1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
//===- DecomposeMemrefs.cpp - Decompose memrefs pass implementation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements decompose memrefs pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_GPUDECOMPOSEMEMREFSPASS
#include "mlir/Dialect/GPU/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
static void setInsertionPointToStart(OpBuilder &builder, Value val) {
if (auto *parentOp = val.getDefiningOp()) {
builder.setInsertionPointAfter(parentOp);
} else {
builder.setInsertionPointToStart(val.getParentBlock());
}
}
static bool isInsideLaunch(Operation *op) {
return op->getParentOfType<gpu::LaunchOp>();
}
static std::tuple<Value, OpFoldResult, SmallVector<OpFoldResult>>
getFlatOffsetAndStrides(OpBuilder &rewriter, Location loc, Value source,
ArrayRef<OpFoldResult> subOffsets,
ArrayRef<OpFoldResult> subStrides = std::nullopt) {
auto sourceType = cast<MemRefType>(source.getType());
auto sourceRank = static_cast<unsigned>(sourceType.getRank());
memref::ExtractStridedMetadataOp newExtractStridedMetadata;
{
OpBuilder::InsertionGuard g(rewriter);
setInsertionPointToStart(rewriter, source);
newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(loc, source);
}
auto &&[sourceStrides, sourceOffset] = getStridesAndOffset(sourceType);
auto getDim = [&](int64_t dim, Value dimVal) -> OpFoldResult {
return ShapedType::isDynamic(dim) ? getAsOpFoldResult(dimVal)
: rewriter.getIndexAttr(dim);
};
OpFoldResult origOffset =
getDim(sourceOffset, newExtractStridedMetadata.getOffset());
ValueRange sourceStridesVals = newExtractStridedMetadata.getStrides();
SmallVector<OpFoldResult> origStrides;
origStrides.reserve(sourceRank);
SmallVector<OpFoldResult> strides;
strides.reserve(sourceRank);
AffineExpr s0 = rewriter.getAffineSymbolExpr(0);
AffineExpr s1 = rewriter.getAffineSymbolExpr(1);
for (auto i : llvm::seq(0u, sourceRank)) {
OpFoldResult origStride = getDim(sourceStrides[i], sourceStridesVals[i]);
if (!subStrides.empty()) {
strides.push_back(affine::makeComposedFoldedAffineApply(
rewriter, loc, s0 * s1, {subStrides[i], origStride}));
}
origStrides.emplace_back(origStride);
}
auto &&[expr, values] =
computeLinearIndex(origOffset, origStrides, subOffsets);
OpFoldResult finalOffset =
affine::makeComposedFoldedAffineApply(rewriter, loc, expr, values);
return {newExtractStridedMetadata.getBaseBuffer(), finalOffset, strides};
}
static Value getFlatMemref(OpBuilder &rewriter, Location loc, Value source,
ValueRange offsets) {
SmallVector<OpFoldResult> offsetsTemp = getAsOpFoldResult(offsets);
auto &&[base, offset, ignore] =
getFlatOffsetAndStrides(rewriter, loc, source, offsetsTemp);
auto retType = cast<MemRefType>(base.getType());
return rewriter.create<memref::ReinterpretCastOp>(loc, retType, base, offset,
std::nullopt, std::nullopt);
}
static bool needFlatten(Value val) {
auto type = cast<MemRefType>(val.getType());
return type.getRank() != 0;
}
static bool checkLayout(Value val) {
auto type = cast<MemRefType>(val.getType());
return type.getLayout().isIdentity() ||
isa<StridedLayoutAttr>(type.getLayout());
}
namespace {
struct FlattenLoad : public OpRewritePattern<memref::LoadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::LoadOp op,
PatternRewriter &rewriter) const override {
if (!isInsideLaunch(op))
return rewriter.notifyMatchFailure(op, "not inside gpu.launch");
Value memref = op.getMemref();
if (!needFlatten(memref))
return rewriter.notifyMatchFailure(op, "nothing to do");
if (!checkLayout(memref))
return rewriter.notifyMatchFailure(op, "unsupported layout");
Location loc = op.getLoc();
Value flatMemref = getFlatMemref(rewriter, loc, memref, op.getIndices());
rewriter.replaceOpWithNewOp<memref::LoadOp>(op, flatMemref);
return success();
}
};
struct FlattenStore : public OpRewritePattern<memref::StoreOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::StoreOp op,
PatternRewriter &rewriter) const override {
if (!isInsideLaunch(op))
return rewriter.notifyMatchFailure(op, "not inside gpu.launch");
Value memref = op.getMemref();
if (!needFlatten(memref))
return rewriter.notifyMatchFailure(op, "nothing to do");
if (!checkLayout(memref))
return rewriter.notifyMatchFailure(op, "unsupported layout");
Location loc = op.getLoc();
Value flatMemref = getFlatMemref(rewriter, loc, memref, op.getIndices());
Value value = op.getValue();
rewriter.replaceOpWithNewOp<memref::StoreOp>(op, value, flatMemref);
return success();
}
};
struct FlattenSubview : public OpRewritePattern<memref::SubViewOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::SubViewOp op,
PatternRewriter &rewriter) const override {
if (!isInsideLaunch(op))
return rewriter.notifyMatchFailure(op, "not inside gpu.launch");
Value memref = op.getSource();
if (!needFlatten(memref))
return rewriter.notifyMatchFailure(op, "nothing to do");
if (!checkLayout(memref))
return rewriter.notifyMatchFailure(op, "unsupported layout");
Location loc = op.getLoc();
SmallVector<OpFoldResult> subOffsets = op.getMixedOffsets();
SmallVector<OpFoldResult> subSizes = op.getMixedSizes();
SmallVector<OpFoldResult> subStrides = op.getMixedStrides();
auto &&[base, finalOffset, strides] =
getFlatOffsetAndStrides(rewriter, loc, memref, subOffsets, subStrides);
auto srcType = cast<MemRefType>(memref.getType());
auto resultType = cast<MemRefType>(op.getType());
unsigned subRank = static_cast<unsigned>(resultType.getRank());
llvm::SmallBitVector droppedDims = op.getDroppedDims();
SmallVector<OpFoldResult> finalSizes;
finalSizes.reserve(subRank);
SmallVector<OpFoldResult> finalStrides;
finalStrides.reserve(subRank);
for (auto i : llvm::seq(0u, static_cast<unsigned>(srcType.getRank()))) {
if (droppedDims.test(i))
continue;
finalSizes.push_back(subSizes[i]);
finalStrides.push_back(strides[i]);
}
rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
op, resultType, base, finalOffset, finalSizes, finalStrides);
return success();
}
};
struct GpuDecomposeMemrefsPass
: public impl::GpuDecomposeMemrefsPassBase<GpuDecomposeMemrefsPass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populateGpuDecomposeMemrefsPatterns(patterns);
if (failed(
applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
void mlir::populateGpuDecomposeMemrefsPatterns(RewritePatternSet &patterns) {
patterns.insert<FlattenLoad, FlattenStore, FlattenSubview>(
patterns.getContext());
}
std::unique_ptr<Pass> mlir::createGpuDecomposeMemrefsPass() {
return std::make_unique<GpuDecomposeMemrefsPass>();
}
|