1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
|
//===- LLVMMemorySlot.cpp - MemorySlot interfaces ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements MemorySlot-related interfaces for LLVM dialect
// operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/DataLayoutInterfaces.h"
#include "mlir/Interfaces/MemorySlotInterfaces.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#define DEBUG_TYPE "sroa"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Interfaces for AllocaOp
//===----------------------------------------------------------------------===//
llvm::SmallVector<MemorySlot> LLVM::AllocaOp::getPromotableSlots() {
if (!getOperation()->getBlock()->isEntryBlock())
return {};
return {MemorySlot{getResult(), getElemType()}};
}
Value LLVM::AllocaOp::getDefaultValue(const MemorySlot &slot,
OpBuilder &builder) {
return builder.create<LLVM::UndefOp>(getLoc(), slot.elemType);
}
void LLVM::AllocaOp::handleBlockArgument(const MemorySlot &slot,
BlockArgument argument,
OpBuilder &builder) {
for (Operation *user : getOperation()->getUsers())
if (auto declareOp = llvm::dyn_cast<LLVM::DbgDeclareOp>(user))
builder.create<LLVM::DbgValueOp>(declareOp.getLoc(), argument,
declareOp.getVarInfo(),
declareOp.getLocationExpr());
}
std::optional<PromotableAllocationOpInterface>
LLVM::AllocaOp::handlePromotionComplete(const MemorySlot &slot,
Value defaultValue,
OpBuilder &builder) {
if (defaultValue && defaultValue.use_empty())
defaultValue.getDefiningOp()->erase();
this->erase();
return std::nullopt;
}
SmallVector<DestructurableMemorySlot> LLVM::AllocaOp::getDestructurableSlots() {
if (!mlir::matchPattern(getArraySize(), m_One()))
return {};
auto destructurable = dyn_cast<DestructurableTypeInterface>(getElemType());
if (!destructurable)
return {};
std::optional<DenseMap<Attribute, Type>> destructuredType =
destructurable.getSubelementIndexMap();
if (!destructuredType)
return {};
return {DestructurableMemorySlot{{getResult(), getElemType()},
*destructuredType}};
}
DenseMap<Attribute, MemorySlot> LLVM::AllocaOp::destructure(
const DestructurableMemorySlot &slot,
const SmallPtrSetImpl<Attribute> &usedIndices, OpBuilder &builder,
SmallVectorImpl<DestructurableAllocationOpInterface> &newAllocators) {
assert(slot.ptr == getResult());
builder.setInsertionPointAfter(*this);
auto destructurableType = cast<DestructurableTypeInterface>(getElemType());
DenseMap<Attribute, MemorySlot> slotMap;
for (Attribute index : usedIndices) {
Type elemType = destructurableType.getTypeAtIndex(index);
assert(elemType && "used index must exist");
auto subAlloca = builder.create<LLVM::AllocaOp>(
getLoc(), LLVM::LLVMPointerType::get(getContext()), elemType,
getArraySize());
newAllocators.push_back(subAlloca);
slotMap.try_emplace<MemorySlot>(index, {subAlloca.getResult(), elemType});
}
return slotMap;
}
std::optional<DestructurableAllocationOpInterface>
LLVM::AllocaOp::handleDestructuringComplete(
const DestructurableMemorySlot &slot, OpBuilder &builder) {
assert(slot.ptr == getResult());
this->erase();
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// Interfaces for LoadOp/StoreOp
//===----------------------------------------------------------------------===//
bool LLVM::LoadOp::loadsFrom(const MemorySlot &slot) {
return getAddr() == slot.ptr;
}
bool LLVM::LoadOp::storesTo(const MemorySlot &slot) { return false; }
Value LLVM::LoadOp::getStored(const MemorySlot &slot, OpBuilder &builder,
Value reachingDef, const DataLayout &dataLayout) {
llvm_unreachable("getStored should not be called on LoadOp");
}
bool LLVM::StoreOp::loadsFrom(const MemorySlot &slot) { return false; }
bool LLVM::StoreOp::storesTo(const MemorySlot &slot) {
return getAddr() == slot.ptr;
}
/// Checks if `type` can be used in any kind of conversion sequences.
static bool isSupportedTypeForConversion(Type type) {
// Aggregate types are not bitcastable.
if (isa<LLVM::LLVMStructType, LLVM::LLVMArrayType>(type))
return false;
// LLVM vector types are only used for either pointers or target specific
// types. These types cannot be casted in the general case, thus the memory
// optimizations do not support them.
if (isa<LLVM::LLVMFixedVectorType, LLVM::LLVMScalableVectorType>(type))
return false;
// Scalable types are not supported.
if (auto vectorType = dyn_cast<VectorType>(type))
return !vectorType.isScalable();
return true;
}
/// Checks that `rhs` can be converted to `lhs` by a sequence of casts and
/// truncations. Checks for narrowing or widening conversion compatibility
/// depending on `narrowingConversion`.
static bool areConversionCompatible(const DataLayout &layout, Type targetType,
Type srcType, bool narrowingConversion) {
if (targetType == srcType)
return true;
if (!isSupportedTypeForConversion(targetType) ||
!isSupportedTypeForConversion(srcType))
return false;
uint64_t targetSize = layout.getTypeSize(targetType);
uint64_t srcSize = layout.getTypeSize(srcType);
// Pointer casts will only be sane when the bitsize of both pointer types is
// the same.
if (isa<LLVM::LLVMPointerType>(targetType) &&
isa<LLVM::LLVMPointerType>(srcType))
return targetSize == srcSize;
if (narrowingConversion)
return targetSize <= srcSize;
return targetSize >= srcSize;
}
/// Checks if `dataLayout` describes a little endian layout.
static bool isBigEndian(const DataLayout &dataLayout) {
auto endiannessStr = dyn_cast_or_null<StringAttr>(dataLayout.getEndianness());
return endiannessStr && endiannessStr == "big";
}
/// Converts a value to an integer type of the same size.
/// Assumes that the type can be converted.
static Value castToSameSizedInt(OpBuilder &builder, Location loc, Value val,
const DataLayout &dataLayout) {
Type type = val.getType();
assert(isSupportedTypeForConversion(type) &&
"expected value to have a convertible type");
if (isa<IntegerType>(type))
return val;
uint64_t typeBitSize = dataLayout.getTypeSizeInBits(type);
IntegerType valueSizeInteger = builder.getIntegerType(typeBitSize);
if (isa<LLVM::LLVMPointerType>(type))
return builder.createOrFold<LLVM::PtrToIntOp>(loc, valueSizeInteger, val);
return builder.createOrFold<LLVM::BitcastOp>(loc, valueSizeInteger, val);
}
/// Converts a value with an integer type to `targetType`.
static Value castIntValueToSameSizedType(OpBuilder &builder, Location loc,
Value val, Type targetType) {
assert(isa<IntegerType>(val.getType()) &&
"expected value to have an integer type");
assert(isSupportedTypeForConversion(targetType) &&
"expected the target type to be supported for conversions");
if (val.getType() == targetType)
return val;
if (isa<LLVM::LLVMPointerType>(targetType))
return builder.createOrFold<LLVM::IntToPtrOp>(loc, targetType, val);
return builder.createOrFold<LLVM::BitcastOp>(loc, targetType, val);
}
/// Constructs operations that convert `srcValue` into a new value of type
/// `targetType`. Assumes the types have the same bitsize.
static Value castSameSizedTypes(OpBuilder &builder, Location loc,
Value srcValue, Type targetType,
const DataLayout &dataLayout) {
Type srcType = srcValue.getType();
assert(areConversionCompatible(dataLayout, targetType, srcType,
/*narrowingConversion=*/true) &&
"expected that the compatibility was checked before");
// Nothing has to be done if the types are already the same.
if (srcType == targetType)
return srcValue;
// In the special case of casting one pointer to another, we want to generate
// an address space cast. Bitcasts of pointers are not allowed and using
// pointer to integer conversions are not equivalent due to the loss of
// provenance.
if (isa<LLVM::LLVMPointerType>(targetType) &&
isa<LLVM::LLVMPointerType>(srcType))
return builder.createOrFold<LLVM::AddrSpaceCastOp>(loc, targetType,
srcValue);
// For all other castable types, casting through integers is necessary.
Value replacement = castToSameSizedInt(builder, loc, srcValue, dataLayout);
return castIntValueToSameSizedType(builder, loc, replacement, targetType);
}
/// Constructs operations that convert `srcValue` into a new value of type
/// `targetType`. Performs bit-level extraction if the source type is larger
/// than the target type. Assumes that this conversion is possible.
static Value createExtractAndCast(OpBuilder &builder, Location loc,
Value srcValue, Type targetType,
const DataLayout &dataLayout) {
// Get the types of the source and target values.
Type srcType = srcValue.getType();
assert(areConversionCompatible(dataLayout, targetType, srcType,
/*narrowingConversion=*/true) &&
"expected that the compatibility was checked before");
uint64_t srcTypeSize = dataLayout.getTypeSizeInBits(srcType);
uint64_t targetTypeSize = dataLayout.getTypeSizeInBits(targetType);
if (srcTypeSize == targetTypeSize)
return castSameSizedTypes(builder, loc, srcValue, targetType, dataLayout);
// First, cast the value to a same-sized integer type.
Value replacement = castToSameSizedInt(builder, loc, srcValue, dataLayout);
// Truncate the integer if the size of the target is less than the value.
if (isBigEndian(dataLayout)) {
uint64_t shiftAmount = srcTypeSize - targetTypeSize;
auto shiftConstant = builder.create<LLVM::ConstantOp>(
loc, builder.getIntegerAttr(srcType, shiftAmount));
replacement =
builder.createOrFold<LLVM::LShrOp>(loc, srcValue, shiftConstant);
}
replacement = builder.create<LLVM::TruncOp>(
loc, builder.getIntegerType(targetTypeSize), replacement);
// Now cast the integer to the actual target type if required.
return castIntValueToSameSizedType(builder, loc, replacement, targetType);
}
/// Constructs operations that insert the bits of `srcValue` into the
/// "beginning" of `reachingDef` (beginning is endianness dependent).
/// Assumes that this conversion is possible.
static Value createInsertAndCast(OpBuilder &builder, Location loc,
Value srcValue, Value reachingDef,
const DataLayout &dataLayout) {
assert(areConversionCompatible(dataLayout, reachingDef.getType(),
srcValue.getType(),
/*narrowingConversion=*/false) &&
"expected that the compatibility was checked before");
uint64_t valueTypeSize = dataLayout.getTypeSizeInBits(srcValue.getType());
uint64_t slotTypeSize = dataLayout.getTypeSizeInBits(reachingDef.getType());
if (slotTypeSize == valueTypeSize)
return castSameSizedTypes(builder, loc, srcValue, reachingDef.getType(),
dataLayout);
// In the case where the store only overwrites parts of the memory,
// bit fiddling is required to construct the new value.
// First convert both values to integers of the same size.
Value defAsInt = castToSameSizedInt(builder, loc, reachingDef, dataLayout);
Value valueAsInt = castToSameSizedInt(builder, loc, srcValue, dataLayout);
// Extend the value to the size of the reaching definition.
valueAsInt =
builder.createOrFold<LLVM::ZExtOp>(loc, defAsInt.getType(), valueAsInt);
uint64_t sizeDifference = slotTypeSize - valueTypeSize;
if (isBigEndian(dataLayout)) {
// On big endian systems, a store to the base pointer overwrites the most
// significant bits. To accomodate for this, the stored value needs to be
// shifted into the according position.
Value bigEndianShift = builder.create<LLVM::ConstantOp>(
loc, builder.getIntegerAttr(defAsInt.getType(), sizeDifference));
valueAsInt =
builder.createOrFold<LLVM::ShlOp>(loc, valueAsInt, bigEndianShift);
}
// Construct the mask that is used to erase the bits that are overwritten by
// the store.
APInt maskValue;
if (isBigEndian(dataLayout)) {
// Build a mask that has the most significant bits set to zero.
// Note: This is the same as 2^sizeDifference - 1
maskValue = APInt::getAllOnes(sizeDifference).zext(slotTypeSize);
} else {
// Build a mask that has the least significant bits set to zero.
// Note: This is the same as -(2^valueTypeSize)
maskValue = APInt::getAllOnes(valueTypeSize).zext(slotTypeSize);
maskValue.flipAllBits();
}
// Mask out the affected bits ...
Value mask = builder.create<LLVM::ConstantOp>(
loc, builder.getIntegerAttr(defAsInt.getType(), maskValue));
Value masked = builder.createOrFold<LLVM::AndOp>(loc, defAsInt, mask);
// ... and combine the result with the new value.
Value combined = builder.createOrFold<LLVM::OrOp>(loc, masked, valueAsInt);
return castIntValueToSameSizedType(builder, loc, combined,
reachingDef.getType());
}
Value LLVM::StoreOp::getStored(const MemorySlot &slot, OpBuilder &builder,
Value reachingDef,
const DataLayout &dataLayout) {
assert(reachingDef && reachingDef.getType() == slot.elemType &&
"expected the reaching definition's type to match the slot's type");
return createInsertAndCast(builder, getLoc(), getValue(), reachingDef,
dataLayout);
}
bool LLVM::LoadOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
// If the blocking use is the slot ptr itself, there will be enough
// context to reconstruct the result of the load at removal time, so it can
// be removed (provided it is not volatile).
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
areConversionCompatible(dataLayout, getResult().getType(),
slot.elemType, /*narrowingConversion=*/true) &&
!getVolatile_();
}
DeletionKind LLVM::LoadOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
OpBuilder &builder, Value reachingDefinition,
const DataLayout &dataLayout) {
// `canUsesBeRemoved` checked this blocking use must be the loaded slot
// pointer.
Value newResult = createExtractAndCast(builder, getLoc(), reachingDefinition,
getResult().getType(), dataLayout);
getResult().replaceAllUsesWith(newResult);
return DeletionKind::Delete;
}
bool LLVM::StoreOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
// If the blocking use is the slot ptr itself, dropping the store is
// fine, provided we are currently promoting its target value. Don't allow a
// store OF the slot pointer, only INTO the slot pointer.
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
getValue() != slot.ptr &&
areConversionCompatible(dataLayout, slot.elemType,
getValue().getType(),
/*narrowingConversion=*/false) &&
!getVolatile_();
}
DeletionKind LLVM::StoreOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
OpBuilder &builder, Value reachingDefinition,
const DataLayout &dataLayout) {
return DeletionKind::Delete;
}
/// Checks if `slot` can be accessed through the provided access type.
static bool isValidAccessType(const MemorySlot &slot, Type accessType,
const DataLayout &dataLayout) {
return dataLayout.getTypeSize(accessType) <=
dataLayout.getTypeSize(slot.elemType);
}
LogicalResult LLVM::LoadOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return success(getAddr() != slot.ptr ||
isValidAccessType(slot, getType(), dataLayout));
}
LogicalResult LLVM::StoreOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return success(getAddr() != slot.ptr ||
isValidAccessType(slot, getValue().getType(), dataLayout));
}
/// Returns the subslot's type at the requested index.
static Type getTypeAtIndex(const DestructurableMemorySlot &slot,
Attribute index) {
auto subelementIndexMap =
cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap();
if (!subelementIndexMap)
return {};
assert(!subelementIndexMap->empty());
// Note: Returns a null-type when no entry was found.
return subelementIndexMap->lookup(index);
}
bool LLVM::LoadOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
if (getVolatile_())
return false;
// A load always accesses the first element of the destructured slot.
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
Type subslotType = getTypeAtIndex(slot, index);
if (!subslotType)
return false;
// The access can only be replaced when the subslot is read within its bounds.
if (dataLayout.getTypeSize(getType()) > dataLayout.getTypeSize(subslotType))
return false;
usedIndices.insert(index);
return true;
}
DeletionKind LLVM::LoadOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
OpBuilder &builder,
const DataLayout &dataLayout) {
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
auto it = subslots.find(index);
assert(it != subslots.end());
getAddrMutable().set(it->getSecond().ptr);
return DeletionKind::Keep;
}
bool LLVM::StoreOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
if (getVolatile_())
return false;
// Storing the pointer to memory cannot be dealt with.
if (getValue() == slot.ptr)
return false;
// A store always accesses the first element of the destructured slot.
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
Type subslotType = getTypeAtIndex(slot, index);
if (!subslotType)
return false;
// The access can only be replaced when the subslot is read within its bounds.
if (dataLayout.getTypeSize(getValue().getType()) >
dataLayout.getTypeSize(subslotType))
return false;
usedIndices.insert(index);
return true;
}
DeletionKind LLVM::StoreOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
OpBuilder &builder,
const DataLayout &dataLayout) {
auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0);
auto it = subslots.find(index);
assert(it != subslots.end());
getAddrMutable().set(it->getSecond().ptr);
return DeletionKind::Keep;
}
//===----------------------------------------------------------------------===//
// Interfaces for discardable OPs
//===----------------------------------------------------------------------===//
/// Conditions the deletion of the operation to the removal of all its uses.
static bool forwardToUsers(Operation *op,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
for (Value result : op->getResults())
for (OpOperand &use : result.getUses())
newBlockingUses.push_back(&use);
return true;
}
bool LLVM::BitcastOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::BitcastOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
bool LLVM::AddrSpaceCastOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::AddrSpaceCastOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
bool LLVM::LifetimeStartOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return true;
}
DeletionKind LLVM::LifetimeStartOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
bool LLVM::LifetimeEndOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return true;
}
DeletionKind LLVM::LifetimeEndOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
bool LLVM::InvariantStartOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return true;
}
DeletionKind LLVM::InvariantStartOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
bool LLVM::InvariantEndOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return true;
}
DeletionKind LLVM::InvariantEndOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
bool LLVM::DbgDeclareOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return true;
}
DeletionKind LLVM::DbgDeclareOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
bool LLVM::DbgValueOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
// There is only one operand that we can remove the use of.
if (blockingUses.size() != 1)
return false;
return (*blockingUses.begin())->get() == getValue();
}
DeletionKind LLVM::DbgValueOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
// builder by default is after '*this', but we need it before '*this'.
builder.setInsertionPoint(*this);
// Rather than dropping the debug value, replace it with undef to preserve the
// debug local variable info. This allows the debugger to inform the user that
// the variable has been optimized out.
auto undef =
builder.create<UndefOp>(getValue().getLoc(), getValue().getType());
getValueMutable().assign(undef);
return DeletionKind::Keep;
}
bool LLVM::DbgDeclareOp::requiresReplacedValues() { return true; }
void LLVM::DbgDeclareOp::visitReplacedValues(
ArrayRef<std::pair<Operation *, Value>> definitions, OpBuilder &builder) {
for (auto [op, value] : definitions) {
builder.setInsertionPointAfter(op);
builder.create<LLVM::DbgValueOp>(getLoc(), value, getVarInfo(),
getLocationExpr());
}
}
//===----------------------------------------------------------------------===//
// Interfaces for GEPOp
//===----------------------------------------------------------------------===//
static bool hasAllZeroIndices(LLVM::GEPOp gepOp) {
return llvm::all_of(gepOp.getIndices(), [](auto index) {
auto indexAttr = llvm::dyn_cast_if_present<IntegerAttr>(index);
return indexAttr && indexAttr.getValue() == 0;
});
}
bool LLVM::GEPOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
// GEP can be removed as long as it is a no-op and its users can be removed.
if (!hasAllZeroIndices(*this))
return false;
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::GEPOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) {
return DeletionKind::Delete;
}
/// Returns the amount of bytes the provided GEP elements will offset the
/// pointer by. Returns nullopt if no constant offset could be computed.
static std::optional<uint64_t> gepToByteOffset(const DataLayout &dataLayout,
LLVM::GEPOp gep) {
// Collects all indices.
SmallVector<uint64_t> indices;
for (auto index : gep.getIndices()) {
auto constIndex = dyn_cast<IntegerAttr>(index);
if (!constIndex)
return {};
int64_t gepIndex = constIndex.getInt();
// Negative indices are not supported.
if (gepIndex < 0)
return {};
indices.push_back(gepIndex);
}
Type currentType = gep.getElemType();
uint64_t offset = indices[0] * dataLayout.getTypeSize(currentType);
for (uint64_t index : llvm::drop_begin(indices)) {
bool shouldCancel =
TypeSwitch<Type, bool>(currentType)
.Case([&](LLVM::LLVMArrayType arrayType) {
offset +=
index * dataLayout.getTypeSize(arrayType.getElementType());
currentType = arrayType.getElementType();
return false;
})
.Case([&](LLVM::LLVMStructType structType) {
ArrayRef<Type> body = structType.getBody();
assert(index < body.size() && "expected valid struct indexing");
for (uint32_t i : llvm::seq(index)) {
if (!structType.isPacked())
offset = llvm::alignTo(
offset, dataLayout.getTypeABIAlignment(body[i]));
offset += dataLayout.getTypeSize(body[i]);
}
// Align for the current type as well.
if (!structType.isPacked())
offset = llvm::alignTo(
offset, dataLayout.getTypeABIAlignment(body[index]));
currentType = body[index];
return false;
})
.Default([&](Type type) {
LLVM_DEBUG(llvm::dbgs()
<< "[sroa] Unsupported type for offset computations"
<< type << "\n");
return true;
});
if (shouldCancel)
return std::nullopt;
}
return offset;
}
namespace {
/// A struct that stores both the index into the aggregate type of the slot as
/// well as the corresponding byte offset in memory.
struct SubslotAccessInfo {
/// The parent slot's index that the access falls into.
uint32_t index;
/// The offset into the subslot of the access.
uint64_t subslotOffset;
};
} // namespace
/// Computes subslot access information for an access into `slot` with the given
/// offset.
/// Returns nullopt when the offset is out-of-bounds or when the access is into
/// the padding of `slot`.
static std::optional<SubslotAccessInfo>
getSubslotAccessInfo(const DestructurableMemorySlot &slot,
const DataLayout &dataLayout, LLVM::GEPOp gep) {
std::optional<uint64_t> offset = gepToByteOffset(dataLayout, gep);
if (!offset)
return {};
// Helper to check that a constant index is in the bounds of the GEP index
// representation. LLVM dialects's GEP arguments have a limited bitwidth, thus
// this additional check is necessary.
auto isOutOfBoundsGEPIndex = [](uint64_t index) {
return index >= (1 << LLVM::kGEPConstantBitWidth);
};
Type type = slot.elemType;
if (*offset >= dataLayout.getTypeSize(type))
return {};
return TypeSwitch<Type, std::optional<SubslotAccessInfo>>(type)
.Case([&](LLVM::LLVMArrayType arrayType)
-> std::optional<SubslotAccessInfo> {
// Find which element of the array contains the offset.
uint64_t elemSize = dataLayout.getTypeSize(arrayType.getElementType());
uint64_t index = *offset / elemSize;
if (isOutOfBoundsGEPIndex(index))
return {};
return SubslotAccessInfo{static_cast<uint32_t>(index),
*offset - (index * elemSize)};
})
.Case([&](LLVM::LLVMStructType structType)
-> std::optional<SubslotAccessInfo> {
uint64_t distanceToStart = 0;
// Walk over the elements of the struct to find in which of
// them the offset is.
for (auto [index, elem] : llvm::enumerate(structType.getBody())) {
uint64_t elemSize = dataLayout.getTypeSize(elem);
if (!structType.isPacked()) {
distanceToStart = llvm::alignTo(
distanceToStart, dataLayout.getTypeABIAlignment(elem));
// If the offset is in padding, cancel the rewrite.
if (offset < distanceToStart)
return {};
}
if (offset < distanceToStart + elemSize) {
if (isOutOfBoundsGEPIndex(index))
return {};
// The offset is within this element, stop iterating the
// struct and return the index.
return SubslotAccessInfo{static_cast<uint32_t>(index),
*offset - distanceToStart};
}
// The offset is not within this element, continue walking
// over the struct.
distanceToStart += elemSize;
}
return {};
});
}
/// Constructs a byte array type of the given size.
static LLVM::LLVMArrayType getByteArrayType(MLIRContext *context,
unsigned size) {
auto byteType = IntegerType::get(context, 8);
return LLVM::LLVMArrayType::get(context, byteType, size);
}
LogicalResult LLVM::GEPOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
if (getBase() != slot.ptr)
return success();
std::optional<uint64_t> gepOffset = gepToByteOffset(dataLayout, *this);
if (!gepOffset)
return failure();
uint64_t slotSize = dataLayout.getTypeSize(slot.elemType);
// Check that the access is strictly inside the slot.
if (*gepOffset >= slotSize)
return failure();
// Every access that remains in bounds of the remaining slot is considered
// legal.
mustBeSafelyUsed.emplace_back<MemorySlot>(
{getRes(), getByteArrayType(getContext(), slotSize - *gepOffset)});
return success();
}
bool LLVM::GEPOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
if (!isa<LLVM::LLVMPointerType>(getBase().getType()))
return false;
if (getBase() != slot.ptr)
return false;
std::optional<SubslotAccessInfo> accessInfo =
getSubslotAccessInfo(slot, dataLayout, *this);
if (!accessInfo)
return false;
auto indexAttr =
IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index);
assert(slot.subelementTypes.contains(indexAttr));
usedIndices.insert(indexAttr);
// The remainder of the subslot should be accesses in-bounds. Thus, we create
// a dummy slot with the size of the remainder.
Type subslotType = slot.subelementTypes.lookup(indexAttr);
uint64_t slotSize = dataLayout.getTypeSize(subslotType);
LLVM::LLVMArrayType remainingSlotType =
getByteArrayType(getContext(), slotSize - accessInfo->subslotOffset);
mustBeSafelyUsed.emplace_back<MemorySlot>({getRes(), remainingSlotType});
return true;
}
DeletionKind LLVM::GEPOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
OpBuilder &builder,
const DataLayout &dataLayout) {
std::optional<SubslotAccessInfo> accessInfo =
getSubslotAccessInfo(slot, dataLayout, *this);
assert(accessInfo && "expected access info to be checked before");
auto indexAttr =
IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index);
const MemorySlot &newSlot = subslots.at(indexAttr);
auto byteType = IntegerType::get(builder.getContext(), 8);
auto newPtr = builder.createOrFold<LLVM::GEPOp>(
getLoc(), getResult().getType(), byteType, newSlot.ptr,
ArrayRef<GEPArg>(accessInfo->subslotOffset), getInbounds());
getResult().replaceAllUsesWith(newPtr);
return DeletionKind::Delete;
}
//===----------------------------------------------------------------------===//
// Utilities for memory intrinsics
//===----------------------------------------------------------------------===//
namespace {
/// Returns the length of the given memory intrinsic in bytes if it can be known
/// at compile-time on a best-effort basis, nothing otherwise.
template <class MemIntr>
std::optional<uint64_t> getStaticMemIntrLen(MemIntr op) {
APInt memIntrLen;
if (!matchPattern(op.getLen(), m_ConstantInt(&memIntrLen)))
return {};
if (memIntrLen.getBitWidth() > 64)
return {};
return memIntrLen.getZExtValue();
}
/// Returns the length of the given memory intrinsic in bytes if it can be known
/// at compile-time on a best-effort basis, nothing otherwise.
/// Because MemcpyInlineOp has its length encoded as an attribute, this requires
/// specialized handling.
template <>
std::optional<uint64_t> getStaticMemIntrLen(LLVM::MemcpyInlineOp op) {
APInt memIntrLen = op.getLen();
if (memIntrLen.getBitWidth() > 64)
return {};
return memIntrLen.getZExtValue();
}
} // namespace
/// Returns whether one can be sure the memory intrinsic does not write outside
/// of the bounds of the given slot, on a best-effort basis.
template <class MemIntr>
static bool definitelyWritesOnlyWithinSlot(MemIntr op, const MemorySlot &slot,
const DataLayout &dataLayout) {
if (!isa<LLVM::LLVMPointerType>(slot.ptr.getType()) ||
op.getDst() != slot.ptr)
return false;
std::optional<uint64_t> memIntrLen = getStaticMemIntrLen(op);
return memIntrLen && *memIntrLen <= dataLayout.getTypeSize(slot.elemType);
}
/// Checks whether all indices are i32. This is used to check GEPs can index
/// into them.
static bool areAllIndicesI32(const DestructurableMemorySlot &slot) {
Type i32 = IntegerType::get(slot.ptr.getContext(), 32);
return llvm::all_of(llvm::make_first_range(slot.subelementTypes),
[&](Attribute index) {
auto intIndex = dyn_cast<IntegerAttr>(index);
return intIndex && intIndex.getType() == i32;
});
}
//===----------------------------------------------------------------------===//
// Interfaces for memset
//===----------------------------------------------------------------------===//
bool LLVM::MemsetOp::loadsFrom(const MemorySlot &slot) { return false; }
bool LLVM::MemsetOp::storesTo(const MemorySlot &slot) {
return getDst() == slot.ptr;
}
Value LLVM::MemsetOp::getStored(const MemorySlot &slot, OpBuilder &builder,
Value reachingDef,
const DataLayout &dataLayout) {
// TODO: Support non-integer types.
return TypeSwitch<Type, Value>(slot.elemType)
.Case([&](IntegerType intType) -> Value {
if (intType.getWidth() == 8)
return getVal();
assert(intType.getWidth() % 8 == 0);
// Build the memset integer by repeatedly shifting the value and
// or-ing it with the previous value.
uint64_t coveredBits = 8;
Value currentValue =
builder.create<LLVM::ZExtOp>(getLoc(), intType, getVal());
while (coveredBits < intType.getWidth()) {
Value shiftBy =
builder.create<LLVM::ConstantOp>(getLoc(), intType, coveredBits);
Value shifted =
builder.create<LLVM::ShlOp>(getLoc(), currentValue, shiftBy);
currentValue =
builder.create<LLVM::OrOp>(getLoc(), currentValue, shifted);
coveredBits *= 2;
}
return currentValue;
})
.Default([](Type) -> Value {
llvm_unreachable(
"getStored should not be called on memset to unsupported type");
});
}
bool LLVM::MemsetOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
// TODO: Support non-integer types.
bool canConvertType =
TypeSwitch<Type, bool>(slot.elemType)
.Case([](IntegerType intType) {
return intType.getWidth() % 8 == 0 && intType.getWidth() > 0;
})
.Default([](Type) { return false; });
if (!canConvertType)
return false;
if (getIsVolatile())
return false;
return getStaticMemIntrLen(*this) == dataLayout.getTypeSize(slot.elemType);
}
DeletionKind LLVM::MemsetOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
OpBuilder &builder, Value reachingDefinition,
const DataLayout &dataLayout) {
return DeletionKind::Delete;
}
LogicalResult LLVM::MemsetOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return success(definitelyWritesOnlyWithinSlot(*this, slot, dataLayout));
}
bool LLVM::MemsetOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
if (&slot.elemType.getDialect() != getOperation()->getDialect())
return false;
if (getIsVolatile())
return false;
if (!cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap())
return false;
if (!areAllIndicesI32(slot))
return false;
return definitelyWritesOnlyWithinSlot(*this, slot, dataLayout);
}
DeletionKind LLVM::MemsetOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
OpBuilder &builder,
const DataLayout &dataLayout) {
std::optional<DenseMap<Attribute, Type>> types =
cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap();
IntegerAttr memsetLenAttr;
bool successfulMatch =
matchPattern(getLen(), m_Constant<IntegerAttr>(&memsetLenAttr));
(void)successfulMatch;
assert(successfulMatch);
bool packed = false;
if (auto structType = dyn_cast<LLVM::LLVMStructType>(slot.elemType))
packed = structType.isPacked();
Type i32 = IntegerType::get(getContext(), 32);
uint64_t memsetLen = memsetLenAttr.getValue().getZExtValue();
uint64_t covered = 0;
for (size_t i = 0; i < types->size(); i++) {
// Create indices on the fly to get elements in the right order.
Attribute index = IntegerAttr::get(i32, i);
Type elemType = types->at(index);
uint64_t typeSize = dataLayout.getTypeSize(elemType);
if (!packed)
covered =
llvm::alignTo(covered, dataLayout.getTypeABIAlignment(elemType));
if (covered >= memsetLen)
break;
// If this subslot is used, apply a new memset to it.
// Otherwise, only compute its offset within the original memset.
if (subslots.contains(index)) {
uint64_t newMemsetSize = std::min(memsetLen - covered, typeSize);
Value newMemsetSizeValue =
builder
.create<LLVM::ConstantOp>(
getLen().getLoc(),
IntegerAttr::get(memsetLenAttr.getType(), newMemsetSize))
.getResult();
builder.create<LLVM::MemsetOp>(getLoc(), subslots.at(index).ptr, getVal(),
newMemsetSizeValue, getIsVolatile());
}
covered += typeSize;
}
return DeletionKind::Delete;
}
//===----------------------------------------------------------------------===//
// Interfaces for memcpy/memmove
//===----------------------------------------------------------------------===//
template <class MemcpyLike>
static bool memcpyLoadsFrom(MemcpyLike op, const MemorySlot &slot) {
return op.getSrc() == slot.ptr;
}
template <class MemcpyLike>
static bool memcpyStoresTo(MemcpyLike op, const MemorySlot &slot) {
return op.getDst() == slot.ptr;
}
template <class MemcpyLike>
static Value memcpyGetStored(MemcpyLike op, const MemorySlot &slot,
OpBuilder &builder) {
return builder.create<LLVM::LoadOp>(op.getLoc(), slot.elemType, op.getSrc());
}
template <class MemcpyLike>
static bool
memcpyCanUsesBeRemoved(MemcpyLike op, const MemorySlot &slot,
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
// If source and destination are the same, memcpy behavior is undefined and
// memmove is a no-op. Because there is no memory change happening here,
// simplifying such operations is left to canonicalization.
if (op.getDst() == op.getSrc())
return false;
if (op.getIsVolatile())
return false;
return getStaticMemIntrLen(op) == dataLayout.getTypeSize(slot.elemType);
}
template <class MemcpyLike>
static DeletionKind
memcpyRemoveBlockingUses(MemcpyLike op, const MemorySlot &slot,
const SmallPtrSetImpl<OpOperand *> &blockingUses,
OpBuilder &builder, Value reachingDefinition) {
if (op.loadsFrom(slot))
builder.create<LLVM::StoreOp>(op.getLoc(), reachingDefinition, op.getDst());
return DeletionKind::Delete;
}
template <class MemcpyLike>
static LogicalResult
memcpyEnsureOnlySafeAccesses(MemcpyLike op, const MemorySlot &slot,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
DataLayout dataLayout = DataLayout::closest(op);
// While rewiring memcpy-like intrinsics only supports full copies, partial
// copies are still safe accesses so it is enough to only check for writes
// within bounds.
return success(definitelyWritesOnlyWithinSlot(op, slot, dataLayout));
}
template <class MemcpyLike>
static bool memcpyCanRewire(MemcpyLike op, const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
if (op.getIsVolatile())
return false;
if (!cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap())
return false;
if (!areAllIndicesI32(slot))
return false;
// Only full copies are supported.
if (getStaticMemIntrLen(op) != dataLayout.getTypeSize(slot.elemType))
return false;
if (op.getSrc() == slot.ptr)
for (Attribute index : llvm::make_first_range(slot.subelementTypes))
usedIndices.insert(index);
return true;
}
namespace {
template <class MemcpyLike>
void createMemcpyLikeToReplace(OpBuilder &builder, const DataLayout &layout,
MemcpyLike toReplace, Value dst, Value src,
Type toCpy, bool isVolatile) {
Value memcpySize = builder.create<LLVM::ConstantOp>(
toReplace.getLoc(), IntegerAttr::get(toReplace.getLen().getType(),
layout.getTypeSize(toCpy)));
builder.create<MemcpyLike>(toReplace.getLoc(), dst, src, memcpySize,
isVolatile);
}
template <>
void createMemcpyLikeToReplace(OpBuilder &builder, const DataLayout &layout,
LLVM::MemcpyInlineOp toReplace, Value dst,
Value src, Type toCpy, bool isVolatile) {
Type lenType = IntegerType::get(toReplace->getContext(),
toReplace.getLen().getBitWidth());
builder.create<LLVM::MemcpyInlineOp>(
toReplace.getLoc(), dst, src,
IntegerAttr::get(lenType, layout.getTypeSize(toCpy)), isVolatile);
}
} // namespace
/// Rewires a memcpy-like operation. Only copies to or from the full slot are
/// supported.
template <class MemcpyLike>
static DeletionKind
memcpyRewire(MemcpyLike op, const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots, OpBuilder &builder,
const DataLayout &dataLayout) {
if (subslots.empty())
return DeletionKind::Delete;
assert((slot.ptr == op.getDst()) != (slot.ptr == op.getSrc()));
bool isDst = slot.ptr == op.getDst();
#ifndef NDEBUG
size_t slotsTreated = 0;
#endif
// It was previously checked that index types are consistent, so this type can
// be fetched now.
Type indexType = cast<IntegerAttr>(subslots.begin()->first).getType();
for (size_t i = 0, e = slot.subelementTypes.size(); i != e; i++) {
Attribute index = IntegerAttr::get(indexType, i);
if (!subslots.contains(index))
continue;
const MemorySlot &subslot = subslots.at(index);
#ifndef NDEBUG
slotsTreated++;
#endif
// First get a pointer to the equivalent of this subslot from the source
// pointer.
SmallVector<LLVM::GEPArg> gepIndices{
0, static_cast<int32_t>(
cast<IntegerAttr>(index).getValue().getZExtValue())};
Value subslotPtrInOther = builder.create<LLVM::GEPOp>(
op.getLoc(), LLVM::LLVMPointerType::get(op.getContext()), slot.elemType,
isDst ? op.getSrc() : op.getDst(), gepIndices);
// Then create a new memcpy out of this source pointer.
createMemcpyLikeToReplace(builder, dataLayout, op,
isDst ? subslot.ptr : subslotPtrInOther,
isDst ? subslotPtrInOther : subslot.ptr,
subslot.elemType, op.getIsVolatile());
}
assert(subslots.size() == slotsTreated);
return DeletionKind::Delete;
}
bool LLVM::MemcpyOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemcpyOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemcpyOp::getStored(const MemorySlot &slot, OpBuilder &builder,
Value reachingDef,
const DataLayout &dataLayout) {
return memcpyGetStored(*this, slot, builder);
}
bool LLVM::MemcpyOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses,
dataLayout);
}
DeletionKind LLVM::MemcpyOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
OpBuilder &builder, Value reachingDefinition,
const DataLayout &dataLayout) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, builder,
reachingDefinition);
}
LogicalResult LLVM::MemcpyOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemcpyOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed,
dataLayout);
}
DeletionKind LLVM::MemcpyOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
OpBuilder &builder,
const DataLayout &dataLayout) {
return memcpyRewire(*this, slot, subslots, builder, dataLayout);
}
bool LLVM::MemcpyInlineOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemcpyInlineOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemcpyInlineOp::getStored(const MemorySlot &slot,
OpBuilder &builder, Value reachingDef,
const DataLayout &dataLayout) {
return memcpyGetStored(*this, slot, builder);
}
bool LLVM::MemcpyInlineOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses,
dataLayout);
}
DeletionKind LLVM::MemcpyInlineOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
OpBuilder &builder, Value reachingDefinition,
const DataLayout &dataLayout) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, builder,
reachingDefinition);
}
LogicalResult LLVM::MemcpyInlineOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemcpyInlineOp::canRewire(
const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed,
dataLayout);
}
DeletionKind
LLVM::MemcpyInlineOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
OpBuilder &builder, const DataLayout &dataLayout) {
return memcpyRewire(*this, slot, subslots, builder, dataLayout);
}
bool LLVM::MemmoveOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemmoveOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemmoveOp::getStored(const MemorySlot &slot, OpBuilder &builder,
Value reachingDef,
const DataLayout &dataLayout) {
return memcpyGetStored(*this, slot, builder);
}
bool LLVM::MemmoveOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses,
const DataLayout &dataLayout) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses,
dataLayout);
}
DeletionKind LLVM::MemmoveOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
OpBuilder &builder, Value reachingDefinition,
const DataLayout &dataLayout) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, builder,
reachingDefinition);
}
LogicalResult LLVM::MemmoveOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemmoveOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed,
dataLayout);
}
DeletionKind LLVM::MemmoveOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
OpBuilder &builder,
const DataLayout &dataLayout) {
return memcpyRewire(*this, slot, subslots, builder, dataLayout);
}
//===----------------------------------------------------------------------===//
// Interfaces for destructurable types
//===----------------------------------------------------------------------===//
std::optional<DenseMap<Attribute, Type>>
LLVM::LLVMStructType::getSubelementIndexMap() {
Type i32 = IntegerType::get(getContext(), 32);
DenseMap<Attribute, Type> destructured;
for (const auto &[index, elemType] : llvm::enumerate(getBody()))
destructured.insert({IntegerAttr::get(i32, index), elemType});
return destructured;
}
Type LLVM::LLVMStructType::getTypeAtIndex(Attribute index) {
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
if (!indexAttr || !indexAttr.getType().isInteger(32))
return {};
int32_t indexInt = indexAttr.getInt();
ArrayRef<Type> body = getBody();
if (indexInt < 0 || body.size() <= static_cast<uint32_t>(indexInt))
return {};
return body[indexInt];
}
std::optional<DenseMap<Attribute, Type>>
LLVM::LLVMArrayType::getSubelementIndexMap() const {
constexpr size_t maxArraySizeForDestructuring = 16;
if (getNumElements() > maxArraySizeForDestructuring)
return {};
int32_t numElements = getNumElements();
Type i32 = IntegerType::get(getContext(), 32);
DenseMap<Attribute, Type> destructured;
for (int32_t index = 0; index < numElements; ++index)
destructured.insert({IntegerAttr::get(i32, index), getElementType()});
return destructured;
}
Type LLVM::LLVMArrayType::getTypeAtIndex(Attribute index) const {
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
if (!indexAttr || !indexAttr.getType().isInteger(32))
return {};
int32_t indexInt = indexAttr.getInt();
if (indexInt < 0 || getNumElements() <= static_cast<uint32_t>(indexInt))
return {};
return getElementType();
}
|