1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
//===- SubgroupReduceLowering.cpp - subgroup_reduce lowering patterns -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements gradual lowering of `gpu.subgroup_reduce` ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/GPU/Transforms/Utils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
using namespace mlir;
namespace {
/// Example, assumes `maxShuffleBitwidth` equal to 32:
/// ```
/// %a = gpu.subgroup_reduce add %x : (vector<3xf16>) -> vector<3xf16>
/// ==>
/// %v0 = arith.constant dense<0.0> : vector<3xf16>
/// %e0 = vector.extract_strided_slice %x
/// {offsets = [0], sizes = [2], strides = [1}: vector<3xf32> to vector<2xf32>
/// %r0 = gpu.subgroup_reduce add %e0 : (vector<2xf16>) -> vector<2xf16>
/// %v1 = vector.insert_strided_slice %r0, %v0
/// {offsets = [0], strides = [1}: vector<2xf32> into vector<3xf32>
/// %e1 = vector.extract %x[2] : f16 from vector<2xf16>
/// %r1 = gpu.subgroup_reduce add %e1 : (f16) -> f16
/// %a = vector.insert %r1, %v1[2] : f16 into vector<3xf16>
/// ```
struct BreakDownSubgroupReduce final : OpRewritePattern<gpu::SubgroupReduceOp> {
BreakDownSubgroupReduce(MLIRContext *ctx, unsigned maxShuffleBitwidth,
PatternBenefit benefit)
: OpRewritePattern(ctx, benefit), maxShuffleBitwidth(maxShuffleBitwidth) {
}
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
PatternRewriter &rewriter) const override {
auto vecTy = dyn_cast<VectorType>(op.getType());
if (!vecTy || vecTy.getNumElements() < 2)
return rewriter.notifyMatchFailure(op, "not a multi-element reduction");
assert(vecTy.getRank() == 1 && "Unexpected vector type");
assert(!vecTy.isScalable() && "Unexpected vector type");
Type elemTy = vecTy.getElementType();
unsigned elemBitwidth = elemTy.getIntOrFloatBitWidth();
if (elemBitwidth >= maxShuffleBitwidth)
return rewriter.notifyMatchFailure(
op, llvm::formatv("element type too large ({0}), cannot break down "
"into vectors of bitwidth {1} or less",
elemBitwidth, maxShuffleBitwidth));
unsigned elementsPerShuffle = maxShuffleBitwidth / elemBitwidth;
assert(elementsPerShuffle >= 1);
unsigned numNewReductions =
llvm::divideCeil(vecTy.getNumElements(), elementsPerShuffle);
assert(numNewReductions >= 1);
if (numNewReductions == 1)
return rewriter.notifyMatchFailure(op, "nothing to break down");
Location loc = op.getLoc();
Value res =
rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(vecTy));
for (unsigned i = 0; i != numNewReductions; ++i) {
int64_t startIdx = i * elementsPerShuffle;
int64_t endIdx =
std::min(startIdx + elementsPerShuffle, vecTy.getNumElements());
int64_t numElems = endIdx - startIdx;
Value extracted;
if (numElems == 1) {
extracted =
rewriter.create<vector::ExtractOp>(loc, op.getValue(), startIdx);
} else {
extracted = rewriter.create<vector::ExtractStridedSliceOp>(
loc, op.getValue(), /*offsets=*/startIdx, /*sizes=*/numElems,
/*strides=*/1);
}
Value reduce = rewriter.create<gpu::SubgroupReduceOp>(
loc, extracted, op.getOp(), op.getUniform());
if (numElems == 1) {
res = rewriter.create<vector::InsertOp>(loc, reduce, res, startIdx);
continue;
}
res = rewriter.create<vector::InsertStridedSliceOp>(
loc, reduce, res, /*offsets=*/startIdx, /*strides=*/1);
}
rewriter.replaceOp(op, res);
return success();
}
private:
unsigned maxShuffleBitwidth = 0;
};
/// Example:
/// ```
/// %a = gpu.subgroup_reduce add %x : (vector<1xf32>) -> vector<1xf32>
/// ==>
/// %e0 = vector.extract %x[0] : f32 from vector<1xf32>
/// %r0 = gpu.subgroup_reduce add %e0 : (f32) -> f32
/// %a = vector.broadcast %r0 : f32 to vector<1xf32>
/// ```
struct ScalarizeSingleElementReduce final
: OpRewritePattern<gpu::SubgroupReduceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
PatternRewriter &rewriter) const override {
auto vecTy = dyn_cast<VectorType>(op.getType());
if (!vecTy || vecTy.getNumElements() != 1)
return rewriter.notifyMatchFailure(op, "not a single-element reduction");
assert(vecTy.getRank() == 1 && "Unexpected vector type");
assert(!vecTy.isScalable() && "Unexpected vector type");
Location loc = op.getLoc();
Value extracted = rewriter.create<vector::ExtractOp>(loc, op.getValue(), 0);
Value reduce = rewriter.create<gpu::SubgroupReduceOp>(
loc, extracted, op.getOp(), op.getUniform());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecTy, reduce);
return success();
}
};
/// Emits a subgroup reduction using a sequence of shuffles. Uses the `packFn`
/// and `unpackFn` to convert to the native shuffle type and to the reduction
/// type, respectively. For example, with `input` of type `f16`, `packFn` could
/// build ops to cast the value to `i32` to perform shuffles, while `unpackFn`
/// would cast it back to `f16` to perform arithmetic reduction on. Assumes that
/// the subgroup is `subgroupSize` lanes wide and reduces across all of them.
static Value createSubgroupShuffleReduction(
OpBuilder &builder, Location loc, Value input, gpu::AllReduceOperation mode,
unsigned subgroupSize, function_ref<Value(Value)> packFn,
function_ref<Value(Value)> unpackFn) {
assert(llvm::isPowerOf2_32(subgroupSize));
// Lane value always stays in the original type. We use it to perform arith
// reductions.
Value laneVal = input;
// Parallel reduction using butterfly shuffles.
for (unsigned i = 1; i < subgroupSize; i <<= 1) {
Value shuffled = builder
.create<gpu::ShuffleOp>(loc, packFn(laneVal), i,
/*width=*/subgroupSize,
/*mode=*/gpu::ShuffleMode::XOR)
.getShuffleResult();
laneVal = vector::makeArithReduction(builder, loc,
gpu::convertReductionKind(mode),
laneVal, unpackFn(shuffled));
assert(laneVal.getType() == input.getType());
}
return laneVal;
}
/// Lowers scalar gpu subgroup reductions to a series of shuffles.
struct ScalarSubgroupReduceToShuffles final
: OpRewritePattern<gpu::SubgroupReduceOp> {
ScalarSubgroupReduceToShuffles(MLIRContext *ctx, unsigned subgroupSize,
unsigned shuffleBitwidth,
PatternBenefit benefit)
: OpRewritePattern(ctx, benefit), subgroupSize(subgroupSize),
shuffleBitwidth(shuffleBitwidth) {}
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
PatternRewriter &rewriter) const override {
Type valueTy = op.getType();
unsigned elemBitwidth =
getElementTypeOrSelf(valueTy).getIntOrFloatBitWidth();
if (!valueTy.isIntOrFloat() || elemBitwidth > shuffleBitwidth)
return rewriter.notifyMatchFailure(
op, "value type is not a compatible scalar");
Location loc = op.getLoc();
// Since this is already a native shuffle scalar, no packing is necessary.
if (elemBitwidth == shuffleBitwidth) {
auto identityFn = [](Value v) { return v; };
rewriter.replaceOp(op, createSubgroupShuffleReduction(
rewriter, loc, op.getValue(), op.getOp(),
subgroupSize, identityFn, identityFn));
return success();
}
auto shuffleIntType = rewriter.getIntegerType(shuffleBitwidth);
auto equivIntType = rewriter.getIntegerType(elemBitwidth);
auto packFn = [loc, &rewriter, equivIntType,
shuffleIntType](Value unpackedVal) -> Value {
auto asInt =
rewriter.create<arith::BitcastOp>(loc, equivIntType, unpackedVal);
return rewriter.create<arith::ExtUIOp>(loc, shuffleIntType, asInt);
};
auto unpackFn = [loc, &rewriter, equivIntType,
valueTy](Value packedVal) -> Value {
auto asInt =
rewriter.create<arith::TruncIOp>(loc, equivIntType, packedVal);
return rewriter.create<arith::BitcastOp>(loc, valueTy, asInt);
};
rewriter.replaceOp(op, createSubgroupShuffleReduction(
rewriter, loc, op.getValue(), op.getOp(),
subgroupSize, packFn, unpackFn));
return success();
}
private:
unsigned subgroupSize = 0;
unsigned shuffleBitwidth = 0;
};
/// Lowers vector gpu subgroup reductions to a series of shuffles.
struct VectorSubgroupReduceToShuffles final
: OpRewritePattern<gpu::SubgroupReduceOp> {
VectorSubgroupReduceToShuffles(MLIRContext *ctx, unsigned subgroupSize,
unsigned shuffleBitwidth,
PatternBenefit benefit)
: OpRewritePattern(ctx, benefit), subgroupSize(subgroupSize),
shuffleBitwidth(shuffleBitwidth) {}
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
PatternRewriter &rewriter) const override {
auto vecTy = dyn_cast<VectorType>(op.getType());
if (!vecTy)
return rewriter.notifyMatchFailure(op, "value type is not a vector");
unsigned vecBitwidth =
vecTy.getNumElements() * vecTy.getElementTypeBitWidth();
if (vecBitwidth > shuffleBitwidth)
return rewriter.notifyMatchFailure(
op,
llvm::formatv("vector type bitwidth too large ({0}), cannot lower "
"to shuffles of size {1}",
vecBitwidth, shuffleBitwidth));
unsigned elementsPerShuffle =
shuffleBitwidth / vecTy.getElementTypeBitWidth();
if (elementsPerShuffle * vecTy.getElementTypeBitWidth() != shuffleBitwidth)
return rewriter.notifyMatchFailure(
op, "shuffle bitwidth is not a multiple of the element bitwidth");
Location loc = op.getLoc();
// If the reduced type is smaller than the native shuffle size, extend it,
// perform the shuffles, and extract at the end.
auto extendedVecTy = VectorType::get(
static_cast<int64_t>(elementsPerShuffle), vecTy.getElementType());
Value extendedInput = op.getValue();
if (vecBitwidth < shuffleBitwidth) {
auto zero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(extendedVecTy));
extendedInput = rewriter.create<vector::InsertStridedSliceOp>(
loc, extendedInput, zero, /*offsets=*/0, /*strides=*/1);
}
auto shuffleIntType = rewriter.getIntegerType(shuffleBitwidth);
auto shuffleVecType = VectorType::get(1, shuffleIntType);
auto packFn = [loc, &rewriter, shuffleVecType](Value unpackedVal) -> Value {
auto asIntVec =
rewriter.create<vector::BitCastOp>(loc, shuffleVecType, unpackedVal);
return rewriter.create<vector::ExtractOp>(loc, asIntVec, 0);
};
auto unpackFn = [loc, &rewriter, shuffleVecType,
extendedVecTy](Value packedVal) -> Value {
auto asIntVec =
rewriter.create<vector::BroadcastOp>(loc, shuffleVecType, packedVal);
return rewriter.create<vector::BitCastOp>(loc, extendedVecTy, asIntVec);
};
Value res =
createSubgroupShuffleReduction(rewriter, loc, extendedInput, op.getOp(),
subgroupSize, packFn, unpackFn);
if (vecBitwidth < shuffleBitwidth) {
res = rewriter.create<vector::ExtractStridedSliceOp>(
loc, res, /*offsets=*/0, /*sizes=*/vecTy.getNumElements(),
/*strides=*/1);
}
rewriter.replaceOp(op, res);
return success();
}
private:
unsigned subgroupSize = 0;
unsigned shuffleBitwidth = 0;
};
} // namespace
void mlir::populateGpuBreakDownSubgrupReducePatterns(
RewritePatternSet &patterns, unsigned maxShuffleBitwidth,
PatternBenefit benefit) {
patterns.add<BreakDownSubgroupReduce>(patterns.getContext(),
maxShuffleBitwidth, benefit);
patterns.add<ScalarizeSingleElementReduce>(patterns.getContext(), benefit);
}
void mlir::populateGpuLowerSubgroupReduceToShufflePattenrs(
RewritePatternSet &patterns, unsigned subgroupSize,
unsigned shuffleBitwidth, PatternBenefit benefit) {
patterns.add<ScalarSubgroupReduceToShuffles, VectorSubgroupReduceToShuffles>(
patterns.getContext(), subgroupSize, shuffleBitwidth, benefit);
}
|