1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
//===- MeshShardingInterfaceImpl.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/MeshShardingInterfaceImpl.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h"
#include "mlir/Dialect/Mesh/IR/MeshOps.h"
#include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.h"
#include "mlir/Dialect/Mesh/Interfaces/ShardingInterfaceImpl.h"
#include "mlir/Dialect/Mesh/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/DialectRegistry.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/IR/Value.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include <iterator>
#include <numeric>
#include <optional>
#include <utility>
namespace mlir::linalg {
using MeshAxis = mesh::MeshAxis;
using ReductionKind = mesh::ReductionKind;
using MeshShardingAttr = mesh::MeshShardingAttr;
using ShardingArray = mesh::ShardingArray;
using MeshOp = mesh::MeshOp;
// Returns the corresponding mesh reduction kind for the given arith op.
static ReductionKind getReductionKind(Operation *op) {
return llvm::TypeSwitch<Operation *, ReductionKind>(op)
// Floating-point operations.
.Case([](arith::AddFOp op) { return ReductionKind::Sum; })
.Case([](arith::MulFOp op) { return ReductionKind::Product; })
// TODO: handle maxnumf and minnumf.
.Case([](arith::MaximumFOp op) { return ReductionKind::Max; })
.Case([](arith::MinimumFOp op) { return ReductionKind::Min; })
// Integer operations.
.Case([](arith::AddIOp op) { return ReductionKind::Sum; })
.Case([](arith::OrIOp op) { return ReductionKind::BitwiseOr; })
.Case([](arith::XOrIOp op) { return ReductionKind::BitwiseXor; })
.Case([](arith::AndIOp op) { return ReductionKind::Sum; })
// TODO: handle signless, signed and unsigned types properly.
// It is assumed that the element type of the collective operands and
// result drive the meaning of the reduction kind, whether it is signed
// or unsigned.
// The reduction op inside the linalg op may have different result type
// from the element type of the linalg op's result.
// Also signed and unsigned Arith dialect ops may accept signed, unsigned
// or signless operands.
// Maybe expand the reduction kinds.
.Case([](arith::MaxUIOp op) { return ReductionKind::Max; })
.Case([](arith::MinUIOp op) { return ReductionKind::Min; })
.Case([](arith::MaxSIOp op) { return ReductionKind::Max; })
.Case([](arith::MinSIOp op) { return ReductionKind::Min; })
.Case([](arith::MulIOp op) { return ReductionKind::Product; })
.Default([](Operation *op) { return ReductionKind::Generic; });
}
static std::optional<Operation *> getCombinerOp(LinalgOp op) {
SmallVector<Operation *> combinerOps;
Value reducedValue = matchReduction(op.getRegionOutputArgs(), 0, combinerOps);
if (!reducedValue || combinerOps.size() != 1) {
return std::nullopt;
}
return combinerOps[0];
}
static ReductionKind getReductionKindOfLinalgOp(LinalgOp op) {
std::optional<Operation *> reductionOp = getCombinerOp(op);
if (!reductionOp) {
return ReductionKind::Generic;
}
[[maybe_unused]] Type resultElementType =
llvm::cast<RankedTensorType>(op->getResult(0).getType()).getElementType();
// TODO: handle case when result type of the reduction op does not match the
// element type of the result tensor.
// Would it makes sense at all?
assert(resultElementType == reductionOp.value()->getResult(0).getType());
return getReductionKind(reductionOp.value());
}
static MeshOp getMesh(Operation *op,
ArrayRef<MeshShardingAttr> operandShardings,
ArrayRef<MeshShardingAttr> resultShardings,
SymbolTableCollection &symbolTable) {
for (MeshShardingAttr sharding : operandShardings) {
if (sharding) {
return mesh::getMesh(op, sharding.getMesh(), symbolTable);
}
}
for (MeshShardingAttr sharding : resultShardings) {
if (sharding) {
return mesh::getMesh(op, sharding.getMesh(), symbolTable);
}
}
assert(false);
return nullptr;
}
// Choose the operand based on the current process index along the reduction
// mesh axes.
// We need to use the initial value only once to avoid including it in the
// reduction multiple times.
// In each process group only the leading process with linear index 0 would use
// the original operand.
// The other processes would use the reduction operation neutral tensor.
static Value createDestinationPassingStyleInitOperand(
LinalgOp op, Value spmdizedOperand, ArrayRef<MeshAxis> reductionMeshAxes,
MeshOp meshOp, ImplicitLocOpBuilder &builder) {
Value processLinearIndexInReductionGroup = mesh::createProcessLinearIndex(
meshOp.getSymName(), reductionMeshAxes, builder);
Value zero = builder.create<arith::ConstantIndexOp>(0);
Value isLeadProcess = builder.create<arith::CmpIOp>(
builder.getI1Type(), arith::CmpIPredicate::eq,
processLinearIndexInReductionGroup, zero);
scf::IfOp ifOp = builder.create<scf::IfOp>(spmdizedOperand.getType(),
isLeadProcess, true, true);
// Then block.
{
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPointToEnd(&ifOp.getThenRegion().front());
builder.create<scf::YieldOp>(spmdizedOperand);
}
// Else block.
{
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPointToEnd(&ifOp.getElseRegion().front());
SmallVector<OpFoldResult> shape =
tensor::getMixedSizes(builder, builder.getLoc(), spmdizedOperand);
PartialReductionOpInterface partialReductionIface =
llvm::cast<PartialReductionOpInterface>(op.getOperation());
assert(op->getNumResults() == 1 && "Multiple results not supported.");
FailureOr<SmallVector<Value>> reductionNeutralTensor =
partialReductionIface.generateInitialTensorForPartialReduction(
builder, builder.getLoc(), shape, {});
assert(succeeded(reductionNeutralTensor));
builder.create<scf::YieldOp>(reductionNeutralTensor.value());
}
return ifOp.getResult(0);
}
// Create the DPS init operands for the spmdized Linalg op.
// Return all the new spmdized operands.
static SmallVector<Value> createDestinationPassingStyleInitOperands(
LinalgOp op, MeshOp meshOp, ArrayRef<Value> spmdizedOperands,
ArrayRef<MeshAxis> reductionMeshAxes, IRMapping &spmdizationMap,
ImplicitLocOpBuilder &builder) {
// TODO: add support for multiple destination passing style initial value
// operands.
assert(op.getNumDpsInits() == 1 && "Multiple initial values not supported.");
SmallVector<Value> newOperands = llvm::to_vector(spmdizedOperands);
auto operandIdx = op.getDpsInitOperand(0)->getOperandNumber();
Value spmdizedInitOperand =
spmdizationMap.lookup(op->getOperands()[operandIdx]);
newOperands[operandIdx] = createDestinationPassingStyleInitOperand(
op, spmdizedInitOperand, reductionMeshAxes, meshOp, builder);
return newOperands;
}
static void createAllReduceForResultWithoutPartialSharding(
Value unshardedLinalgOpResult, ArrayRef<MeshAxis> opReductionMeshAxes,
MeshShardingAttr resultSharding, ReductionKind reductionKind,
IRMapping &spmdizationMap, ImplicitLocOpBuilder &builder) {
SmallVector<MeshAxis> allReduceMeshAxes;
llvm::copy_if(opReductionMeshAxes, std::back_inserter(allReduceMeshAxes),
[&resultSharding](MeshAxis axis) {
return !llvm::is_contained(resultSharding.getPartialAxes(),
axis);
});
if (allReduceMeshAxes.empty()) {
return;
}
Value spmdizedLinalgOpResult = spmdizationMap.lookup(unshardedLinalgOpResult);
Value reducedValue = builder.create<mesh::AllReduceOp>(
spmdizedLinalgOpResult, resultSharding.getMesh().getValue(),
allReduceMeshAxes, reductionKind);
spmdizationMap.map(unshardedLinalgOpResult, reducedValue);
}
static void createAllReduceForResultsWithoutPartialShardings(
LinalgOp unshardedOp, ArrayRef<MeshAxis> opReductionMeshAxes,
ArrayRef<MeshShardingAttr> resultShardings, IRMapping &spmdizationMap,
ImplicitLocOpBuilder &builder) {
ReductionKind reductionKind = getReductionKindOfLinalgOp(unshardedOp);
for (auto [unshardedLinalgOpResult, resultSharding] :
llvm::zip_equal(unshardedOp->getResults(), resultShardings)) {
createAllReduceForResultWithoutPartialSharding(
unshardedLinalgOpResult, opReductionMeshAxes, resultSharding,
reductionKind, spmdizationMap, builder);
}
}
static void spmdizeLinalgOpWithShardedReduction(
LinalgOp op, ArrayRef<Value> spmdizedOperands,
ArrayRef<MeshShardingAttr> operandShardings,
ArrayRef<MeshShardingAttr> resultShardings,
ArrayRef<utils::IteratorType> loopIteratorTypes,
ArrayRef<SmallVector<MeshAxis>> meshAxisAssignmentForLoopIterators,
IRMapping &spmdizationMap, SymbolTableCollection &symbolTable,
ImplicitLocOpBuilder &builder) {
MeshOp mesh = getMesh(op, operandShardings, resultShardings, symbolTable);
SmallVector<MeshAxis> reductionMeshAxes = mesh::getReductionMeshAxes(
loopIteratorTypes, meshAxisAssignmentForLoopIterators);
SmallVector<Value> spmdizedLinalgOpOperands =
createDestinationPassingStyleInitOperands(op, mesh, spmdizedOperands,
reductionMeshAxes,
spmdizationMap, builder);
// We must not change the operand mappings of the original spmdizationMap as
// they are the mappings for the whole spmdization blob and may be used by
// others.
IRMapping internalSpmdizationMap;
for (auto [unshardedOperand, spmdizedOperand] :
llvm::zip_equal(op->getOperands(), spmdizedLinalgOpOperands)) {
internalSpmdizationMap.map(unshardedOperand, spmdizedOperand);
}
spmdizeTriviallyShardableOperation(
*op, spmdizedLinalgOpOperands, operandShardings, resultShardings,
internalSpmdizationMap, symbolTable, builder);
for (Value result : op->getResults()) {
spmdizationMap.map(result, internalSpmdizationMap.lookup(result));
}
// Handle partial shardings.
createAllReduceForResultsWithoutPartialShardings(
op, reductionMeshAxes, resultShardings, spmdizationMap, builder);
}
namespace {
// ShardingInterface for ops that implement LinalgStructuredInterface.
// The supported ops are only those where the indexing maps are projected
// permutations.
template <typename Op>
struct StructuredOpShardingInterface
: public mesh::ShardingInterface::ExternalModel<
StructuredOpShardingInterface<Op>, Op> {
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
return llvm::cast<LinalgOp>(op).getIteratorTypesArray();
}
SmallVector<AffineMap> getIndexingMaps(Operation *op) const {
LinalgOp linalgOp = llvm::cast<LinalgOp>(op);
SmallVector<AffineMap> res = linalgOp.getIndexingMapsArray();
// Results must have the same indexing as destination passing style initial
// operands.
for (int64_t i = 0; i < linalgOp.getNumDpsInits(); ++i) {
res.push_back(res[linalgOp.getDpsInitOperand(i)->getOperandNumber()]);
}
return res;
}
SmallVector<ReductionKind>
getReductionLoopIteratorKinds(Operation *op) const {
LinalgOp linalgOp = llvm::cast<LinalgOp>(op);
SmallVector<utils::IteratorType> iteratorTypes =
linalgOp.getIteratorTypesArray();
unsigned reductionItersCount = std::accumulate(
iteratorTypes.begin(), iteratorTypes.end(), 0,
[](unsigned count, utils::IteratorType iter) {
return count + (iter == utils::IteratorType::reduction);
});
mesh::ReductionKind reductionKind = getReductionKindOfLinalgOp(linalgOp);
return SmallVector<ReductionKind>(reductionItersCount, reductionKind);
}
LogicalResult spmdize(Operation *op, ArrayRef<Value> spmdizedOperands,
ArrayRef<MeshShardingAttr> operandShardings,
ArrayRef<MeshShardingAttr> resultShardings,
IRMapping &spmdizationMap,
SymbolTableCollection &symbolTable,
OpBuilder &builder) const {
LinalgOp linalgOp = llvm::cast<LinalgOp>(op);
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
bool allIndexingMapsAreProjectedPermutation =
llvm::all_of(indexingMaps, [](AffineMap map) {
return map.isProjectedPermutation();
});
if (!allIndexingMapsAreProjectedPermutation) {
// TODO: handle non-projected permutations.
return op->emitOpError()
<< "supports indexing maps that are only projected permutation.";
}
SmallVector<utils::IteratorType> loopIteratorTypes =
linalgOp.getIteratorTypesArray();
ShardingArray meshAxisAssignmentForLoopIterators =
getMeshAxisAssignmentForLoopIterators(operandShardings, resultShardings,
loopIteratorTypes, indexingMaps);
if (mesh::isAtLeastOneReductionIteratorSharded(
loopIteratorTypes, meshAxisAssignmentForLoopIterators)) {
ImplicitLocOpBuilder implicitLocBuilder(op->getLoc(), builder);
spmdizeLinalgOpWithShardedReduction(
linalgOp, spmdizedOperands, operandShardings, resultShardings,
loopIteratorTypes, meshAxisAssignmentForLoopIterators, spmdizationMap,
symbolTable, implicitLocBuilder);
} else {
spmdizeTriviallyShardableOperation(*op, spmdizedOperands,
operandShardings, resultShardings,
spmdizationMap, symbolTable, builder);
}
return success();
}
};
} // namespace
template <typename OpType>
static void registerOne(MLIRContext *ctx) {
OpType::template attachInterface<StructuredOpShardingInterface<OpType>>(*ctx);
}
/// Variadic helper function.
template <typename... OpTypes>
static void registerAll(MLIRContext *ctx) {
(registerOne<OpTypes>(ctx), ...);
}
void registerMeshShardingInterfaceExternalModels(DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, LinalgDialect *dialect) {
DialectRegistry registry;
registry.insert<affine::AffineDialect, arith::ArithDialect, scf::SCFDialect,
tensor::TensorDialect>();
ctx->appendDialectRegistry(registry);
for (StringRef name : registry.getDialectNames())
ctx->getOrLoadDialect(name);
registerOne<linalg::GenericOp>(ctx);
registerAll<
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>(ctx);
});
}
} // namespace mlir::linalg
|