1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting the memory fold tables of
// the X86 backend instructions.
//
//===----------------------------------------------------------------------===//
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenTarget.h"
#include "X86RecognizableInstr.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/X86FoldTablesUtils.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <set>
using namespace llvm;
using namespace X86Disassembler;
namespace {
// Represents an entry in the manual mapped instructions set.
struct ManualMapEntry {
const char *RegInstStr;
const char *MemInstStr;
uint16_t Strategy;
};
// List of instructions requiring explicitly aligned memory.
const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
// List of instructions NOT requiring explicit memory alignment.
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
"PCMPESTRM", "PCMPESTRI", "PCMPISTRM",
"PCMPISTRI"};
const ManualMapEntry ManualMapSet[] = {
#define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS},
#include "X86ManualFoldTables.def"
};
const std::set<StringRef> NoFoldSet = {
#define NOFOLD(INSN) #INSN,
#include "X86ManualFoldTables.def"
};
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
class X86FoldTablesEmitter {
RecordKeeper &Records;
CodeGenTarget Target;
// Represents an entry in the folding table
class X86FoldTableEntry {
const CodeGenInstruction *RegInst;
const CodeGenInstruction *MemInst;
public:
bool NoReverse = false;
bool NoForward = false;
bool FoldLoad = false;
bool FoldStore = false;
enum BcastType {
BCAST_NONE,
BCAST_W,
BCAST_D,
BCAST_Q,
BCAST_SS,
BCAST_SD,
BCAST_SH,
};
BcastType BroadcastKind = BCAST_NONE;
Align Alignment;
X86FoldTableEntry() = default;
X86FoldTableEntry(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst)
: RegInst(RegInst), MemInst(MemInst) {}
void print(raw_ostream &OS) const {
OS.indent(2);
OS << "{X86::" << RegInst->TheDef->getName() << ", ";
OS << "X86::" << MemInst->TheDef->getName() << ", ";
std::string Attrs;
if (FoldLoad)
Attrs += "TB_FOLDED_LOAD|";
if (FoldStore)
Attrs += "TB_FOLDED_STORE|";
if (NoReverse)
Attrs += "TB_NO_REVERSE|";
if (NoForward)
Attrs += "TB_NO_FORWARD|";
if (Alignment != Align(1))
Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|";
switch (BroadcastKind) {
case BCAST_NONE:
break;
case BCAST_W:
Attrs += "TB_BCAST_W|";
break;
case BCAST_D:
Attrs += "TB_BCAST_D|";
break;
case BCAST_Q:
Attrs += "TB_BCAST_Q|";
break;
case BCAST_SS:
Attrs += "TB_BCAST_SS|";
break;
case BCAST_SD:
Attrs += "TB_BCAST_SD|";
break;
case BCAST_SH:
Attrs += "TB_BCAST_SH|";
break;
}
StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
if (SimplifiedAttrs.empty())
SimplifiedAttrs = "0";
OS << SimplifiedAttrs << "},\n";
}
#ifndef NDEBUG
// Check that Uses and Defs are same after memory fold.
void checkCorrectness() const {
auto &RegInstRec = *RegInst->TheDef;
auto &MemInstRec = *MemInst->TheDef;
auto ListOfUsesReg = RegInstRec.getValueAsListOfDefs("Uses");
auto ListOfUsesMem = MemInstRec.getValueAsListOfDefs("Uses");
auto ListOfDefsReg = RegInstRec.getValueAsListOfDefs("Defs");
auto ListOfDefsMem = MemInstRec.getValueAsListOfDefs("Defs");
if (ListOfUsesReg != ListOfUsesMem || ListOfDefsReg != ListOfDefsMem)
report_fatal_error("Uses/Defs couldn't be changed after folding " +
RegInstRec.getName() + " to " +
MemInstRec.getName());
}
#endif
};
// NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the
// enum of the instruction, which is computed in
// CodeGenTarget::ComputeInstrsByEnum. So we should use the same comparator
// here.
// FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum?
struct CompareInstrsByEnum {
bool operator()(const CodeGenInstruction *LHS,
const CodeGenInstruction *RHS) const {
assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
const auto &D1 = *LHS->TheDef;
const auto &D2 = *RHS->TheDef;
return std::tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
std::tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
}
};
typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
CompareInstrsByEnum>
FoldTable;
// Table2Addr - Holds instructions which their memory form performs
// load+store.
//
// Table#i - Holds instructions which the their memory form
// performs a load OR a store, and their #i'th operand is folded.
//
// BroadcastTable#i - Holds instructions which the their memory form performs
// a broadcast load and their #i'th operand is folded.
FoldTable Table2Addr;
FoldTable Table0;
FoldTable Table1;
FoldTable Table2;
FoldTable Table3;
FoldTable Table4;
FoldTable BroadcastTable1;
FoldTable BroadcastTable2;
FoldTable BroadcastTable3;
FoldTable BroadcastTable4;
public:
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
// run - Generate the 6 X86 memory fold tables.
void run(raw_ostream &OS);
private:
// Decides to which table to add the entry with the given instructions.
// S sets the strategy of adding the TB_NO_REVERSE flag.
void updateTables(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst, uint16_t S = 0,
bool IsManual = false, bool IsBroadcast = false);
// Generates X86FoldTableEntry with the given instructions and fill it with
// the appropriate flags, then adds it to a memory fold table.
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst, uint16_t S,
unsigned FoldedIdx, bool IsManual);
// Generates X86FoldTableEntry with the given instructions and adds it to a
// broadcast table.
void addBroadcastEntry(FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst);
// Print the given table as a static const C++ array of type
// X86FoldTableEntry.
void printTable(const FoldTable &Table, StringRef TableName,
raw_ostream &OS) {
OS << "static const X86FoldTableEntry " << TableName << "[] = {\n";
for (auto &E : Table)
E.second.print(OS);
OS << "};\n\n";
}
};
// Return true if one of the instruction's operands is a RST register class
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
});
}
// Return true if one of the instruction's operands is a ptr_rc_tailcall
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "ptr_rc_tailcall";
});
}
static uint8_t byteFromBitsInit(const BitsInit *B) {
unsigned N = B->getNumBits();
assert(N <= 8 && "Field is too large for uint8_t!");
uint8_t Value = 0;
for (unsigned I = 0; I != N; ++I) {
BitInit *Bit = cast<BitInit>(B->getBit(I));
Value |= Bit->getValue() << I;
}
return Value;
}
static bool mayFoldFromForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r;
case X86Local::MRMXr:
case X86Local::MRMXrCC:
case X86Local::MRMDestReg:
case X86Local::MRMSrcReg:
case X86Local::MRMSrcReg4VOp3:
case X86Local::MRMSrcRegOp4:
case X86Local::MRMSrcRegCC:
return true;
}
}
static bool mayFoldToForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m;
case X86Local::MRMXm:
case X86Local::MRMXmCC:
case X86Local::MRMDestMem:
case X86Local::MRMSrcMem:
case X86Local::MRMSrcMem4VOp3:
case X86Local::MRMSrcMemOp4:
case X86Local::MRMSrcMemCC:
return true;
}
}
static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) {
switch (LHS) {
default:
llvm_unreachable("Unexpected Form!");
case X86Local::MRM0r:
return RHS == X86Local::MRM0m;
case X86Local::MRM1r:
return RHS == X86Local::MRM1m;
case X86Local::MRM2r:
return RHS == X86Local::MRM2m;
case X86Local::MRM3r:
return RHS == X86Local::MRM3m;
case X86Local::MRM4r:
return RHS == X86Local::MRM4m;
case X86Local::MRM5r:
return RHS == X86Local::MRM5m;
case X86Local::MRM6r:
return RHS == X86Local::MRM6m;
case X86Local::MRM7r:
return RHS == X86Local::MRM7m;
case X86Local::MRMXr:
return RHS == X86Local::MRMXm;
case X86Local::MRMXrCC:
return RHS == X86Local::MRMXmCC;
case X86Local::MRMDestReg:
return RHS == X86Local::MRMDestMem;
case X86Local::MRMSrcReg:
return RHS == X86Local::MRMSrcMem;
case X86Local::MRMSrcReg4VOp3:
return RHS == X86Local::MRMSrcMem4VOp3;
case X86Local::MRMSrcRegOp4:
return RHS == X86Local::MRMSrcMemOp4;
case X86Local::MRMSrcRegCC:
return RHS == X86Local::MRMSrcMemCC;
}
}
static bool isNOREXRegClass(const Record *Op) {
return Op->getName().contains("_NOREX");
}
// Function object - Operator() returns true if the given Reg instruction
// matches the Mem instruction of this object.
class IsMatch {
const CodeGenInstruction *MemInst;
const X86Disassembler::RecognizableInstrBase MemRI;
bool IsBroadcast;
const unsigned Variant;
public:
IsMatch(const CodeGenInstruction *Inst, bool IsBroadcast, unsigned V)
: MemInst(Inst), MemRI(*MemInst), IsBroadcast(IsBroadcast), Variant(V) {}
bool operator()(const CodeGenInstruction *RegInst) {
X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
const Record *RegRec = RegInst->TheDef;
const Record *MemRec = MemInst->TheDef;
// EVEX_B means different things for memory and register forms.
// register form: rounding control or SAE
// memory form: broadcast
if (IsBroadcast && (RegRI.HasEVEX_B || !MemRI.HasEVEX_B))
return false;
// EVEX_B indicates NDD for MAP4 instructions
if (!IsBroadcast && (RegRI.HasEVEX_B || MemRI.HasEVEX_B) &&
RegRI.OpMap != X86Local::T_MAP4)
return false;
if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form))
return false;
// X86 encoding is crazy, e.g
//
// f3 0f c7 30 vmxon (%rax)
// f3 0f c7 f0 senduipi %rax
//
// This two instruction have similiar encoding fields but are unrelated
if (X86Disassembler::getMnemonic(MemInst, Variant) !=
X86Disassembler::getMnemonic(RegInst, Variant))
return false;
// Return false if any of the following fields of does not match.
if (std::tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix, RegRI.OpMap,
RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W, RegRI.HasVEX_4V,
RegRI.HasVEX_L, RegRI.IgnoresVEX_L, RegRI.IgnoresW,
RegRI.HasEVEX_K, RegRI.HasEVEX_KZ, RegRI.HasEVEX_L2,
RegRI.HasEVEX_NF, RegRec->getValueAsBit("hasEVEX_RC"),
RegRec->getValueAsBit("hasLockPrefix"),
RegRec->getValueAsBit("hasNoTrackPrefix")) !=
std::tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix, MemRI.OpMap,
MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W, MemRI.HasVEX_4V,
MemRI.HasVEX_L, MemRI.IgnoresVEX_L, MemRI.IgnoresW,
MemRI.HasEVEX_K, MemRI.HasEVEX_KZ, MemRI.HasEVEX_L2,
MemRI.HasEVEX_NF, MemRec->getValueAsBit("hasEVEX_RC"),
MemRec->getValueAsBit("hasLockPrefix"),
MemRec->getValueAsBit("hasNoTrackPrefix")))
return false;
// Make sure the sizes of the operands of both instructions suit each other.
// This is needed for instructions with intrinsic version (_Int).
// Where the only difference is the size of the operands.
// For example: VUCOMISDZrm and VUCOMISDrm_Int
// Also for instructions that their EVEX version was upgraded to work with
// k-registers. For example VPCMPEQBrm (xmm output register) and
// VPCMPEQBZ128rm (k register output register).
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions with one output in their memory form use the memory folded
// operand as source and destination (Read-Modify-Write).
unsigned RegStartIdx =
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
bool FoundFoldedOp = false;
for (unsigned I = 0, E = MemInst->Operands.size(); I != E; I++) {
Record *MemOpRec = MemInst->Operands[I].Rec;
Record *RegOpRec = RegInst->Operands[I + RegStartIdx].Rec;
if (MemOpRec == RegOpRec)
continue;
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec) &&
((getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec)) ||
(isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))))
return false;
if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec) &&
(getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)))
return false;
if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec) &&
(MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")))
return false;
// Only one operand can be folded.
if (FoundFoldedOp)
return false;
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
FoundFoldedOp = true;
}
return FoundFoldedOp;
}
};
} // end anonymous namespace
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst,
uint16_t S, unsigned FoldedIdx,
bool IsManual) {
assert((IsManual || Table.find(RegInst) == Table.end()) &&
"Override entry unexpectedly");
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
Record *RegRec = RegInst->TheDef;
Result.NoReverse = S & TB_NO_REVERSE;
Result.NoForward = S & TB_NO_FORWARD;
Result.FoldLoad = S & TB_FOLDED_LOAD;
Result.FoldStore = S & TB_FOLDED_STORE;
Result.Alignment = Align(1ULL << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT));
if (IsManual) {
Table[RegInst] = Result;
return;
}
Record *RegOpRec = RegInst->Operands[FoldedIdx].Rec;
Record *MemOpRec = MemInst->Operands[FoldedIdx].Rec;
// Unfolding code generates a load/store instruction according to the size of
// the register in the register form instruction.
// If the register's size is greater than the memory's operand size, do not
// allow unfolding.
// the unfolded load size will be based on the register size. If that’s bigger
// than the memory operand size, the unfolded load will load more memory and
// potentially cause a memory fault.
if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
Result.NoReverse = true;
// Check no-kz version's isMoveReg
StringRef RegInstName = RegRec->getName();
unsigned DropLen =
RegInstName.ends_with("rkz") ? 2 : (RegInstName.ends_with("rk") ? 1 : 0);
Record *BaseDef =
DropLen ? Records.getDef(RegInstName.drop_back(DropLen)) : nullptr;
bool IsMoveReg =
BaseDef ? Target.getInstruction(BaseDef).isMoveReg : RegInst->isMoveReg;
// A masked load can not be unfolded to a full load, otherwise it would access
// unexpected memory. A simple store can not be unfolded.
if (IsMoveReg && (BaseDef || Result.FoldStore))
Result.NoReverse = true;
uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
if (isExplicitAlign(RegInst)) {
// The instruction require explicitly aligned memory.
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
Result.Alignment = Align(byteFromBitsInit(VectSize));
} else if (!Enc && !isExplicitUnalign(RegInst) &&
getMemOperandSize(MemOpRec) > 64) {
// Instructions with XOP/VEX/EVEX encoding do not require alignment while
// SSE packed vector instructions require a 16 byte alignment.
Result.Alignment = Align(16);
}
// Expand is only ever created as a masked instruction. It is not safe to
// unfold a masked expand because we don't know if it came from an expand load
// intrinsic or folding a plain load. If it is from a expand load intrinsic,
// Unfolding to plain load would read more elements and could trigger a fault.
if (RegRec->getName().contains("EXPAND"))
Result.NoReverse = true;
Table[RegInst] = Result;
}
void X86FoldTablesEmitter::addBroadcastEntry(
FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst) {
assert(Table.find(RegInst) == Table.end() && "Override entry unexpectedly");
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
DagInit *In = MemInst->TheDef->getValueAsDag("InOperandList");
for (unsigned I = 0, E = In->getNumArgs(); I != E; ++I) {
Result.BroadcastKind =
StringSwitch<X86FoldTableEntry::BcastType>(In->getArg(I)->getAsString())
.Case("i16mem", X86FoldTableEntry::BCAST_W)
.Case("i32mem", X86FoldTableEntry::BCAST_D)
.Case("i64mem", X86FoldTableEntry::BCAST_Q)
.Case("f16mem", X86FoldTableEntry::BCAST_SH)
.Case("f32mem", X86FoldTableEntry::BCAST_SS)
.Case("f64mem", X86FoldTableEntry::BCAST_SD)
.Default(X86FoldTableEntry::BCAST_NONE);
if (Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE)
break;
}
assert(Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE &&
"Unknown memory operand for broadcast");
Table[RegInst] = Result;
}
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst,
uint16_t S, bool IsManual,
bool IsBroadcast) {
Record *RegRec = RegInst->TheDef;
Record *MemRec = MemInst->TheDef;
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions which Read-Modify-Write should be added to Table2Addr.
if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) {
assert(!IsBroadcast && "Read-Modify-Write can not be broadcast");
// X86 would not unfold Read-Modify-Write instructions so add TB_NO_REVERSE.
addEntryWithFlags(Table2Addr, RegInst, MemInst, S | TB_NO_REVERSE, 0,
IsManual);
return;
}
// Only table0 entries should explicitly specify a load or store flag.
// If the instruction writes to the folded operand, it will appear as
// an output in the register form instruction and as an input in the
// memory form instruction. If the instruction reads from the folded
// operand, it will appear as in input in both forms.
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
// Load-Folding cases.
// If the i'th register form operand is a register and the i'th memory form
// operand is a memory operand, add instructions to Table#i.
for (unsigned I = RegOutSize, E = RegInst->Operands.size(); I < E; I++) {
Record *RegOpRec = RegInst->Operands[I].Rec;
Record *MemOpRec = MemInst->Operands[I].Rec;
// PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64,
// TAILJMPr64_REX
if ((isRegisterOperand(RegOpRec) ||
RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
isMemoryOperand(MemOpRec)) {
switch (I) {
case 0:
assert(!IsBroadcast && "BroadcastTable0 needs to be added");
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_LOAD, 0,
IsManual);
return;
case 1:
IsBroadcast
? addBroadcastEntry(BroadcastTable1, RegInst, MemInst)
: addEntryWithFlags(Table1, RegInst, MemInst, S, 1, IsManual);
return;
case 2:
IsBroadcast
? addBroadcastEntry(BroadcastTable2, RegInst, MemInst)
: addEntryWithFlags(Table2, RegInst, MemInst, S, 2, IsManual);
return;
case 3:
IsBroadcast
? addBroadcastEntry(BroadcastTable3, RegInst, MemInst)
: addEntryWithFlags(Table3, RegInst, MemInst, S, 3, IsManual);
return;
case 4:
IsBroadcast
? addBroadcastEntry(BroadcastTable4, RegInst, MemInst)
: addEntryWithFlags(Table4, RegInst, MemInst, S, 4, IsManual);
return;
}
}
}
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
// Store-Folding cases.
// If the memory form instruction performs a store, the *output*
// register of the register form instructions disappear and instead a
// memory *input* operand appears in the memory form instruction.
// For example:
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
Record *RegOpRec = RegInst->Operands[RegOutSize - 1].Rec;
Record *MemOpRec = MemInst->Operands[RegOutSize - 1].Rec;
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) {
assert(!IsBroadcast && "Store can not be broadcast");
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_STORE, 0,
IsManual);
}
}
}
void X86FoldTablesEmitter::run(raw_ostream &OS) {
// Holds all memory instructions
std::vector<const CodeGenInstruction *> MemInsts;
// Holds all register instructions - divided according to opcode.
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
Target.getInstructionsByEnumValue();
for (const CodeGenInstruction *Inst : NumberedInstructions) {
const Record *Rec = Inst->TheDef;
if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
continue;
if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end())
continue;
// Promoted legacy instruction is in EVEX space, and has REX2-encoding
// alternative. It's added due to HW design and never emitted by compiler.
if (byteFromBitsInit(Rec->getValueAsBitsInit("OpMapBits")) ==
X86Local::T_MAP4 &&
byteFromBitsInit(Rec->getValueAsBitsInit("explicitOpPrefixBits")) ==
X86Local::ExplicitEVEX)
continue;
// - Instructions including RST register class operands are not relevant
// for memory folding (for further details check the explanation in
// lib/Target/X86/X86InstrFPStack.td file).
// - Some instructions (listed in the manual map above) use the register
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
// safe mapping of these instruction we manually map them and exclude
// them from the automation.
if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
continue;
// Add all the memory form instructions to MemInsts, and all the register
// form instructions to RegInsts[Opc], where Opc is the opcode of each
// instructions. this helps reducing the runtime of the backend.
const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits");
uint8_t Form = byteFromBitsInit(FormBits);
if (mayFoldToForm(Form))
MemInsts.push_back(Inst);
else if (mayFoldFromForm(Form)) {
uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
RegInsts[Opc].push_back(Inst);
}
}
// Create a copy b/c the register instruction will removed when a new entry is
// added into memory fold tables.
auto RegInstsForBroadcast = RegInsts;
Record *AsmWriter = Target.getAsmWriter();
unsigned Variant = AsmWriter->getValueAsInt("Variant");
auto FixUp = [&](const CodeGenInstruction *RegInst) {
StringRef RegInstName = RegInst->TheDef->getName();
if (RegInstName.ends_with("_REV") || RegInstName.ends_with("_alt"))
if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4)))
RegInst = &Target.getInstruction(RegAltRec);
return RegInst;
};
// For each memory form instruction, try to find its register form
// instruction.
for (const CodeGenInstruction *MemInst : MemInsts) {
uint8_t Opc =
byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
auto RegInstsIt = RegInsts.find(Opc);
if (RegInstsIt == RegInsts.end())
continue;
// Two forms (memory & register) of the same instruction must have the same
// opcode.
std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
// Memory fold tables
auto Match =
find_if(OpcRegInsts, IsMatch(MemInst, /*IsBroadcast=*/false, Variant));
if (Match != OpcRegInsts.end()) {
updateTables(FixUp(*Match), MemInst);
OpcRegInsts.erase(Match);
}
// Broadcast tables
StringRef MemInstName = MemInst->TheDef->getName();
if (!MemInstName.contains("mb") && !MemInstName.contains("mib"))
continue;
RegInstsIt = RegInstsForBroadcast.find(Opc);
assert(RegInstsIt != RegInstsForBroadcast.end() &&
"Unexpected control flow");
std::vector<const CodeGenInstruction *> &OpcRegInstsForBroadcast =
RegInstsIt->second;
Match = find_if(OpcRegInstsForBroadcast,
IsMatch(MemInst, /*IsBroadcast=*/true, Variant));
if (Match != OpcRegInstsForBroadcast.end()) {
updateTables(FixUp(*Match), MemInst, 0, /*IsManual=*/false,
/*IsBroadcast=*/true);
OpcRegInstsForBroadcast.erase(Match);
}
}
// Add the manually mapped instructions listed above.
for (const ManualMapEntry &Entry : ManualMapSet) {
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
updateTables(&(Target.getInstruction(RegInstIter)),
&(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
}
#ifndef NDEBUG
auto CheckMemFoldTable = [](const FoldTable &Table) -> void {
for (const auto &Record : Table) {
auto &FoldEntry = Record.second;
FoldEntry.checkCorrectness();
}
};
CheckMemFoldTable(Table2Addr);
CheckMemFoldTable(Table0);
CheckMemFoldTable(Table1);
CheckMemFoldTable(Table2);
CheckMemFoldTable(Table3);
CheckMemFoldTable(Table4);
CheckMemFoldTable(BroadcastTable1);
CheckMemFoldTable(BroadcastTable2);
CheckMemFoldTable(BroadcastTable3);
CheckMemFoldTable(BroadcastTable4);
#endif
#define PRINT_TABLE(TABLE) printTable(TABLE, #TABLE, OS);
// Print all tables.
PRINT_TABLE(Table2Addr)
PRINT_TABLE(Table0)
PRINT_TABLE(Table1)
PRINT_TABLE(Table2)
PRINT_TABLE(Table3)
PRINT_TABLE(Table4)
PRINT_TABLE(BroadcastTable1)
PRINT_TABLE(BroadcastTable2)
PRINT_TABLE(BroadcastTable3)
PRINT_TABLE(BroadcastTable4)
}
static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
X("gen-x86-fold-tables", "Generate X86 fold tables");
|