1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
//===- TransposeConv2D.cpp - Convolution transposition -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/RWMutex.h"
#include <memory>
#include <numeric>
namespace mlir {
namespace linalg {
namespace {
// clang-format off
/// Convolution converter that applies the following rewrite:
///
/// Before:
///
/// %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
/// strides = dense<2> : tensor<2xi64>}
/// ins (%input, %filter: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>)
/// outs (%init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
///
/// After:
///
/// %cst = arith.constant 0.000000e+00 : f32
/// %0 = tensor.empty() : tensor<2x2x6x8xf32>
/// %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<2x2x6x8xf32>) -> tensor<2x2x6x8xf32>
/// %transposed = linalg.transpose ins(%arg1 : tensor<8x2x2x6xf32>) outs(%1 : tensor<2x2x6x8xf32>)
/// permutation = [1, 2, 3, 0]
/// %2 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>}
/// ins(%arg0, %transposed : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>) outs(%arg2 : tensor<1x2x2x8xf32>)
/// -> tensor<1x2x2x8xf32>
///
/// with an analogous example for the quantized case.
// clang-format on
template <typename FHWCConvOp, typename HWCFConvOp>
FailureOr<Operation *> transposeConv2DHelper(RewriterBase &rewriter,
FHWCConvOp op) {
// Construct a permutation of the filter tensor dimensions. For a 2D
// convolution this will be known statically as [1, 2, 3, 0].
SmallVector<int64_t> filterPerm({1, 2, 3, 0});
// Create the type for the transposed filter tensor.
auto filter = op->getOperand(1);
auto filterTy = cast<ShapedType>(filter.getType());
SmallVector<int64_t> newFilterShape(filterPerm.size());
std::generate(std::begin(newFilterShape), std::end(newFilterShape),
[dim = 0, &filterTy, &filterPerm]() mutable {
return filterTy.getShape()[filterPerm[dim++]];
});
// Because linalg.transpose expects an "out" parameter we need to pass it a
// tensor of zeros of the result type so here we construct that tensor.
auto inputType = op->getOperand(0).getType();
auto elementTy = cast<ShapedType>(inputType).getElementType();
auto loc = op->getLoc();
const auto isTensorOp = isa<TensorType>(inputType);
Value input;
if (isTensorOp) {
input = rewriter.create<tensor::EmptyOp>(loc, newFilterShape, elementTy)
.getResult();
} else {
input = rewriter
.create<memref::AllocOp>(
loc, MemRefType::get(newFilterShape, elementTy))
.getResult();
}
// We can then construct the transposition on our filter.
auto transpose =
rewriter.create<linalg::TransposeOp>(loc, filter, input, filterPerm);
Value newFilter;
if (isTensorOp) {
newFilter = transpose.getResult()[0];
} else {
newFilter = input;
}
SmallVector<Value> newInputs{op.getInputs()};
// The filter is always the second input argument, the other inputs can be
// left as they are.
newInputs[1] = newFilter;
// It is possible the convolution doesn't define any results and its
// out argument is just used instead.
SmallVector<Type> resultTy;
if (op.getNumResults()) {
resultTy.push_back(op->getResult(0).getType());
}
auto newConv =
rewriter.create<HWCFConvOp>(loc, resultTy, newInputs, op.getOutputs(),
op.getStrides(), op.getDilations());
rewriter.replaceOp(op, newConv);
return newConv.getOperation();
}
template <typename FHWCConvOp, typename HWCFConvOp>
class ConvConverter : public OpRewritePattern<FHWCConvOp> {
public:
using OpRewritePattern<FHWCConvOp>::OpRewritePattern;
LogicalResult matchAndRewrite(FHWCConvOp op,
PatternRewriter &rewriter) const final {
if (failed(transposeConv2DHelper<FHWCConvOp, HWCFConvOp>(rewriter, op))) {
return failure();
}
return success();
}
};
} // namespace
FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
linalg::Conv2DNhwcFhwcOp op) {
return transposeConv2DHelper<linalg::Conv2DNhwcFhwcOp,
linalg::Conv2DNhwcHwcfOp>(rewriter, op);
}
FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
linalg::Conv2DNhwcFhwcQOp op) {
return transposeConv2DHelper<linalg::Conv2DNhwcFhwcQOp,
linalg::Conv2DNhwcHwcfQOp>(rewriter, op);
}
void populateTranposeConv2DPatterns(RewritePatternSet &patterns) {
MLIRContext *context = patterns.getContext();
patterns.insert<
ConvConverter<linalg::Conv2DNhwcFhwcOp, linalg::Conv2DNhwcHwcfOp>,
ConvConverter<linalg::Conv2DNhwcFhwcQOp, linalg::Conv2DNhwcHwcfQOp>>(
context);
}
} // namespace linalg
} // namespace mlir
|