1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
|
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMSPASS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Pattern to move init operands to ins when all the loops are parallel and
/// blockArgument corresponding to init is used in the region. This is a fix-up
/// when unit reduction dimensions are all folded away. In this context, it
/// becomes a elementwise generic op. E.g., it converts
///
/// %0 = tensor.empty() : tensor<1x1xf32>
/// %1 = linalg.fill
/// ins(%cst : f32)
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
/// %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
/// affine_map<(d0) -> (0, d0)>],
/// iterator_types = ["parallel"]}
/// ins(%arg0 : tensor<1x?x1x1xf32>)
/// outs(%1 : tensor<1x1xf32>) {
/// ^bb0(%in: f32, %out: f32):
/// %3 = arith.addf %in, %out : f32
/// linalg.yield %3 : f32
/// } -> tensor<1x1xf32>
///
/// into
///
/// %0 = tensor.empty() : tensor<1x1xf32>
/// %1 = linalg.fill
/// ins(%cst : f32)
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
/// %2 = tensor.empty() : tensor<1x1xf32>
/// %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
/// affine_map<(d0) -> (0, d0)>,
/// affine_map<(d0) -> (0, d0)>],
/// iterator_types = ["parallel"]}
/// ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>)
/// outs(%2 : tensor<1x1xf32>) {
/// ^bb0(%in: f32, %in_0: f32, %out: f32):
/// %4 = arith.addf %in, %in_0 : f32
/// linalg.yield %4 : f32
/// } -> tensor<1x1xf32>
struct MoveInitOperandsToInput : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!genericOp.hasPureTensorSemantics())
return failure();
if (genericOp.getNumParallelLoops() != genericOp.getNumLoops())
return failure();
auto outputOperands = genericOp.getDpsInitsMutable();
SetVector<OpOperand *> candidates;
for (OpOperand &op : outputOperands) {
if (genericOp.getMatchingBlockArgument(&op).use_empty())
continue;
candidates.insert(&op);
}
if (candidates.empty())
return failure();
// Compute the modified indexing maps.
int64_t origNumInput = genericOp.getNumDpsInputs();
SmallVector<Value> newInputOperands = genericOp.getDpsInputs();
SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
SmallVector<AffineMap> newIndexingMaps;
newIndexingMaps.append(indexingMaps.begin(),
std::next(indexingMaps.begin(), origNumInput));
for (OpOperand *op : candidates) {
newInputOperands.push_back(op->get());
newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op));
}
newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput),
indexingMaps.end());
Location loc = genericOp.getLoc();
SmallVector<Value> newOutputOperands =
llvm::to_vector(genericOp.getDpsInits());
for (OpOperand *op : candidates) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfterValue(op->get());
auto elemType = cast<ShapedType>(op->get().getType()).getElementType();
auto empty = rewriter.create<tensor::EmptyOp>(
loc, tensor::getMixedSizes(rewriter, loc, op->get()), elemType);
unsigned start = genericOp.getDpsInits().getBeginOperandIndex();
newOutputOperands[op->getOperandNumber() - start] = empty.getResult();
}
auto newOp = rewriter.create<GenericOp>(
loc, genericOp.getResultTypes(), newInputOperands, newOutputOperands,
newIndexingMaps, genericOp.getIteratorTypesArray(),
/*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
OpBuilder::InsertionGuard guard(rewriter);
Region ®ion = newOp.getRegion();
Block *block = rewriter.createBlock(®ion);
IRMapping mapper;
for (auto bbarg : genericOp.getRegionInputArgs())
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
for (OpOperand *op : candidates) {
BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
}
for (OpOperand &op : outputOperands) {
BlockArgument bbarg = genericOp.getMatchingBlockArgument(&op);
if (candidates.count(&op))
block->addArgument(bbarg.getType(), loc);
else
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
}
for (auto &op : genericOp.getBody()->getOperations()) {
rewriter.clone(op, mapper);
}
rewriter.replaceOp(genericOp, newOp.getResults());
return success();
}
};
} // namespace
//===---------------------------------------------------------------------===//
// Drop loops that are unit-extents within Linalg operations.
//===---------------------------------------------------------------------===//
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = arith.addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = arith.addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Update the index accesses of linalg operations having index semantics.
static void
replaceUnitDimIndexOps(GenericOp genericOp,
const llvm::SmallDenseSet<unsigned> &unitDims,
RewriterBase &rewriter) {
for (IndexOp indexOp :
llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(indexOp);
if (unitDims.count(indexOp.getDim()) != 0) {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0);
} else {
// Update the dimension of the index operation if needed.
unsigned droppedDims = llvm::count_if(
unitDims, [&](unsigned dim) { return dim < indexOp.getDim(); });
if (droppedDims != 0)
rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
indexOp.getDim() - droppedDims);
}
}
}
/// Expand the given `value` so that the type matches the type of `origDest`.
/// The `reassociation` is used when `rankReductionStrategy` is set to
/// `RankReductionStrategy::ReassociativeReshape`.
static Value
expandValue(RewriterBase &rewriter, Location loc, Value result, Value origDest,
ArrayRef<ReassociationIndices> reassociation,
ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) {
// There are no results for memref outputs.
auto origResultType = cast<RankedTensorType>(origDest.getType());
if (rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
unsigned rank = origResultType.getRank();
SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> sizes =
tensor::getMixedSizes(rewriter, loc, origDest);
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
return rewriter.createOrFold<tensor::InsertSliceOp>(
loc, result, origDest, offsets, sizes, strides);
}
assert(rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
return rewriter
.create<tensor::ExpandShapeOp>(loc, origResultType, result, reassociation)
.getResult();
}
/// Collapse the given `value` so that the type matches the type of
/// `origOutput`. The `reassociation` is used when `rankReductionStrategy` is
/// set to `RankReductionStrategy::ReassociativeReshape`.
static Value collapseValue(
RewriterBase &rewriter, Location loc, Value operand,
ArrayRef<int64_t> targetShape, ArrayRef<ReassociationIndices> reassociation,
ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) {
if (auto memrefType = dyn_cast<MemRefType>(operand.getType())) {
if (rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
FailureOr<Value> rankReducingExtract =
memref::SubViewOp::rankReduceIfNeeded(rewriter, loc, operand,
targetShape);
assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
return *rankReducingExtract;
}
assert(
rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
MemRefLayoutAttrInterface layout;
auto targetType = MemRefType::get(targetShape, memrefType.getElementType(),
layout, memrefType.getMemorySpace());
return rewriter.create<memref::CollapseShapeOp>(loc, targetType, operand,
reassociation);
}
if (auto tensorType = dyn_cast<RankedTensorType>(operand.getType())) {
if (rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
FailureOr<Value> rankReducingExtract =
tensor::ExtractSliceOp::rankReduceIfNeeded(rewriter, loc, operand,
targetShape);
assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
return *rankReducingExtract;
}
assert(
rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
auto targetType =
RankedTensorType::get(targetShape, tensorType.getElementType());
return rewriter.create<tensor::CollapseShapeOp>(loc, targetType, operand,
reassociation);
}
llvm_unreachable("unsupported operand type");
}
/// Compute the modified metadata for an operands of operation
/// whose unit dims are being dropped. Return the new indexing map
/// to use, the shape of the operand in the replacement op
/// and the `reassocation` to use to go from original operand shape
/// to modified operand shape.
struct UnitExtentReplacementInfo {
AffineMap indexMap;
SmallVector<ReassociationIndices> reassociation;
SmallVector<int64_t> targetShape;
};
static UnitExtentReplacementInfo dropUnitExtentFromOperandMetadata(
MLIRContext *context, GenericOp genericOp, OpOperand *opOperand,
llvm::SmallDenseMap<unsigned, unsigned> &oldDimsToNewDimsMap,
ArrayRef<AffineExpr> dimReplacements) {
UnitExtentReplacementInfo info;
ReassociationIndices reassociationGroup;
SmallVector<AffineExpr> newIndexExprs;
AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
ArrayRef<int64_t> operandShape = genericOp.getShape(opOperand);
ArrayRef<AffineExpr> exprs = indexingMap.getResults();
auto isUnitDim = [&](unsigned dim) {
if (auto dimExpr = dyn_cast<AffineDimExpr>(exprs[dim])) {
unsigned oldPosition = dimExpr.getPosition();
return !oldDimsToNewDimsMap.count(oldPosition) &&
(operandShape[dim] == 1);
}
// Handle the other case where the shape is 1, and is accessed using a
// constant 0.
if (operandShape[dim] == 1) {
auto constAffineExpr = dyn_cast<AffineConstantExpr>(exprs[dim]);
return constAffineExpr && constAffineExpr.getValue() == 0;
}
return false;
};
unsigned dim = 0;
while (dim < operandShape.size() && isUnitDim(dim))
reassociationGroup.push_back(dim++);
while (dim < operandShape.size()) {
assert(!isUnitDim(dim) && "expected non unit-extent");
reassociationGroup.push_back(dim);
AffineExpr newExpr = exprs[dim].replaceDims(dimReplacements);
newIndexExprs.push_back(newExpr);
info.targetShape.push_back(operandShape[dim]);
++dim;
// Fold all following dimensions that are unit-extent.
while (dim < operandShape.size() && isUnitDim(dim)) {
reassociationGroup.push_back(dim++);
}
info.reassociation.push_back(reassociationGroup);
reassociationGroup.clear();
}
info.indexMap =
AffineMap::get(oldDimsToNewDimsMap.size(), indexingMap.getNumSymbols(),
newIndexExprs, context);
return info;
}
LogicalResult linalg::dropUnitDims(RewriterBase &rewriter, GenericOp genericOp,
const ControlDropUnitDims &options) {
SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
if (indexingMaps.empty())
return failure();
// 1. Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap) {
return rewriter.notifyMatchFailure(genericOp,
"invalid indexing maps for operation");
}
SmallVector<int64_t> dims = genericOp.getStaticShape();
// 1a. Get the allowed list of dimensions to drop from the `options`.
SmallVector<unsigned> allowedUnitDims = options.controlFn(genericOp);
if (allowedUnitDims.empty()) {
return rewriter.notifyMatchFailure(
genericOp, "control function returns no allowed unit dims to prune");
}
llvm::SmallDenseSet<unsigned> unitDimsFilter(allowedUnitDims.begin(),
allowedUnitDims.end());
llvm::SmallDenseSet<unsigned> unitDims;
for (const auto &expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = dyn_cast<AffineDimExpr>(expr.value())) {
if (dims[dimExpr.getPosition()] == 1 &&
unitDimsFilter.count(expr.index()))
unitDims.insert(expr.index());
}
}
// 2. Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<utils::IteratorType> newIteratorTypes;
llvm::SmallDenseMap<unsigned, unsigned> oldDimToNewDimMap;
SmallVector<AffineExpr> dimReplacements;
unsigned newDims = 0;
for (auto [index, attr] :
llvm::enumerate(genericOp.getIteratorTypesArray())) {
if (unitDims.count(index)) {
dimReplacements.push_back(
getAffineConstantExpr(0, rewriter.getContext()));
} else {
newIteratorTypes.push_back(attr);
oldDimToNewDimMap[index] = newDims;
dimReplacements.push_back(
getAffineDimExpr(newDims, rewriter.getContext()));
newDims++;
}
}
// 3. For each of the operands, find the
// - modified affine map to use.
// - shape of the operands after the unit-dims are dropped.
// - the reassociation indices used to convert from the original
// operand type to modified operand (needed only when using reshapes
// for rank reduction strategy)
// Note that the indexing maps might need changing even if there are no
// unit dimensions that are dropped to handle cases where `0` is used to
// access a unit-extent tensor. Consider moving this out of this specific
// transformation as a stand-alone transformation. Kept here right now due
// to legacy.
SmallVector<AffineMap> newIndexingMaps;
SmallVector<SmallVector<ReassociationIndices>> reassociations;
SmallVector<SmallVector<int64_t>> targetShapes;
SmallVector<bool> collapsed;
auto hasCollapsibleType = [](OpOperand &operand) {
Type operandType = operand.get().getType();
if (auto memrefOperandType = dyn_cast_or_null<MemRefType>(operandType)) {
return memrefOperandType.getLayout().isIdentity();
}
if (auto tensorOperandType = dyn_cast<RankedTensorType>(operandType)) {
return tensorOperandType.getEncoding() == nullptr;
}
return false;
};
for (OpOperand &opOperand : genericOp->getOpOperands()) {
auto indexingMap = genericOp.getMatchingIndexingMap(&opOperand);
ArrayRef<int64_t> shape = genericOp.getShape(&opOperand);
if (!hasCollapsibleType(opOperand)) {
AffineMap newIndexingMap = indexingMap.replaceDimsAndSymbols(
dimReplacements, ArrayRef<AffineExpr>{}, oldDimToNewDimMap.size(), 0);
newIndexingMaps.push_back(newIndexingMap);
targetShapes.push_back(llvm::to_vector(shape));
collapsed.push_back(false);
reassociations.push_back({});
continue;
}
auto replacementInfo = dropUnitExtentFromOperandMetadata(
rewriter.getContext(), genericOp, &opOperand, oldDimToNewDimMap,
dimReplacements);
reassociations.push_back(replacementInfo.reassociation);
newIndexingMaps.push_back(replacementInfo.indexMap);
targetShapes.push_back(replacementInfo.targetShape);
collapsed.push_back(!(replacementInfo.indexMap.getNumResults() ==
indexingMap.getNumResults()));
}
// Abort if the indexing maps of the result operation are not invertible
// (i.e. not legal) or if no dimension was reduced.
if (newIndexingMaps == indexingMaps ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
Location loc = genericOp.getLoc();
// 4. For each of the operands, collapse the operand to convert
// from original shape to shape in the modified operation if needed,
// either through use of reshapes or rank-reducing slices as
// specified in `options`.
SmallVector<Value> newOperands;
for (OpOperand &opOperand : genericOp->getOpOperands()) {
int64_t idx = opOperand.getOperandNumber();
if (!collapsed[idx]) {
newOperands.push_back(opOperand.get());
continue;
}
newOperands.push_back(collapseValue(rewriter, loc, opOperand.get(),
targetShapes[idx], reassociations[idx],
options.rankReductionStrategy));
}
// 5. Create the `linalg.generic` operation with the new operands,
// indexing maps, iterator types and result types.
ArrayRef<Value> newInputs =
ArrayRef<Value>(newOperands).take_front(genericOp.getNumDpsInputs());
ArrayRef<Value> newOutputs =
ArrayRef<Value>(newOperands).take_back(genericOp.getNumDpsInits());
SmallVector<Type> resultTypes;
resultTypes.reserve(genericOp.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
resultTypes.push_back(newOutputs[i].getType());
GenericOp replacementOp =
rewriter.create<GenericOp>(loc, resultTypes, newInputs, newOutputs,
newIndexingMaps, newIteratorTypes);
rewriter.inlineRegionBefore(genericOp.getRegion(), replacementOp.getRegion(),
replacementOp.getRegion().begin());
// 5a. Replace `linalg.index` operations that refer to the dropped unit
// dimensions.
replaceUnitDimIndexOps(replacementOp, unitDims, rewriter);
// 6. If any result type changes, insert a reshape/slice to convert from the
// original
// type to the new type.
SmallVector<Value> resultReplacements;
for (auto [index, result] : llvm::enumerate(replacementOp.getResults())) {
unsigned opOperandIndex = index + replacementOp.getNumDpsInputs();
Value origDest = genericOp.getDpsInitOperand(index)->get();
if (!collapsed[opOperandIndex]) {
resultReplacements.push_back(result);
continue;
}
Value expandedValue = expandValue(rewriter, loc, result, origDest,
reassociations[opOperandIndex],
options.rankReductionStrategy);
resultReplacements.push_back(expandedValue);
}
rewriter.replaceOp(genericOp, resultReplacements);
return success();
}
namespace {
struct DropUnitDims : public OpRewritePattern<GenericOp> {
DropUnitDims(MLIRContext *context, ControlDropUnitDims options = {},
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), options(std::move(options)) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
return dropUnitDims(rewriter, genericOp, options);
}
private:
ControlDropUnitDims options;
};
} // namespace
//===---------------------------------------------------------------------===//
// Drop dimensions that are unit-extents within tensor operations.
//===---------------------------------------------------------------------===//
namespace {
struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
DropPadUnitDims(MLIRContext *context, ControlDropUnitDims options = {},
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), options(std::move(options)) {}
LogicalResult matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const override {
// 1a. Get the allowed list of dimensions to drop from the `options`.
SmallVector<unsigned> allowedUnitDims = options.controlFn(padOp);
if (allowedUnitDims.empty()) {
return rewriter.notifyMatchFailure(
padOp, "control function returns no allowed unit dims to prune");
}
if (padOp.getSourceType().getEncoding()) {
return rewriter.notifyMatchFailure(
padOp, "cannot collapse dims of tensor with encoding");
}
// Fail for non-constant padding values. The body of the pad could
// depend on the padding indices and/or properties of the padded
// tensor so for now we fail.
// TODO: Support non-constant padding values.
Value paddingVal = padOp.getConstantPaddingValue();
if (!paddingVal) {
return rewriter.notifyMatchFailure(
padOp, "unimplemented: non-constant padding value");
}
ArrayRef<int64_t> sourceShape = padOp.getSourceType().getShape();
int64_t padRank = sourceShape.size();
auto isStaticZero = [](OpFoldResult f) {
std::optional<int64_t> maybeInt = getConstantIntValue(f);
return maybeInt && *maybeInt == 0;
};
llvm::SmallDenseSet<unsigned> unitDimsFilter(allowedUnitDims.begin(),
allowedUnitDims.end());
llvm::SmallDenseSet<unsigned> unitDims;
SmallVector<int64_t> newShape;
SmallVector<OpFoldResult> newLowPad;
SmallVector<OpFoldResult> newHighPad;
for (const auto [dim, size, low, high] :
zip_equal(llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
if (unitDimsFilter.contains(dim) && size == 1 && isStaticZero(low) &&
isStaticZero(high)) {
unitDims.insert(dim);
} else {
newShape.push_back(size);
newLowPad.push_back(low);
newHighPad.push_back(high);
}
}
if (unitDims.empty()) {
return rewriter.notifyMatchFailure(padOp, "no unit dims to collapse");
}
ReassociationIndices reassociationGroup;
SmallVector<ReassociationIndices> reassociationMap;
int64_t dim = 0;
while (dim < padRank && unitDims.contains(dim))
reassociationGroup.push_back(dim++);
while (dim < padRank) {
assert(!unitDims.contains(dim) && "expected non unit-extent");
reassociationGroup.push_back(dim);
dim++;
// Fold all following dimensions that are unit-extent.
while (dim < padRank && unitDims.contains(dim))
reassociationGroup.push_back(dim++);
reassociationMap.push_back(reassociationGroup);
reassociationGroup.clear();
}
Value collapsedSource =
collapseValue(rewriter, padOp.getLoc(), padOp.getSource(), newShape,
reassociationMap, options.rankReductionStrategy);
auto newPadOp = rewriter.create<tensor::PadOp>(
padOp.getLoc(), /*result=*/Type(), collapsedSource, newLowPad,
newHighPad, paddingVal, padOp.getNofold());
Value dest = padOp.getResult();
if (options.rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
SmallVector<OpFoldResult> expandedSizes;
int64_t numUnitDims = 0;
for (auto dim : llvm::seq(static_cast<int64_t>(0), padRank)) {
if (unitDims.contains(dim)) {
expandedSizes.push_back(rewriter.getIndexAttr(1));
numUnitDims++;
continue;
}
expandedSizes.push_back(tensor::getMixedSize(
rewriter, padOp.getLoc(), newPadOp, dim - numUnitDims));
}
dest = rewriter.create<tensor::EmptyOp>(
padOp.getLoc(), expandedSizes,
padOp.getResultType().getElementType());
}
Value expandedValue =
expandValue(rewriter, padOp.getLoc(), newPadOp.getResult(), dest,
reassociationMap, options.rankReductionStrategy);
rewriter.replaceOp(padOp, expandedValue);
return success();
}
private:
ControlDropUnitDims options;
};
} // namespace
namespace {
/// Convert `extract_slice` operations to rank-reduced versions.
struct RankReducedExtractSliceOp
: public OpRewritePattern<tensor::ExtractSliceOp> {
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
RankedTensorType resultType = sliceOp.getType();
SmallVector<OpFoldResult> targetShape;
for (auto size : resultType.getShape())
targetShape.push_back(rewriter.getIndexAttr(size));
auto reassociation = getReassociationMapForFoldingUnitDims(targetShape);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(resultType.getRank()))
return failure();
SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides();
SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
auto rankReducedType = cast<RankedTensorType>(
tensor::ExtractSliceOp::inferCanonicalRankReducedResultType(
reassociation->size(), sliceOp.getSourceType(), offsets, sizes,
strides));
Location loc = sliceOp.getLoc();
Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
loc, rankReducedType, sliceOp.getSource(), offsets, sizes, strides);
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
sliceOp, resultType, newSlice, *reassociation);
return success();
}
};
/// Convert `insert_slice` operations to rank-reduced versions.
/// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
using OpRewritePattern<InsertOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
PatternRewriter &rewriter) const override {
RankedTensorType sourceType = insertSliceOp.getSourceType();
SmallVector<OpFoldResult> targetShape;
for (auto size : sourceType.getShape())
targetShape.push_back(rewriter.getIndexAttr(size));
auto reassociation = getReassociationMapForFoldingUnitDims(targetShape);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(sourceType.getRank()))
return failure();
Location loc = insertSliceOp.getLoc();
tensor::CollapseShapeOp reshapedSource;
{
OpBuilder::InsertionGuard g(rewriter);
// The only difference between InsertSliceOp and ParallelInsertSliceOp
// is the insertion point is just before the ParallelCombiningOp in the
// parallel case.
if (std::is_same<InsertOpTy, tensor::ParallelInsertSliceOp>::value)
rewriter.setInsertionPoint(insertSliceOp->getParentOp());
reshapedSource = rewriter.create<tensor::CollapseShapeOp>(
loc, insertSliceOp.getSource(), *reassociation);
}
rewriter.replaceOpWithNewOp<InsertOpTy>(
insertSliceOp, reshapedSource, insertSliceOp.getDest(),
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
insertSliceOp.getMixedStrides());
return success();
}
};
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
static void
populateFoldUnitExtentDimsViaReshapesPatterns(RewritePatternSet &patterns,
ControlDropUnitDims &options) {
auto *context = patterns.getContext();
patterns.add<DropUnitDims>(context, options);
patterns.add<DropPadUnitDims>(context, options);
// TODO: Patterns unrelated to unit dim folding should be factored out.
patterns.add<RankReducedExtractSliceOp,
RankReducedInsertSliceOp<tensor::InsertSliceOp>,
RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
context);
linalg::FillOp::getCanonicalizationPatterns(patterns, context);
tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::populateFoldTensorEmptyPatterns(patterns);
memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns);
memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
static void
populateFoldUnitExtentDimsViaSlicesPatterns(RewritePatternSet &patterns,
ControlDropUnitDims &options) {
auto *context = patterns.getContext();
options.rankReductionStrategy =
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice;
patterns.add<DropUnitDims>(context, options);
patterns.add<DropPadUnitDims>(context, options);
// TODO: Patterns unrelated to unit dim folding should be factored out.
linalg::FillOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
tensor::populateFoldTensorEmptyPatterns(patterns);
memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns);
memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
void mlir::linalg::populateFoldUnitExtentDimsPatterns(
RewritePatternSet &patterns, linalg::ControlDropUnitDims &options) {
if (options.rankReductionStrategy ==
linalg::ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
populateFoldUnitExtentDimsViaSlicesPatterns(patterns, options);
} else if (options.rankReductionStrategy ==
linalg::ControlDropUnitDims::RankReductionStrategy::
ReassociativeReshape) {
populateFoldUnitExtentDimsViaReshapesPatterns(patterns, options);
}
}
void mlir::linalg::populateMoveInitOperandsToInputPattern(
RewritePatternSet &patterns) {
patterns.add<MoveInitOperandsToInput>(patterns.getContext());
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public impl::LinalgFoldUnitExtentDimsPassBase<
LinalgFoldUnitExtentDimsPass> {
using impl::LinalgFoldUnitExtentDimsPassBase<
LinalgFoldUnitExtentDimsPass>::LinalgFoldUnitExtentDimsPassBase;
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *context = op->getContext();
RewritePatternSet patterns(context);
ControlDropUnitDims options;
if (useRankReducingSlices) {
options.rankReductionStrategy = linalg::ControlDropUnitDims::
RankReductionStrategy::ExtractInsertSlice;
}
linalg::populateFoldUnitExtentDimsPatterns(patterns, options);
populateMoveInitOperandsToInputPattern(patterns);
(void)applyPatternsAndFoldGreedily(op, std::move(patterns));
}
};
} // namespace
namespace {
/// Returns reassociation indices for collapsing/expanding a
/// tensor of rank `rank` at position `pos`.
static SmallVector<ReassociationIndices>
getReassociationForReshapeAtDim(int64_t rank, int64_t pos) {
SmallVector<ReassociationIndices> reassociation(rank - 1, {0, 1});
bool lastDim = pos == rank - 1;
if (rank > 2) {
for (int64_t i = 0; i < rank - 1; i++) {
if (i == pos || (lastDim && i == pos - 1))
reassociation[i] = ReassociationIndices{i, i + 1};
else if (i < pos)
reassociation[i] = ReassociationIndices{i};
else
reassociation[i] = ReassociationIndices{i + 1};
}
}
return reassociation;
}
/// Returns a collapsed `val` where the collapsing occurs at dim `pos`.
/// If `pos < 0`, then don't collapse.
static Value collapseSingletonDimAt(PatternRewriter &rewriter, Value val,
int64_t pos) {
if (pos < 0)
return val;
auto valType = cast<ShapedType>(val.getType());
SmallVector<int64_t> collapsedShape(valType.getShape());
collapsedShape.erase(collapsedShape.begin() + pos);
return collapseValue(
rewriter, val.getLoc(), val, collapsedShape,
getReassociationForReshapeAtDim(valType.getRank(), pos),
ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape);
}
/// Base class for all rank reduction patterns for contraction ops
/// with unit dimensions. All patterns should convert one named op
/// to another named op. Intended to reduce only one iteration space dim
/// at a time.
/// Reducing multiple dims will happen with recusive application of
/// pattern rewrites.
template <typename FromOpTy, typename ToOpTy>
struct RankReduceContractionOps : OpRewritePattern<FromOpTy> {
using OpRewritePattern<FromOpTy>::OpRewritePattern;
/// Collapse all collapsable operands.
SmallVector<Value>
collapseOperands(PatternRewriter &rewriter, ArrayRef<Value> operands,
ArrayRef<int64_t> operandCollapseDims) const {
assert(operandCollapseDims.size() == 3 && operands.size() == 3 &&
"expected 3 operands and dims");
return llvm::map_to_vector(
llvm::zip(operands, operandCollapseDims), [&](auto pair) {
return collapseSingletonDimAt(rewriter, std::get<0>(pair),
std::get<1>(pair));
});
}
/// Expand result tensor.
Value expandResult(PatternRewriter &rewriter, Value result,
RankedTensorType expandedType, int64_t dim) const {
return rewriter.create<tensor::ExpandShapeOp>(
result.getLoc(), expandedType, result,
getReassociationForReshapeAtDim(expandedType.getRank(), dim));
}
LogicalResult matchAndRewrite(FromOpTy contractionOp,
PatternRewriter &rewriter) const override {
auto loc = contractionOp.getLoc();
auto inputs = contractionOp.getDpsInputs();
auto inits = contractionOp.getDpsInits();
if (inputs.size() != 2 || inits.size() != 1)
return rewriter.notifyMatchFailure(contractionOp,
"expected 2 inputs and 1 init");
auto lhs = inputs[0];
auto rhs = inputs[1];
auto init = inits[0];
SmallVector<Value> operands{lhs, rhs, init};
SmallVector<int64_t> operandUnitDims;
if (failed(getOperandUnitDims(contractionOp, operandUnitDims)))
return rewriter.notifyMatchFailure(contractionOp,
"no reducable dims found");
SmallVector<Value> collapsedOperands =
collapseOperands(rewriter, operands, operandUnitDims);
Value collapsedLhs = collapsedOperands[0];
Value collapsedRhs = collapsedOperands[1];
Value collapsedInit = collapsedOperands[2];
SmallVector<Type, 1> collapsedResultTy;
if (isa<RankedTensorType>(collapsedInit.getType()))
collapsedResultTy.push_back(collapsedInit.getType());
auto collapsedOp = rewriter.create<ToOpTy>(
loc, collapsedResultTy, ValueRange{collapsedLhs, collapsedRhs},
ValueRange{collapsedInit});
for (auto attr : contractionOp->getAttrs()) {
if (attr.getName() == LinalgDialect::kMemoizedIndexingMapsAttrName)
continue;
collapsedOp->setAttr(attr.getName(), attr.getValue());
}
auto results = contractionOp.getResults();
assert(results.size() < 2 && "expected at most one result");
if (results.empty()) {
rewriter.replaceOp(contractionOp, collapsedOp);
} else {
rewriter.replaceOp(
contractionOp,
expandResult(rewriter, collapsedOp.getResultTensors()[0],
cast<RankedTensorType>(results[0].getType()),
operandUnitDims[2]));
}
return success();
}
/// Populate `operandUnitDims` with 3 indices indicating the unit dim
/// for each operand that should be collapsed in this pattern. If an
/// operand shouldn't be collapsed, the index should be negative.
virtual LogicalResult
getOperandUnitDims(LinalgOp op,
SmallVectorImpl<int64_t> &operandUnitDims) const = 0;
};
/// Patterns for unbatching batched contraction ops
template <typename FromOpTy, typename ToOpTy>
struct RankReduceToUnBatched : RankReduceContractionOps<FromOpTy, ToOpTy> {
using RankReduceContractionOps<FromOpTy, ToOpTy>::RankReduceContractionOps;
/// Look for unit batch dims to collapse.
LogicalResult
getOperandUnitDims(LinalgOp op,
SmallVectorImpl<int64_t> &operandUnitDims) const override {
FailureOr<ContractionDimensions> maybeContractionDims =
inferContractionDims(op);
if (failed(maybeContractionDims)) {
LLVM_DEBUG(llvm::dbgs() << "could not infer contraction dims");
return failure();
}
ContractionDimensions contractionDims = maybeContractionDims.value();
if (contractionDims.batch.size() != 1)
return failure();
auto batchDim = contractionDims.batch[0];
SmallVector<std::pair<Value, unsigned>, 3> bOperands;
op.mapIterationSpaceDimToAllOperandDims(batchDim, bOperands);
if (bOperands.size() != 3 || llvm::any_of(bOperands, [](auto pair) {
return cast<ShapedType>(std::get<0>(pair).getType())
.getShape()[std::get<1>(pair)] != 1;
})) {
LLVM_DEBUG(llvm::dbgs() << "specified unit dims not found");
return failure();
}
operandUnitDims = SmallVector<int64_t>{std::get<1>(bOperands[0]),
std::get<1>(bOperands[1]),
std::get<1>(bOperands[2])};
return success();
}
};
/// Patterns for reducing non-batch dimensions
template <typename FromOpTy, typename ToOpTy>
struct RankReduceMatmul : RankReduceContractionOps<FromOpTy, ToOpTy> {
using RankReduceContractionOps<FromOpTy, ToOpTy>::RankReduceContractionOps;
/// Helper for determining whether the lhs/init or rhs/init are reduced.
static bool constexpr reduceLeft =
(std::is_same_v<FromOpTy, BatchMatmulOp> &&
std::is_same_v<ToOpTy, BatchVecmatOp>) ||
(std::is_same_v<FromOpTy, BatchMatmulTransposeAOp> &&
std::is_same_v<ToOpTy, BatchVecmatOp>) ||
(std::is_same_v<FromOpTy, MatmulOp> &&
std::is_same_v<ToOpTy, VecmatOp>) ||
(std::is_same_v<FromOpTy, MatmulTransposeAOp> &&
std::is_same_v<ToOpTy, VecmatOp>) ||
(std::is_same_v<FromOpTy, MatvecOp> && std::is_same_v<ToOpTy, DotOp>);
/// Look for non-batch spatial dims to collapse.
LogicalResult
getOperandUnitDims(LinalgOp op,
SmallVectorImpl<int64_t> &operandUnitDims) const override {
FailureOr<ContractionDimensions> maybeContractionDims =
inferContractionDims(op);
if (failed(maybeContractionDims)) {
LLVM_DEBUG(llvm::dbgs() << "could not infer contraction dims");
return failure();
}
ContractionDimensions contractionDims = maybeContractionDims.value();
if constexpr (reduceLeft) {
auto m = contractionDims.m[0];
SmallVector<std::pair<Value, unsigned>, 2> mOperands;
op.mapIterationSpaceDimToAllOperandDims(m, mOperands);
if (mOperands.size() != 2)
return failure();
if (llvm::all_of(mOperands, [](auto pair) {
return cast<ShapedType>(std::get<0>(pair).getType())
.getShape()[std::get<1>(pair)] == 1;
})) {
operandUnitDims = SmallVector<int64_t>{std::get<1>(mOperands[0]), -1,
std::get<1>(mOperands[1])};
return success();
}
} else {
auto n = contractionDims.n[0];
SmallVector<std::pair<Value, unsigned>, 2> nOperands;
op.mapIterationSpaceDimToAllOperandDims(n, nOperands);
if (nOperands.size() != 2)
return failure();
if (llvm::all_of(nOperands, [](auto pair) {
return cast<ShapedType>(std::get<0>(pair).getType())
.getShape()[std::get<1>(pair)] == 1;
})) {
operandUnitDims = SmallVector<int64_t>{-1, std::get<1>(nOperands[0]),
std::get<1>(nOperands[1])};
return success();
}
}
LLVM_DEBUG(llvm::dbgs() << "specified unit dims not found");
return failure();
}
};
} // namespace
void mlir::linalg::populateContractionOpRankReducingPatterns(
RewritePatternSet &patterns) {
MLIRContext *context = patterns.getContext();
// Unbatching patterns for unit batch size
patterns.add<RankReduceToUnBatched<BatchMatmulOp, MatmulOp>>(context);
patterns
.add<RankReduceToUnBatched<BatchMatmulTransposeAOp, MatmulTransposeAOp>>(
context);
patterns
.add<RankReduceToUnBatched<BatchMatmulTransposeBOp, MatmulTransposeBOp>>(
context);
patterns.add<RankReduceToUnBatched<BatchMatvecOp, MatvecOp>>(context);
patterns.add<RankReduceToUnBatched<BatchVecmatOp, VecmatOp>>(context);
// Non-batch rank 1 reducing patterns
patterns.add<RankReduceMatmul<MatmulOp, VecmatOp>>(context);
patterns.add<RankReduceMatmul<MatmulOp, MatvecOp>>(context);
patterns.add<RankReduceMatmul<MatmulTransposeAOp, VecmatOp>>(context);
patterns.add<RankReduceMatmul<MatmulTransposeBOp, MatvecOp>>(context);
// Batch rank 1 reducing patterns
patterns.add<RankReduceMatmul<BatchMatmulOp, BatchVecmatOp>>(context);
patterns.add<RankReduceMatmul<BatchMatmulOp, BatchMatvecOp>>(context);
patterns.add<RankReduceMatmul<BatchMatmulTransposeAOp, BatchVecmatOp>>(
context);
patterns.add<RankReduceMatmul<BatchMatmulTransposeBOp, BatchMatvecOp>>(
context);
// Non-batch rank 0 reducing patterns
patterns.add<RankReduceMatmul<MatvecOp, DotOp>>(context);
patterns.add<RankReduceMatmul<VecmatOp, DotOp>>(context);
}
|