPatterns() const {
return all_of(ApplyPats, [&](auto &Entry) {
return isa<CXXPattern>(Entry.second.get());
});
}
bool CombineRuleBuilder::hasEraseRoot() const {
return any_of(ApplyPats, [&](auto &Entry) {
if (const auto *BP = dyn_cast<BuiltinPattern>(Entry.second.get()))
return BP->getBuiltinKind() == BI_EraseRoot;
return false;
});
}
bool CombineRuleBuilder::typecheckPatterns() {
CombineRuleOperandTypeChecker OTC(RuleDef, MatchOpTable);
for (auto &Pat : values(MatchPats)) {
if (auto *IP = dyn_cast<InstructionPattern>(Pat.get())) {
if (!OTC.processMatchPattern(*IP))
return false;
}
}
for (auto &Pat : values(ApplyPats)) {
if (auto *IP = dyn_cast<InstructionPattern>(Pat.get())) {
if (!OTC.processApplyPattern(*IP))
return false;
}
}
OTC.propagateAndInferTypes();
// Always check this after in case inference adds some special types to the
// match patterns.
for (auto &Pat : values(MatchPats)) {
if (auto *IP = dyn_cast<InstructionPattern>(Pat.get())) {
if (IP->diagnoseAllSpecialTypes(
RuleDef.getLoc(), PatternType::SpecialTyClassName +
" is not supported in 'match' patterns")) {
return false;
}
}
}
return true;
}
bool CombineRuleBuilder::buildPermutationsToEmit() {
PermutationsToEmit.clear();
// Start with one empty set of alternatives.
PermutationsToEmit.emplace_back();
for (const auto &Pat : values(MatchPats)) {
unsigned NumAlts = 0;
// Note: technically, AnyOpcodePattern also needs permutations, but:
// - We only allow a single one of them in the root.
// - They cannot be mixed with any other pattern other than C++ code.
// So we don't really need to take them into account here. We could, but
// that pattern is a hack anyway and the less it's involved, the better.
if (const auto *PFP = dyn_cast<PatFragPattern>(Pat.get()))
NumAlts = PFP->getPatFrag().num_alternatives();
else
continue;
// For each pattern that needs permutations, multiply the current set of
// alternatives.
auto CurPerms = PermutationsToEmit;
PermutationsToEmit.clear();
for (const auto &Perm : CurPerms) {
assert(!Perm.count(Pat.get()) && "Pattern already emitted?");
for (unsigned K = 0; K < NumAlts; ++K) {
PatternAlternatives NewPerm = Perm;
NewPerm[Pat.get()] = K;
PermutationsToEmit.emplace_back(std::move(NewPerm));
}
}
}
if (int64_t MaxPerms = RuleDef.getValueAsInt("MaxPermutations");
MaxPerms > 0) {
if ((int64_t)PermutationsToEmit.size() > MaxPerms) {
PrintError("cannot emit rule '" + RuleDef.getName() + "'; " +
Twine(PermutationsToEmit.size()) +
" permutations would be emitted, but the max is " +
Twine(MaxPerms));
return false;
}
}
// Ensure we always have a single empty entry, it simplifies the emission
// logic so it doesn't need to handle the case where there are no perms.
if (PermutationsToEmit.empty()) {
PermutationsToEmit.emplace_back();
return true;
}
return true;
}
bool CombineRuleBuilder::checkSemantics() {
assert(MatchRoot && "Cannot call this before findRoots()");
bool UsesWipMatchOpcode = false;
for (const auto &Match : MatchPats) {
const auto *Pat = Match.second.get();
if (const auto *CXXPat = dyn_cast<CXXPattern>(Pat)) {
if (!CXXPat->getRawCode().contains("return "))
PrintWarning("'match' C++ code does not seem to return!");
continue;
}
// MIFlags in match cannot use the following syntax: (MIFlags $mi)
if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(Pat)) {
if (auto *FI = CGP->getMIFlagsInfo()) {
if (!FI->copy_flags().empty()) {
PrintError(
"'match' patterns cannot refer to flags from other instructions");
PrintNote("MIFlags in '" + CGP->getName() +
"' refer to: " + join(FI->copy_flags(), ", "));
return false;
}
}
}
const auto *AOP = dyn_cast<AnyOpcodePattern>(Pat);
if (!AOP)
continue;
if (UsesWipMatchOpcode) {
PrintError("wip_opcode_match can only be present once");
return false;
}
UsesWipMatchOpcode = true;
}
std::optional<bool> IsUsingCXXPatterns;
for (const auto &Apply : ApplyPats) {
Pattern *Pat = Apply.second.get();
if (IsUsingCXXPatterns) {
if (*IsUsingCXXPatterns != isa<CXXPattern>(Pat)) {
PrintError("'apply' patterns cannot mix C++ code with other types of "
"patterns");
return false;
}
} else
IsUsingCXXPatterns = isa<CXXPattern>(Pat);
assert(Pat);
const auto *IP = dyn_cast<InstructionPattern>(Pat);
if (!IP)
continue;
if (UsesWipMatchOpcode) {
PrintError("cannot use wip_match_opcode in combination with apply "
"instruction patterns!");
return false;
}
// Check that the insts mentioned in copy_flags exist.
if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(IP)) {
if (auto *FI = CGP->getMIFlagsInfo()) {
for (auto InstName : FI->copy_flags()) {
auto It = MatchPats.find(InstName);
if (It == MatchPats.end()) {
PrintError("unknown instruction '$" + InstName +
"' referenced in MIFlags of '" + CGP->getName() + "'");
return false;
}
if (!isa<CodeGenInstructionPattern>(It->second.get())) {
PrintError(
"'$" + InstName +
"' does not refer to a CodeGenInstruction in MIFlags of '" +
CGP->getName() + "'");
return false;
}
}
}
}
const auto *BIP = dyn_cast<BuiltinPattern>(IP);
if (!BIP)
continue;
StringRef Name = BIP->getInstName();
// (GIEraseInst) has to be the only apply pattern, or it can not be used at
// all. The root cannot have any defs either.
switch (BIP->getBuiltinKind()) {
case BI_EraseRoot: {
if (ApplyPats.size() > 1) {
PrintError(Name + " must be the only 'apply' pattern");
return false;
}
const auto *IRoot = dyn_cast<CodeGenInstructionPattern>(MatchRoot);
if (!IRoot) {
PrintError(Name + " can only be used if the root is a "
"CodeGenInstruction or Intrinsic");
return false;
}
if (IRoot->getNumInstDefs() != 0) {
PrintError(Name + " can only be used if on roots that do "
"not have any output operand");
PrintNote("'" + IRoot->getInstName() + "' has " +
Twine(IRoot->getNumInstDefs()) + " output operands");
return false;
}
break;
}
case BI_ReplaceReg: {
// (GIReplaceReg can only be used on the root instruction)
// TODO: When we allow rewriting non-root instructions, also allow this.
StringRef OldRegName = BIP->getOperand(0).getOperandName();
auto *Def = MatchOpTable.getDef(OldRegName);
if (!Def) {
PrintError(Name + " cannot find a matched pattern that defines '" +
OldRegName + "'");
return false;
}
if (MatchOpTable.getDef(OldRegName) != MatchRoot) {
PrintError(Name + " cannot replace '" + OldRegName +
"': this builtin can only replace a register defined by the "
"match root");
return false;
}
break;
}
}
}
if (!hasOnlyCXXApplyPatterns() && !MatchDatas.empty()) {
PrintError(MatchDataClassName +
" can only be used if 'apply' in entirely written in C++");
return false;
}
return true;
}
RuleMatcher &CombineRuleBuilder::addRuleMatcher(const PatternAlternatives &Alts,
Twine AdditionalComment) {
auto &RM = OutRMs.emplace_back(RuleDef.getLoc());
addFeaturePredicates(RM);
RM.setPermanentGISelFlags(GISF_IgnoreCopies);
RM.addRequiredSimplePredicate(getIsEnabledPredicateEnumName(RuleID));
std::string Comment;
raw_string_ostream CommentOS(Comment);
CommentOS << "Combiner Rule #" << RuleID << ": " << RuleDef.getName();
if (!Alts.empty()) {
CommentOS << " @ ";
print(CommentOS, Alts);
}
if (!AdditionalComment.isTriviallyEmpty())
CommentOS << "; " << AdditionalComment;
RM.addAction<DebugCommentAction>(Comment);
return RM;
}
bool CombineRuleBuilder::addFeaturePredicates(RuleMatcher &M) {
if (!RuleDef.getValue("Predicates"))
return true;
ListInit *Preds = RuleDef.getValueAsListInit("Predicates");
for (Init *PI : Preds->getValues()) {
DefInit *Pred = dyn_cast<DefInit>(PI);
if (!Pred)
continue;
Record *Def = Pred->getDef();
if (!Def->isSubClassOf("Predicate")) {
::PrintError(Def, "Unknown 'Predicate' Type");
return false;
}
if (Def->getValueAsString("CondString").empty())
continue;
if (SubtargetFeatures.count(Def) == 0) {
SubtargetFeatures.emplace(
Def, SubtargetFeatureInfo(Def, SubtargetFeatures.size()));
}
M.addRequiredFeature(Def);
}
return true;
}
bool CombineRuleBuilder::findRoots() {
const auto Finish = [&]() {
assert(MatchRoot);
if (hasOnlyCXXApplyPatterns() || hasEraseRoot())
return true;
auto *IPRoot = dyn_cast<InstructionPattern>(MatchRoot);
if (!IPRoot)
return true;
if (IPRoot->getNumInstDefs() == 0) {
// No defs to work with -> find the root using the pattern name.
auto It = ApplyPats.find(RootName);
if (It == ApplyPats.end()) {
PrintError("Cannot find root '" + RootName + "' in apply patterns!");
return false;
}
auto *ApplyRoot = dyn_cast<InstructionPattern>(It->second.get());
if (!ApplyRoot) {
PrintError("apply pattern root '" + RootName +
"' must be an instruction pattern");
return false;
}
ApplyRoots.insert(ApplyRoot);
return true;
}
// Collect all redefinitions of the MatchRoot's defs and put them in
// ApplyRoots.
const auto DefsNeeded = IPRoot->getApplyDefsNeeded();
for (auto &Op : DefsNeeded) {
assert(Op.isDef() && Op.isNamedOperand());
StringRef Name = Op.getOperandName();
auto *ApplyRedef = ApplyOpTable.getDef(Name);
if (!ApplyRedef) {
PrintError("'" + Name + "' must be redefined in the 'apply' pattern");
return false;
}
ApplyRoots.insert((InstructionPattern *)ApplyRedef);
}
if (auto It = ApplyPats.find(RootName); It != ApplyPats.end()) {
if (find(ApplyRoots, It->second.get()) == ApplyRoots.end()) {
PrintError("apply pattern '" + RootName +
"' is supposed to be a root but it does not redefine any of "
"the defs of the match root");
return false;
}
}
return true;
};
// Look by pattern name, e.g.
// (G_FNEG $x, $y):$root
if (auto MatchPatIt = MatchPats.find(RootName);
MatchPatIt != MatchPats.end()) {
MatchRoot = MatchPatIt->second.get();
return Finish();
}
// Look by def:
// (G_FNEG $root, $y)
auto LookupRes = MatchOpTable.lookup(RootName);
if (!LookupRes.Found) {
PrintError("Cannot find root '" + RootName + "' in match patterns!");
return false;
}
MatchRoot = LookupRes.Def;
if (!MatchRoot) {
PrintError("Cannot use live-in operand '" + RootName +
"' as match pattern root!");
return false;
}
return Finish();
}
bool CombineRuleBuilder::buildRuleOperandsTable() {
const auto DiagnoseRedefMatch = [&](StringRef OpName) {
PrintError("Operand '" + OpName +
"' is defined multiple times in the 'match' patterns");
};
const auto DiagnoseRedefApply = [&](StringRef OpName) {
PrintError("Operand '" + OpName +
"' is defined multiple times in the 'apply' patterns");
};
for (auto &Pat : values(MatchPats)) {
auto *IP = dyn_cast<InstructionPattern>(Pat.get());
if (IP && !MatchOpTable.addPattern(IP, DiagnoseRedefMatch))
return false;
}
for (auto &Pat : values(ApplyPats)) {
auto *IP = dyn_cast<InstructionPattern>(Pat.get());
if (IP && !ApplyOpTable.addPattern(IP, DiagnoseRedefApply))
return false;
}
return true;
}
bool CombineRuleBuilder::parseDefs(const DagInit &Def) {
if (Def.getOperatorAsDef(RuleDef.getLoc())->getName() != "defs") {
PrintError("Expected defs operator");
return false;
}
SmallVector<StringRef> Roots;
for (unsigned I = 0, E = Def.getNumArgs(); I < E; ++I) {
if (isSpecificDef(*Def.getArg(I), "root")) {
Roots.emplace_back(Def.getArgNameStr(I));
continue;
}
// Subclasses of GIDefMatchData should declare that this rule needs to pass
// data from the match stage to the apply stage, and ensure that the
// generated matcher has a suitable variable for it to do so.
if (Record *MatchDataRec =
getDefOfSubClass(*Def.getArg(I), MatchDataClassName)) {
MatchDatas.emplace_back(Def.getArgNameStr(I),
MatchDataRec->getValueAsString("Type"));
continue;
}
// Otherwise emit an appropriate error message.
if (getDefOfSubClass(*Def.getArg(I), "GIDefKind"))
PrintError("This GIDefKind not implemented in tablegen");
else if (getDefOfSubClass(*Def.getArg(I), "GIDefKindWithArgs"))
PrintError("This GIDefKindWithArgs not implemented in tablegen");
else
PrintError("Expected a subclass of GIDefKind or a sub-dag whose "
"operator is of type GIDefKindWithArgs");
return false;
}
if (Roots.size() != 1) {
PrintError("Combine rules must have exactly one root");
return false;
}
RootName = Roots.front();
return true;
}
bool CombineRuleBuilder::emitMatchPattern(CodeExpansions &CE,
const PatternAlternatives &Alts,
const InstructionPattern &IP) {
auto StackTrace = PrettyStackTraceEmit(RuleDef, &IP);
auto &M = addRuleMatcher(Alts);
InstructionMatcher &IM = M.addInstructionMatcher(IP.getName());
declareInstExpansion(CE, IM, IP.getName());
DenseSet<const Pattern *> SeenPats;
const auto FindOperandDef = [&](StringRef Op) -> InstructionPattern * {
return MatchOpTable.getDef(Op);
};
if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(&IP)) {
if (!emitCodeGenInstructionMatchPattern(CE, Alts, M, IM, *CGP, SeenPats,
FindOperandDef))
return false;
} else if (const auto *PFP = dyn_cast<PatFragPattern>(&IP)) {
if (!PFP->getPatFrag().canBeMatchRoot()) {
PrintError("cannot use '" + PFP->getInstName() + " as match root");
return false;
}
if (!emitPatFragMatchPattern(CE, Alts, M, &IM, *PFP, SeenPats))
return false;
} else if (isa<BuiltinPattern>(&IP)) {
llvm_unreachable("No match builtins known!");
} else
llvm_unreachable("Unknown kind of InstructionPattern!");
// Emit remaining patterns
const bool IsUsingCustomCXXAction = hasOnlyCXXApplyPatterns();
SmallVector<CXXPattern *, 2> CXXMatchers;
for (auto &Pat : values(MatchPats)) {
if (SeenPats.contains(Pat.get()))
continue;
switch (Pat->getKind()) {
case Pattern::K_AnyOpcode:
PrintError("wip_match_opcode can not be used with instruction patterns!");
return false;
case Pattern::K_PatFrag: {
if (!emitPatFragMatchPattern(CE, Alts, M, /*IM*/ nullptr,
*cast<PatFragPattern>(Pat.get()), SeenPats))
return false;
continue;
}
case Pattern::K_Builtin:
PrintError("No known match builtins");
return false;
case Pattern::K_CodeGenInstruction:
cast<InstructionPattern>(Pat.get())->reportUnreachable(RuleDef.getLoc());
return false;
case Pattern::K_CXX: {
// Delay emission for top-level C++ matchers (which can use MatchDatas).
if (IsUsingCustomCXXAction)
CXXMatchers.push_back(cast<CXXPattern>(Pat.get()));
else
addCXXPredicate(M, CE, *cast<CXXPattern>(Pat.get()), Alts);
continue;
}
default:
llvm_unreachable("unknown pattern kind!");
}
}
return IsUsingCustomCXXAction ? emitCXXMatchApply(CE, M, CXXMatchers)
: emitApplyPatterns(CE, M);
}
bool CombineRuleBuilder::emitMatchPattern(CodeExpansions &CE,
const PatternAlternatives &Alts,
const AnyOpcodePattern &AOP) {
auto StackTrace = PrettyStackTraceEmit(RuleDef, &AOP);
const bool IsUsingCustomCXXAction = hasOnlyCXXApplyPatterns();
for (const CodeGenInstruction *CGI : AOP.insts()) {
auto &M = addRuleMatcher(Alts, "wip_match_opcode '" +
CGI->TheDef->getName() + "'");
InstructionMatcher &IM = M.addInstructionMatcher(AOP.getName());
declareInstExpansion(CE, IM, AOP.getName());
// declareInstExpansion needs to be identical, otherwise we need to create a
// CodeExpansions object here instead.
assert(IM.getInsnVarID() == 0);
IM.addPredicate<InstructionOpcodeMatcher>(CGI);
// Emit remaining patterns.
SmallVector<CXXPattern *, 2> CXXMatchers;
for (auto &Pat : values(MatchPats)) {
if (Pat.get() == &AOP)
continue;
switch (Pat->getKind()) {
case Pattern::K_AnyOpcode:
PrintError("wip_match_opcode can only be present once!");
return false;
case Pattern::K_PatFrag: {
DenseSet<const Pattern *> SeenPats;
if (!emitPatFragMatchPattern(CE, Alts, M, /*IM*/ nullptr,
*cast<PatFragPattern>(Pat.get()),
SeenPats))
return false;
continue;
}
case Pattern::K_Builtin:
PrintError("No known match builtins");
return false;
case Pattern::K_CodeGenInstruction:
cast<InstructionPattern>(Pat.get())->reportUnreachable(
RuleDef.getLoc());
return false;
case Pattern::K_CXX: {
// Delay emission for top-level C++ matchers (which can use MatchDatas).
if (IsUsingCustomCXXAction)
CXXMatchers.push_back(cast<CXXPattern>(Pat.get()));
else
addCXXPredicate(M, CE, *cast<CXXPattern>(Pat.get()), Alts);
break;
}
default:
llvm_unreachable("unknown pattern kind!");
}
}
const bool Res = IsUsingCustomCXXAction
? emitCXXMatchApply(CE, M, CXXMatchers)
: emitApplyPatterns(CE, M);
if (!Res)
return false;
}
return true;
}
bool CombineRuleBuilder::emitPatFragMatchPattern(
CodeExpansions &CE, const PatternAlternatives &Alts, RuleMatcher &RM,
InstructionMatcher *IM, const PatFragPattern &PFP,
DenseSet<const Pattern *> &SeenPats) {
auto StackTrace = PrettyStackTraceEmit(RuleDef, &PFP);
if (SeenPats.contains(&PFP))
return true;
SeenPats.insert(&PFP);
const auto &PF = PFP.getPatFrag();
if (!IM) {
// When we don't have an IM, this means this PatFrag isn't reachable from
// the root. This is only acceptable if it doesn't define anything (e.g. a
// pure C++ PatFrag).
if (PF.num_out_params() != 0) {
PFP.reportUnreachable(RuleDef.getLoc());
return false;
}
} else {
// When an IM is provided, this is reachable from the root, and we're
// expecting to have output operands.
// TODO: If we want to allow for multiple roots we'll need a map of IMs
// then, and emission becomes a bit more complicated.
assert(PF.num_roots() == 1);
}
CodeExpansions PatFragCEs;
if (!PFP.mapInputCodeExpansions(CE, PatFragCEs, RuleDef.getLoc()))
return false;
// List of {ParamName, ArgName}.
// When all patterns have been emitted, find expansions in PatFragCEs named
// ArgName and add their expansion to CE using ParamName as the key.
SmallVector<std::pair<std::string, std::string>, 4> CEsToImport;
// Map parameter names to the actual argument.
const auto OperandMapper =
[&](const InstructionOperand &O) -> InstructionOperand {
if (!O.isNamedOperand())
return O;
StringRef ParamName = O.getOperandName();
// Not sure what to do with those tbh. They should probably never be here.
assert(!O.isNamedImmediate() && "TODO: handle named imms");
unsigned PIdx = PF.getParamIdx(ParamName);
// Map parameters to the argument values.
if (PIdx == (unsigned)-1) {
// This is a temp of the PatFragPattern, prefix the name to avoid
// conflicts.
return O.withNewName(
insertStrRef((PFP.getName() + "." + ParamName).str()));
}
// The operand will be added to PatFragCEs's code expansions using the
// parameter's name. If it's bound to some operand during emission of the
// patterns, we'll want to add it to CE.
auto ArgOp = PFP.getOperand(PIdx);
if (ArgOp.isNamedOperand())
CEsToImport.emplace_back(ArgOp.getOperandName().str(), ParamName);
if (ArgOp.getType() && O.getType() && ArgOp.getType() != O.getType()) {
StringRef PFName = PF.getName();
PrintWarning("impossible type constraints: operand " + Twine(PIdx) +
" of '" + PFP.getName() + "' has type '" +
ArgOp.getType().str() + "', but '" + PFName +
"' constrains it to '" + O.getType().str() + "'");
if (ArgOp.isNamedOperand())
PrintNote("operand " + Twine(PIdx) + " of '" + PFP.getName() +
"' is '" + ArgOp.getOperandName() + "'");
if (O.isNamedOperand())
PrintNote("argument " + Twine(PIdx) + " of '" + PFName + "' is '" +
ParamName + "'");
}
return ArgOp;
};
// PatFragPatterns are only made of InstructionPatterns or CXXPatterns.
// Emit instructions from the root.
const auto &FragAlt = PF.getAlternative(Alts.lookup(&PFP));
const auto &FragAltOT = FragAlt.OpTable;
const auto LookupOperandDef =
[&](StringRef Op) -> const InstructionPattern * {
return FragAltOT.getDef(Op);
};
DenseSet<const Pattern *> PatFragSeenPats;
for (const auto &[Idx, InOp] : enumerate(PF.out_params())) {
if (InOp.Kind != PatFrag::PK_Root)
continue;
StringRef ParamName = InOp.Name;
const auto *Def = FragAltOT.getDef(ParamName);
assert(Def && "PatFrag::checkSemantics should have emitted an error if "
"an out operand isn't defined!");
assert(isa<CodeGenInstructionPattern>(Def) &&
"Nested PatFrags not supported yet");
if (!emitCodeGenInstructionMatchPattern(
PatFragCEs, Alts, RM, *IM, *cast<CodeGenInstructionPattern>(Def),
PatFragSeenPats, LookupOperandDef, OperandMapper))
return false;
}
// Emit leftovers.
for (const auto &Pat : FragAlt.Pats) {
if (PatFragSeenPats.contains(Pat.get()))
continue;
if (const auto *CXXPat = dyn_cast<CXXPattern>(Pat.get())) {
addCXXPredicate(RM, PatFragCEs, *CXXPat, Alts);
continue;
}
if (const auto *IP = dyn_cast<InstructionPattern>(Pat.get())) {
IP->reportUnreachable(PF.getLoc());
return false;
}
llvm_unreachable("Unexpected pattern kind in PatFrag");
}
for (const auto &[ParamName, ArgName] : CEsToImport) {
// Note: we're find if ParamName already exists. It just means it's been
// bound before, so we prefer to keep the first binding.
CE.declare(ParamName, PatFragCEs.lookup(ArgName));
}
return true;
}
bool CombineRuleBuilder::emitApplyPatterns(CodeExpansions &CE, RuleMatcher &M) {
assert(MatchDatas.empty());
DenseSet<const Pattern *> SeenPats;
StringMap<unsigned> OperandToTempRegID;
for (auto *ApplyRoot : ApplyRoots) {
assert(isa<InstructionPattern>(ApplyRoot) &&
"Root can only be a InstructionPattern!");
if (!emitInstructionApplyPattern(CE, M,
cast<InstructionPattern>(*ApplyRoot),
SeenPats, OperandToTempRegID))
return false;
}
for (auto &Pat : values(ApplyPats)) {
if (SeenPats.contains(Pat.get()))
continue;
switch (Pat->getKind()) {
case Pattern::K_AnyOpcode:
llvm_unreachable("Unexpected pattern in apply!");
case Pattern::K_PatFrag:
// TODO: We could support pure C++ PatFrags as a temporary thing.
llvm_unreachable("Unexpected pattern in apply!");
case Pattern::K_Builtin:
if (!emitInstructionApplyPattern(CE, M, cast<BuiltinPattern>(*Pat),
SeenPats, OperandToTempRegID))
return false;
break;
case Pattern::K_CodeGenInstruction:
cast<CodeGenInstructionPattern>(*Pat).reportUnreachable(RuleDef.getLoc());
return false;
case Pattern::K_CXX: {
llvm_unreachable(
"CXX Pattern Emission should have been handled earlier!");
}
default:
llvm_unreachable("unknown pattern kind!");
}
}
// Erase the root.
unsigned RootInsnID =
M.getInsnVarID(M.getInstructionMatcher(MatchRoot->getName()));
M.addAction<EraseInstAction>(RootInsnID);
return true;
}
bool CombineRuleBuilder::emitCXXMatchApply(CodeExpansions &CE, RuleMatcher &M,
ArrayRef<CXXPattern *> Matchers) {
assert(hasOnlyCXXApplyPatterns());
declareAllMatchDatasExpansions(CE);
std::string CodeStr;
raw_string_ostream OS(CodeStr);
for (auto &MD : MatchDatas)
OS << MD.Type << " " << MD.getVarName() << ";\n";
if (!Matchers.empty()) {
OS << "// Match Patterns\n";
for (auto *M : Matchers) {
OS << "if(![&](){";
CodeExpander Expander(M->getRawCode(), CE, RuleDef.getLoc(),
/*ShowExpansions=*/false);
Expander.emit(OS);
OS << "}()) {\n"
<< " return false;\n}\n";
}
}
OS << "// Apply Patterns\n";
ListSeparator LS("\n");
for (auto &Pat : ApplyPats) {
auto *CXXPat = cast<CXXPattern>(Pat.second.get());
CodeExpander Expander(CXXPat->getRawCode(), CE, RuleDef.getLoc(),
/*ShowExpansions=*/ false);
OS << LS;
Expander.emit(OS);
}
const auto &Code = CXXPredicateCode::getCustomActionCode(CodeStr);
M.setCustomCXXAction(Code.getEnumNameWithPrefix(CXXCustomActionPrefix));
return true;
}
bool CombineRuleBuilder::emitInstructionApplyPattern(
CodeExpansions &CE, RuleMatcher &M, const InstructionPattern &P,
DenseSet<const Pattern *> &SeenPats,
StringMap<unsigned> &OperandToTempRegID) {
auto StackTrace = PrettyStackTraceEmit(RuleDef, &P);
if (SeenPats.contains(&P))
return true;
SeenPats.insert(&P);
// First, render the uses.
for (auto &Op : P.named_operands()) {
if (Op.isDef())
continue;
StringRef OpName = Op.getOperandName();
if (const auto *DefPat = ApplyOpTable.getDef(OpName)) {
if (!emitInstructionApplyPattern(CE, M, *DefPat, SeenPats,
OperandToTempRegID))
return false;
} else {
// If we have no def, check this exists in the MatchRoot.
if (!Op.isNamedImmediate() && !MatchOpTable.lookup(OpName).Found) {
PrintError("invalid output operand '" + OpName +
"': operand is not a live-in of the match pattern, and it "
"has no definition");
return false;
}
}
}
if (const auto *BP = dyn_cast<BuiltinPattern>(&P))
return emitBuiltinApplyPattern(CE, M, *BP, OperandToTempRegID);
if (isa<PatFragPattern>(&P))
llvm_unreachable("PatFragPatterns is not supported in 'apply'!");
auto &CGIP = cast<CodeGenInstructionPattern>(P);
// Now render this inst.
auto &DstMI =
M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &CGIP.getInst());
bool HasEmittedIntrinsicID = false;
const auto EmitIntrinsicID = [&]() {
assert(CGIP.isIntrinsic());
DstMI.addRenderer<IntrinsicIDRenderer>(CGIP.getIntrinsic());
HasEmittedIntrinsicID = true;
};
for (auto &Op : P.operands()) {
// Emit the intrinsic ID after the last def.
if (CGIP.isIntrinsic() && !Op.isDef() && !HasEmittedIntrinsicID)
EmitIntrinsicID();
if (Op.isNamedImmediate()) {
PrintError("invalid output operand '" + Op.getOperandName() +
"': output immediates cannot be named");
PrintNote("while emitting pattern '" + P.getName() + "' (" +
P.getInstName() + ")");
return false;
}
if (Op.hasImmValue()) {
if (!emitCodeGenInstructionApplyImmOperand(M, DstMI, CGIP, Op))
return false;
continue;
}
StringRef OpName = Op.getOperandName();
// Uses of operand.
if (!Op.isDef()) {
if (auto It = OperandToTempRegID.find(OpName);
It != OperandToTempRegID.end()) {
assert(!MatchOpTable.lookup(OpName).Found &&
"Temp reg is also from match pattern?");
DstMI.addRenderer<TempRegRenderer>(It->second);
} else {
// This should be a match live in or a redef of a matched instr.
// If it's a use of a temporary register, then we messed up somewhere -
// the previous condition should have passed.
assert(MatchOpTable.lookup(OpName).Found &&
!ApplyOpTable.getDef(OpName) && "Temp reg not emitted yet!");
DstMI.addRenderer<CopyRenderer>(OpName);
}
continue;
}
// Determine what we're dealing with. Are we replace a matched instruction?
// Creating a new one?
auto OpLookupRes = MatchOpTable.lookup(OpName);
if (OpLookupRes.Found) {
if (OpLookupRes.isLiveIn()) {
// live-in of the match pattern.
PrintError("Cannot define live-in operand '" + OpName +
"' in the 'apply' pattern");
return false;
}
assert(OpLookupRes.Def);
// TODO: Handle this. We need to mutate the instr, or delete the old
// one.
// Likewise, we also need to ensure we redef everything, if the
// instr has more than one def, we need to redef all or nothing.
if (OpLookupRes.Def != MatchRoot) {
PrintError("redefining an instruction other than the root is not "
"supported (operand '" +
OpName + "')");
return false;
}
// redef of a match
DstMI.addRenderer<CopyRenderer>(OpName);
continue;
}
// Define a new register unique to the apply patterns (AKA a "temp"
// register).
unsigned TempRegID;
if (auto It = OperandToTempRegID.find(OpName);
It != OperandToTempRegID.end()) {
TempRegID = It->second;
} else {
// This is a brand new register.
TempRegID = M.allocateTempRegID();
OperandToTempRegID[OpName] = TempRegID;
const auto Ty = Op.getType();
if (!Ty) {
PrintError("def of a new register '" + OpName +
"' in the apply patterns must have a type");
return false;
}
declareTempRegExpansion(CE, TempRegID, OpName);
// Always insert the action at the beginning, otherwise we may end up
// using the temp reg before it's available.
M.insertAction<MakeTempRegisterAction>(
M.actions_begin(), getLLTCodeGenOrTempType(Ty, M), TempRegID);
}
DstMI.addRenderer<TempRegRenderer>(TempRegID, /*IsDef=*/true);
}
// Some intrinsics have no in operands, ensure the ID is still emitted in such
// cases.
if (CGIP.isIntrinsic() && !HasEmittedIntrinsicID)
EmitIntrinsicID();
// Render MIFlags
if (const auto *FI = CGIP.getMIFlagsInfo()) {
for (StringRef InstName : FI->copy_flags())
DstMI.addCopiedMIFlags(M.getInstructionMatcher(InstName));
for (StringRef F : FI->set_flags())
DstMI.addSetMIFlags(F);
for (StringRef F : FI->unset_flags())
DstMI.addUnsetMIFlags(F);
}
// Don't allow mutating opcodes for GISel combiners. We want a more precise
// handling of MIFlags so we require them to be explicitly preserved.
//
// TODO: We don't mutate very often, if at all in combiners, but it'd be nice
// to re-enable this. We'd then need to always clear MIFlags when mutating
// opcodes, and never mutate an inst that we copy flags from.
// DstMI.chooseInsnToMutate(M);
declareInstExpansion(CE, DstMI, P.getName());
return true;
}
bool CombineRuleBuilder::emitCodeGenInstructionApplyImmOperand(
RuleMatcher &M, BuildMIAction &DstMI, const CodeGenInstructionPattern &P,
const InstructionOperand &O) {
// If we have a type, we implicitly emit a G_CONSTANT, except for G_CONSTANT
// itself where we emit a CImm.
//
// No type means we emit a simple imm.
// G_CONSTANT is a special case and needs a CImm though so this is likely a
// mistake.
const bool isGConstant = P.is("G_CONSTANT");
const auto Ty = O.getType();
if (!Ty) {
if (isGConstant) {
PrintError("'G_CONSTANT' immediate must be typed!");
PrintNote("while emitting pattern '" + P.getName() + "' (" +
P.getInstName() + ")");
return false;
}
DstMI.addRenderer<ImmRenderer>(O.getImmValue());
return true;
}
auto ImmTy = getLLTCodeGenOrTempType(Ty, M);
if (isGConstant) {
DstMI.addRenderer<ImmRenderer>(O.getImmValue(), ImmTy);
return true;
}
unsigned TempRegID = M.allocateTempRegID();
// Ensure MakeTempReg & the BuildConstantAction occur at the beginning.
auto InsertIt = M.insertAction<MakeTempRegisterAction>(M.actions_begin(),
ImmTy, TempRegID);
M.insertAction<BuildConstantAction>(++InsertIt, TempRegID, O.getImmValue());
DstMI.addRenderer<TempRegRenderer>(TempRegID);
return true;
}
bool CombineRuleBuilder::emitBuiltinApplyPattern(
CodeExpansions &CE, RuleMatcher &M, const BuiltinPattern &P,
StringMap<unsigned> &OperandToTempRegID) {
const auto Error = [&](Twine Reason) {
PrintError("cannot emit '" + P.getInstName() + "' builtin: " + Reason);
return false;
};
switch (P.getBuiltinKind()) {
case BI_EraseRoot: {
// Root is always inst 0.
M.addAction<EraseInstAction>(/*InsnID*/ 0);
return true;
}
case BI_ReplaceReg: {
StringRef Old = P.getOperand(0).getOperandName();
StringRef New = P.getOperand(1).getOperandName();
if (!ApplyOpTable.lookup(New).Found && !MatchOpTable.lookup(New).Found)
return Error("unknown operand '" + Old + "'");
auto &OldOM = M.getOperandMatcher(Old);
if (auto It = OperandToTempRegID.find(New);
It != OperandToTempRegID.end()) {
// Replace with temp reg.
M.addAction<ReplaceRegAction>(OldOM.getInsnVarID(), OldOM.getOpIdx(),
It->second);
} else {
// Replace with matched reg.
auto &NewOM = M.getOperandMatcher(New);
M.addAction<ReplaceRegAction>(OldOM.getInsnVarID(), OldOM.getOpIdx(),
NewOM.getInsnVarID(), NewOM.getOpIdx());
}
// checkSemantics should have ensured that we can only rewrite the root.
// Ensure we're deleting it.
assert(MatchOpTable.getDef(Old) == MatchRoot);
return true;
}
}
llvm_unreachable("Unknown BuiltinKind!");
}
bool isLiteralImm(const InstructionPattern &P, unsigned OpIdx) {
if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(&P)) {
StringRef InstName = CGP->getInst().TheDef->getName();
return (InstName == "G_CONSTANT" || InstName == "G_FCONSTANT") &&
OpIdx == 1;
}
llvm_unreachable("TODO");
}
bool CombineRuleBuilder::emitCodeGenInstructionMatchPattern(
CodeExpansions &CE, const PatternAlternatives &Alts, RuleMatcher &M,
InstructionMatcher &IM, const CodeGenInstructionPattern &P,
DenseSet<const Pattern *> &SeenPats, OperandDefLookupFn LookupOperandDef,
OperandMapperFnRef OperandMapper) {
auto StackTrace = PrettyStackTraceEmit(RuleDef, &P);
if (SeenPats.contains(&P))
return true;
SeenPats.insert(&P);
IM.addPredicate<InstructionOpcodeMatcher>(&P.getInst());
declareInstExpansion(CE, IM, P.getName());
// If this is an intrinsic, check the intrinsic ID.
if (P.isIntrinsic()) {
// The IntrinsicID's operand is the first operand after the defs.
OperandMatcher &OM = IM.addOperand(P.getNumInstDefs(), "$intrinsic_id",
AllocatedTemporariesBaseID++);
OM.addPredicate<IntrinsicIDOperandMatcher>(P.getIntrinsic());
}
// Check flags if needed.
if (const auto *FI = P.getMIFlagsInfo()) {
assert(FI->copy_flags().empty());
if (const auto &SetF = FI->set_flags(); !SetF.empty())
IM.addPredicate<MIFlagsInstructionPredicateMatcher>(SetF.getArrayRef());
if (const auto &UnsetF = FI->unset_flags(); !UnsetF.empty())
IM.addPredicate<MIFlagsInstructionPredicateMatcher>(UnsetF.getArrayRef(),
/*CheckNot=*/true);
}
for (auto [Idx, OriginalO] : enumerate(P.operands())) {
// Remap the operand. This is used when emitting InstructionPatterns inside
// PatFrags, so it can remap them to the arguments passed to the pattern.
//
// We use the remapped operand to emit immediates, and for the symbolic
// operand names (in IM.addOperand). CodeExpansions and OperandTable lookups
// still use the original name.
//
// The "def" flag on the remapped operand is always ignored.
auto RemappedO = OperandMapper(OriginalO);
assert(RemappedO.isNamedOperand() == OriginalO.isNamedOperand() &&
"Cannot remap an unnamed operand to a named one!");
const auto OpName =
RemappedO.isNamedOperand() ? RemappedO.getOperandName().str() : "";
// For intrinsics, the first use operand is the intrinsic id, so the true
// operand index is shifted by 1.
//
// From now on:
// Idx = index in the pattern operand list.
// RealIdx = expected index in the MachineInstr.
const unsigned RealIdx =
(P.isIntrinsic() && !OriginalO.isDef()) ? (Idx + 1) : Idx;
OperandMatcher &OM =
IM.addOperand(RealIdx, OpName, AllocatedTemporariesBaseID++);
if (!OpName.empty())
declareOperandExpansion(CE, OM, OriginalO.getOperandName());
// Handle immediates.
if (RemappedO.hasImmValue()) {
if (isLiteralImm(P, Idx))
OM.addPredicate<LiteralIntOperandMatcher>(RemappedO.getImmValue());
else
OM.addPredicate<ConstantIntOperandMatcher>(RemappedO.getImmValue());
}
// Handle typed operands, but only bother to check if it hasn't been done
// before.
//
// getOperandMatcher will always return the first OM to have been created
// for that Operand. "OM" here is always a new OperandMatcher.
//
// Always emit a check for unnamed operands.
if (OpName.empty() ||
!M.getOperandMatcher(OpName).contains<LLTOperandMatcher>()) {
if (const auto Ty = RemappedO.getType()) {
// TODO: We could support GITypeOf here on the condition that the
// OperandMatcher exists already. Though it's clunky to make this work
// and isn't all that useful so it's just rejected in typecheckPatterns
// at this time.
assert(Ty.isLLT() && "Only LLTs are supported in match patterns!");
OM.addPredicate<LLTOperandMatcher>(getLLTCodeGen(Ty));
}
}
// Stop here if the operand is a def, or if it had no name.
if (OriginalO.isDef() || !OriginalO.isNamedOperand())
continue;
const auto *DefPat = LookupOperandDef(OriginalO.getOperandName());
if (!DefPat)
continue;
if (OriginalO.hasImmValue()) {
assert(!OpName.empty());
// This is a named immediate that also has a def, that's not okay.
// e.g.
// (G_SEXT $y, (i32 0))
// (COPY $x, 42:$y)
PrintError("'" + OpName +
"' is a named immediate, it cannot be defined by another "
"instruction");
PrintNote("'" + OpName + "' is defined by '" + DefPat->getName() + "'");
return false;
}
// From here we know that the operand defines an instruction, and we need to
// emit it.
auto InstOpM =
OM.addPredicate<InstructionOperandMatcher>(M, DefPat->getName());
if (!InstOpM) {
// TODO: copy-pasted from GlobalISelEmitter.cpp. Is it still relevant
// here?
PrintError("Nested instruction '" + DefPat->getName() +
"' cannot be the same as another operand '" +
OriginalO.getOperandName() + "'");
return false;
}
auto &IM = (*InstOpM)->getInsnMatcher();
if (const auto *CGIDef = dyn_cast<CodeGenInstructionPattern>(DefPat)) {
if (!emitCodeGenInstructionMatchPattern(CE, Alts, M, IM, *CGIDef,
SeenPats, LookupOperandDef,
OperandMapper))
return false;
continue;
}
if (const auto *PFPDef = dyn_cast<PatFragPattern>(DefPat)) {
if (!emitPatFragMatchPattern(CE, Alts, M, &IM, *PFPDef, SeenPats))
return false;
continue;
}
llvm_unreachable("unknown type of InstructionPattern");
}
return true;
}
//===- GICombinerEmitter --------------------------------------------------===//
/// Main implementation class. This emits the tablegenerated output.
///
/// It collects rules, uses `CombineRuleBuilder` to parse them and accumulate
/// RuleMatchers, then takes all the necessary state/data from the various
/// static storage pools and wires them together to emit the match table &
/// associated function/data structures.
class GICombinerEmitter final : public GlobalISelMatchTableExecutorEmitter {
RecordKeeper &Records;
StringRef Name;
const CodeGenTarget &Target;
Record *Combiner;
unsigned NextRuleID = 0;
// List all combine rules (ID, name) imported.
// Note that the combiner rule ID is different from the RuleMatcher ID. The
// latter is internal to the MatchTable, the former is the canonical ID of the
// combine rule used to disable/enable it.
std::vector<std::pair<unsigned, std::string>> AllCombineRules;
// Keep track of all rules we've seen so far to ensure we don't process
// the same rule twice.
StringSet<> RulesSeen;
MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules);
void emitRuleConfigImpl(raw_ostream &OS);
void emitAdditionalImpl(raw_ostream &OS) override;
void emitMIPredicateFns(raw_ostream &OS) override;
void emitI64ImmPredicateFns(raw_ostream &OS) override;
void emitAPFloatImmPredicateFns(raw_ostream &OS) override;
void emitAPIntImmPredicateFns(raw_ostream &OS) override;
void emitTestSimplePredicate(raw_ostream &OS) override;
void emitRunCustomAction(raw_ostream &OS) override;
const CodeGenTarget &getTarget() const override { return Target; }
StringRef getClassName() const override {
return Combiner->getValueAsString("Classname");
}
StringRef getCombineAllMethodName() const {
return Combiner->getValueAsString("CombineAllMethodName");
}
std::string getRuleConfigClassName() const {
return getClassName().str() + "RuleConfig";
}
void gatherRules(std::vector<RuleMatcher> &Rules,
const std::vector<Record *> &&RulesAndGroups);
public:
explicit GICombinerEmitter(RecordKeeper &RK, const CodeGenTarget &Target,
StringRef Name, Record *Combiner);
~GICombinerEmitter() {}
void run(raw_ostream &OS);
};
void GICombinerEmitter::emitRuleConfigImpl(raw_ostream &OS) {
OS << "struct " << getRuleConfigClassName() << " {\n"
<< " SparseBitVector<> DisabledRules;\n\n"
<< " bool isRuleEnabled(unsigned RuleID) const;\n"
<< " bool parseCommandLineOption();\n"
<< " bool setRuleEnabled(StringRef RuleIdentifier);\n"
<< " bool setRuleDisabled(StringRef RuleIdentifier);\n"
<< "};\n\n";
std::vector<std::pair<std::string, std::string>> Cases;
Cases.reserve(AllCombineRules.size());
for (const auto &[ID, Name] : AllCombineRules)
Cases.emplace_back(Name, "return " + to_string(ID) + ";\n");
OS << "static std::optional<uint64_t> getRuleIdxForIdentifier(StringRef "
"RuleIdentifier) {\n"
<< " uint64_t I;\n"
<< " // getAtInteger(...) returns false on success\n"
<< " bool Parsed = !RuleIdentifier.getAsInteger(0, I);\n"
<< " if (Parsed)\n"
<< " return I;\n\n"
<< "#ifndef NDEBUG\n";
StringMatcher Matcher("RuleIdentifier", Cases, OS);
Matcher.Emit();
OS << "#endif // ifndef NDEBUG\n\n"
<< " return std::nullopt;\n"
<< "}\n";
OS << "static std::optional<std::pair<uint64_t, uint64_t>> "
"getRuleRangeForIdentifier(StringRef RuleIdentifier) {\n"
<< " std::pair<StringRef, StringRef> RangePair = "
"RuleIdentifier.split('-');\n"
<< " if (!RangePair.second.empty()) {\n"
<< " const auto First = "
"getRuleIdxForIdentifier(RangePair.first);\n"
<< " const auto Last = "
"getRuleIdxForIdentifier(RangePair.second);\n"
<< " if (!First || !Last)\n"
<< " return std::nullopt;\n"
<< " if (First >= Last)\n"
<< " report_fatal_error(\"Beginning of range should be before "
"end of range\");\n"
<< " return {{*First, *Last + 1}};\n"
<< " }\n"
<< " if (RangePair.first == \"*\") {\n"
<< " return {{0, " << AllCombineRules.size() << "}};\n"
<< " }\n"
<< " const auto I = getRuleIdxForIdentifier(RangePair.first);\n"
<< " if (!I)\n"
<< " return std::nullopt;\n"
<< " return {{*I, *I + 1}};\n"
<< "}\n\n";
for (bool Enabled : {true, false}) {
OS << "bool " << getRuleConfigClassName() << "::setRule"
<< (Enabled ? "Enabled" : "Disabled") << "(StringRef RuleIdentifier) {\n"
<< " auto MaybeRange = getRuleRangeForIdentifier(RuleIdentifier);\n"
<< " if (!MaybeRange)\n"
<< " return false;\n"
<< " for (auto I = MaybeRange->first; I < MaybeRange->second; ++I)\n"
<< " DisabledRules." << (Enabled ? "reset" : "set") << "(I);\n"
<< " return true;\n"
<< "}\n\n";
}
OS << "static std::vector<std::string> " << Name << "Option;\n"
<< "static cl::list<std::string> " << Name << "DisableOption(\n"
<< " \"" << Name.lower() << "-disable-rule\",\n"
<< " cl::desc(\"Disable one or more combiner rules temporarily in "
<< "the " << Name << " pass\"),\n"
<< " cl::CommaSeparated,\n"
<< " cl::Hidden,\n"
<< " cl::cat(GICombinerOptionCategory),\n"
<< " cl::callback([](const std::string &Str) {\n"
<< " " << Name << "Option.push_back(Str);\n"
<< " }));\n"
<< "static cl::list<std::string> " << Name << "OnlyEnableOption(\n"
<< " \"" << Name.lower() << "-only-enable-rule\",\n"
<< " cl::desc(\"Disable all rules in the " << Name
<< " pass then re-enable the specified ones\"),\n"
<< " cl::Hidden,\n"
<< " cl::cat(GICombinerOptionCategory),\n"
<< " cl::callback([](const std::string &CommaSeparatedArg) {\n"
<< " StringRef Str = CommaSeparatedArg;\n"
<< " " << Name << "Option.push_back(\"*\");\n"
<< " do {\n"
<< " auto X = Str.split(\",\");\n"
<< " " << Name << "Option.push_back((\"!\" + X.first).str());\n"
<< " Str = X.second;\n"
<< " } while (!Str.empty());\n"
<< " }));\n"
<< "\n\n"
<< "bool " << getRuleConfigClassName()
<< "::isRuleEnabled(unsigned RuleID) const {\n"
<< " return !DisabledRules.test(RuleID);\n"
<< "}\n"
<< "bool " << getRuleConfigClassName() << "::parseCommandLineOption() {\n"
<< " for (StringRef Identifier : " << Name << "Option) {\n"
<< " bool Enabled = Identifier.consume_front(\"!\");\n"
<< " if (Enabled && !setRuleEnabled(Identifier))\n"
<< " return false;\n"
<< " if (!Enabled && !setRuleDisabled(Identifier))\n"
<< " return false;\n"
<< " }\n"
<< " return true;\n"
<< "}\n\n";
}
void GICombinerEmitter::emitAdditionalImpl(raw_ostream &OS) {
OS << "bool " << getClassName() << "::" << getCombineAllMethodName()
<< "(MachineInstr &I) const {\n"
<< " const TargetSubtargetInfo &ST = MF.getSubtarget();\n"
<< " const PredicateBitset AvailableFeatures = "
"getAvailableFeatures();\n"
<< " B.setInstrAndDebugLoc(I);\n"
<< " State.MIs.clear();\n"
<< " State.MIs.push_back(&I);\n"
<< " if (executeMatchTable(*this, State, ExecInfo, B"
<< ", getMatchTable(), *ST.getInstrInfo(), MRI, "
"*MRI.getTargetRegisterInfo(), *ST.getRegBankInfo(), AvailableFeatures"
<< ", /*CoverageInfo*/ nullptr)) {\n"
<< " return true;\n"
<< " }\n\n"
<< " return false;\n"
<< "}\n\n";
}
void GICombinerEmitter::emitMIPredicateFns(raw_ostream &OS) {
auto MatchCode = CXXPredicateCode::getAllMatchCode();
emitMIPredicateFnsImpl<const CXXPredicateCode *>(
OS, "", ArrayRef<const CXXPredicateCode *>(MatchCode),
[](const CXXPredicateCode *C) -> StringRef { return C->BaseEnumName; },
[](const CXXPredicateCode *C) -> StringRef { return C->Code; });
}
void GICombinerEmitter::emitI64ImmPredicateFns(raw_ostream &OS) {
// Unused, but still needs to be called.
emitImmPredicateFnsImpl<unsigned>(
OS, "I64", "int64_t", {}, [](unsigned) { return ""; },
[](unsigned) { return ""; });
}
void GICombinerEmitter::emitAPFloatImmPredicateFns(raw_ostream &OS) {
// Unused, but still needs to be called.
emitImmPredicateFnsImpl<unsigned>(
OS, "APFloat", "const APFloat &", {}, [](unsigned) { return ""; },
[](unsigned) { return ""; });
}
void GICombinerEmitter::emitAPIntImmPredicateFns(raw_ostream &OS) {
// Unused, but still needs to be called.
emitImmPredicateFnsImpl<unsigned>(
OS, "APInt", "const APInt &", {}, [](unsigned) { return ""; },
[](unsigned) { return ""; });
}
void GICombinerEmitter::emitTestSimplePredicate(raw_ostream &OS) {
if (!AllCombineRules.empty()) {
OS << "enum {\n";
std::string EnumeratorSeparator = " = GICXXPred_Invalid + 1,\n";
// To avoid emitting a switch, we expect that all those rules are in order.
// That way we can just get the RuleID from the enum by subtracting
// (GICXXPred_Invalid + 1).
unsigned ExpectedID = 0;
(void)ExpectedID;
for (const auto &ID : keys(AllCombineRules)) {
assert(ExpectedID++ == ID && "combine rules are not ordered!");
OS << " " << getIsEnabledPredicateEnumName(ID) << EnumeratorSeparator;
EnumeratorSeparator = ",\n";
}
OS << "};\n\n";
}
OS << "bool " << getClassName()
<< "::testSimplePredicate(unsigned Predicate) const {\n"
<< " return RuleConfig.isRuleEnabled(Predicate - "
"GICXXPred_Invalid - "
"1);\n"
<< "}\n";
}
void GICombinerEmitter::emitRunCustomAction(raw_ostream &OS) {
const auto CustomActionsCode = CXXPredicateCode::getAllCustomActionsCode();
if (!CustomActionsCode.empty()) {
OS << "enum {\n";
std::string EnumeratorSeparator = " = GICXXCustomAction_Invalid + 1,\n";
for (const auto &CA : CustomActionsCode) {
OS << " " << CA->getEnumNameWithPrefix(CXXCustomActionPrefix)
<< EnumeratorSeparator;
EnumeratorSeparator = ",\n";
}
OS << "};\n";
}
OS << "bool " << getClassName()
<< "::runCustomAction(unsigned ApplyID, const MatcherState &State, "
"NewMIVector &OutMIs) const "
"{\n Helper.getBuilder().setInstrAndDebugLoc(*State.MIs[0]);\n";
if (!CustomActionsCode.empty()) {
OS << " switch(ApplyID) {\n";
for (const auto &CA : CustomActionsCode) {
OS << " case " << CA->getEnumNameWithPrefix(CXXCustomActionPrefix)
<< ":{\n"
<< " " << join(split(CA->Code, '\n'), "\n ") << '\n'
<< " return true;\n";
OS << " }\n";
}
OS << " }\n";
}
OS << " llvm_unreachable(\"Unknown Apply Action\");\n"
<< "}\n";
}
GICombinerEmitter::GICombinerEmitter(RecordKeeper &RK,
const CodeGenTarget &Target,
StringRef Name, Record *Combiner)
: Records(RK), Name(Name), Target(Target), Combiner(Combiner) {}
MatchTable
GICombinerEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules) {
std::vector<Matcher *> InputRules;
for (Matcher &Rule : Rules)
InputRules.push_back(&Rule);
unsigned CurrentOrdering = 0;
StringMap<unsigned> OpcodeOrder;
for (RuleMatcher &Rule : Rules) {
const StringRef Opcode = Rule.getOpcode();
assert(!Opcode.empty() && "Didn't expect an undefined opcode");
if (OpcodeOrder.count(Opcode) == 0)
OpcodeOrder[Opcode] = CurrentOrdering++;
}
llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A,
const Matcher *B) {
auto *L = static_cast<const RuleMatcher *>(A);
auto *R = static_cast<const RuleMatcher *>(B);
return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) <
std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands());
});
for (Matcher *Rule : InputRules)
Rule->optimize();
std::vector<std::unique_ptr<Matcher>> MatcherStorage;
std::vector<Matcher *> OptRules =
optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
for (Matcher *Rule : OptRules)
Rule->optimize();
OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
return MatchTable::buildTable(OptRules, /*WithCoverage*/ false,
/*IsCombiner*/ true);
}
/// Recurse into GICombineGroup's and flatten the ruleset into a simple list.
void GICombinerEmitter::gatherRules(
std::vector<RuleMatcher> &ActiveRules,
const std::vector<Record *> &&RulesAndGroups) {
for (Record *Rec : RulesAndGroups) {
if (!Rec->isValueUnset("Rules")) {
gatherRules(ActiveRules, Rec->getValueAsListOfDefs("Rules"));
continue;
}
StringRef RuleName = Rec->getName();
if (!RulesSeen.insert(RuleName).second) {
PrintWarning(Rec->getLoc(),
"skipping rule '" + Rec->getName() +
"' because it has already been processed");
continue;
}
AllCombineRules.emplace_back(NextRuleID, Rec->getName().str());
CombineRuleBuilder CRB(Target, SubtargetFeatures, *Rec, NextRuleID++,
ActiveRules);
if (!CRB.parseAll()) {
assert(ErrorsPrinted && "Parsing failed without errors!");
continue;
}
if (StopAfterParse) {
CRB.print(outs());
continue;
}
if (!CRB.emitRuleMatchers()) {
assert(ErrorsPrinted && "Emission failed without errors!");
continue;
}
}
}
void GICombinerEmitter::run(raw_ostream &OS) {
InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
LLTOperandMatcher::initTypeIDValuesMap();
Records.startTimer("Gather rules");
std::vector<RuleMatcher> Rules;
gatherRules(Rules, Combiner->getValueAsListOfDefs("Rules"));
if (ErrorsPrinted)
PrintFatalError(Combiner->getLoc(), "Failed to parse one or more rules");
if (StopAfterParse)
return;
Records.startTimer("Creating Match Table");
unsigned MaxTemporaries = 0;
for (const auto &Rule : Rules)
MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
if (A.isHigherPriorityThan(B)) {
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
"and less important at "
"the same time");
return true;
}
return false;
});
const MatchTable Table = buildMatchTable(Rules);
Records.startTimer("Emit combiner");
emitSourceFileHeader(getClassName().str() + " Combiner Match Table", OS);
// Unused
std::vector<StringRef> CustomRendererFns;
// Unused
std::vector<Record *> ComplexPredicates;
SmallVector<LLTCodeGen, 16> TypeObjects;
append_range(TypeObjects, KnownTypes);
llvm::sort(TypeObjects);
// Hack: Avoid empty declarator.
if (TypeObjects.empty())
TypeObjects.push_back(LLT::scalar(1));
// GET_GICOMBINER_DEPS, which pulls in extra dependencies.
OS << "#ifdef GET_GICOMBINER_DEPS\n"
<< "#include \"llvm/ADT/SparseBitVector.h\"\n"
<< "namespace llvm {\n"
<< "extern cl::OptionCategory GICombinerOptionCategory;\n"
<< "} // end namespace llvm\n"
<< "#endif // ifdef GET_GICOMBINER_DEPS\n\n";
// GET_GICOMBINER_TYPES, which needs to be included before the declaration of
// the class.
OS << "#ifdef GET_GICOMBINER_TYPES\n";
emitRuleConfigImpl(OS);
OS << "#endif // ifdef GET_GICOMBINER_TYPES\n\n";
emitPredicateBitset(OS, "GET_GICOMBINER_TYPES");
// GET_GICOMBINER_CLASS_MEMBERS, which need to be included inside the class.
emitPredicatesDecl(OS, "GET_GICOMBINER_CLASS_MEMBERS");
emitTemporariesDecl(OS, "GET_GICOMBINER_CLASS_MEMBERS");
// GET_GICOMBINER_IMPL, which needs to be included outside the class.
emitExecutorImpl(OS, Table, TypeObjects, Rules, ComplexPredicates,
CustomRendererFns, "GET_GICOMBINER_IMPL");
// GET_GICOMBINER_CONSTRUCTOR_INITS, which are in the constructor's
// initializer list.
emitPredicatesInit(OS, "GET_GICOMBINER_CONSTRUCTOR_INITS");
emitTemporariesInit(OS, MaxTemporaries, "GET_GICOMBINER_CONSTRUCTOR_INITS");
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
static void EmitGICombiner(RecordKeeper &RK, raw_ostream &OS) {
EnablePrettyStackTrace();
CodeGenTarget Target(RK);
if (SelectedCombiners.empty())
PrintFatalError("No combiners selected with -combiners");
for (const auto &Combiner : SelectedCombiners) {
Record *CombinerDef = RK.getDef(Combiner);
if (!CombinerDef)
PrintFatalError("Could not find " + Combiner);
GICombinerEmitter(RK, Target, Combiner, CombinerDef).run(OS);
}
}
static TableGen::Emitter::Opt X("gen-global-isel-combiner", EmitGICombiner,
"Generate GlobalISel Combiner");
|