File: TransposeMatmul.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (161 lines) | stat: -rw-r--r-- 6,007 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//===- TransposeMatmul.cpp - Convert Linalg matmul to transposed variants -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This is intended to be a simple high-level (target-agnostic) matmul
// transposition transformation.
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"

#define DEBUG_TYPE "linalg-transpose-matmul"

using namespace mlir;
using namespace mlir::linalg;

/// Pattern to replace
///
///   linalg.matmul(a, b)
///
/// with
///
///   linalg.matmul_transpose_a(linalg.transpose(a), b)
///
/// By default the LHS is transposed. Set `transposeLHS=false` to
/// transpose RHS instead.
FailureOr<Operation *> mlir::linalg::transposeMatmul(RewriterBase &rewriter,
                                                     linalg::MatmulOp matmulOp,
                                                     bool transposeLHS) {
  if (!bufferization::hasTensorSemantics(matmulOp))
    return rewriter.notifyMatchFailure(
        matmulOp, "only matmul ops with tensors are supported");

  Location loc = matmulOp.getLoc();
  Value input = matmulOp.getInputs()[transposeLHS ? 0 : 1];
  auto type = cast<ShapedType>(input.getType());

  SmallVector<Value> dynamicDims;
  if (type.isDynamicDim(1))
    dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 1));
  if (type.isDynamicDim(0))
    dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0));

  ArrayRef<int64_t> shape = type.getShape();
  Value empty = rewriter.create<tensor::EmptyOp>(
      loc, ArrayRef<int64_t>{shape[1], shape[0]}, type.getElementType(),
      dynamicDims);
  auto transposeOp = rewriter.create<linalg::TransposeOp>(
      loc, input, empty, ArrayRef<int64_t>{1, 0});
  Operation *newMatmulOp;
  if (transposeLHS) {
    newMatmulOp = rewriter.create<linalg::MatmulTransposeAOp>(
        loc, matmulOp.getResultTypes(),
        ValueRange{transposeOp->getResult(0), matmulOp.getInputs()[1]},
        matmulOp.getOutputs());
  } else {
    newMatmulOp = rewriter.create<linalg::MatmulTransposeBOp>(
        loc, matmulOp.getResultTypes(),
        ValueRange{matmulOp.getInputs()[0], transposeOp->getResult(0)},
        matmulOp.getOutputs());
  }
  rewriter.replaceOp(matmulOp, newMatmulOp);
  return newMatmulOp;
}

/// Pattern to replace
///
///   linalg.batch_matmul(a, b)
///
/// with
///
///   linalg.batch_matmul_transpose_a(linalg.transpose(a), b)
///
/// Only the non-batch dimensions are transposed. By default the LHS is
/// transposed. Set `transposeLHS=false` to transpose RHS instead.
FailureOr<Operation *>
mlir::linalg::transposeBatchMatmul(RewriterBase &rewriter,
                                   linalg::BatchMatmulOp batchMatmulOp,
                                   bool transposeLHS) {
  if (!bufferization::hasTensorSemantics(batchMatmulOp))
    return rewriter.notifyMatchFailure(
        batchMatmulOp, "only matmul ops with tensors are supported");

  Location loc = batchMatmulOp.getLoc();
  Value input = batchMatmulOp.getInputs()[transposeLHS ? 0 : 1];
  auto type = cast<ShapedType>(input.getType());

  SmallVector<Value> dynamicDims;
  if (type.isDynamicDim(0))
    dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0));
  if (type.isDynamicDim(2))
    dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 2));
  if (type.isDynamicDim(1))
    dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 1));

  ArrayRef<int64_t> shape = type.getShape();
  Value empty = rewriter.create<tensor::EmptyOp>(
      loc, ArrayRef<int64_t>{shape[0], shape[2], shape[1]},
      type.getElementType(), dynamicDims);
  auto transposeOp = rewriter.create<linalg::TransposeOp>(
      loc, input, empty, ArrayRef<int64_t>{0, 2, 1});
  Operation *newMatmulOp;
  if (transposeLHS) {
    newMatmulOp = rewriter.create<linalg::BatchMatmulTransposeAOp>(
        loc, batchMatmulOp.getResultTypes(),
        ValueRange{transposeOp->getResult(0), batchMatmulOp.getInputs()[1]},
        batchMatmulOp.getOutputs());
  } else {
    newMatmulOp = rewriter.create<linalg::BatchMatmulTransposeBOp>(
        loc, batchMatmulOp.getResultTypes(),
        ValueRange{batchMatmulOp.getInputs()[0], transposeOp->getResult(0)},
        batchMatmulOp.getOutputs());
  }
  rewriter.replaceOp(batchMatmulOp, newMatmulOp);
  return newMatmulOp;
}

namespace {
struct TransposeMatmul final : public OpRewritePattern<linalg::MatmulOp> {
  TransposeMatmul(MLIRContext *ctx, bool transposeLHS)
      : OpRewritePattern(ctx), transposeLHS(transposeLHS) {}

  LogicalResult matchAndRewrite(linalg::MatmulOp op,
                                PatternRewriter &rewriter) const override {
    if (failed(transposeMatmul(rewriter, op, transposeLHS))) {
      return failure();
    }
    return success();
  }

private:
  bool transposeLHS;
};

struct TransposeBatchMatmul final
    : public OpRewritePattern<linalg::BatchMatmulOp> {
  TransposeBatchMatmul(MLIRContext *ctx, bool transposeLHS)
      : OpRewritePattern(ctx), transposeLHS(transposeLHS) {}

  LogicalResult matchAndRewrite(linalg::BatchMatmulOp op,
                                PatternRewriter &rewriter) const override {
    if (failed(transposeBatchMatmul(rewriter, op, transposeLHS))) {
      return failure();
    }
    return success();
  }

private:
  bool transposeLHS;
};
} // namespace

void mlir::linalg::populateTransposeMatmulPatterns(RewritePatternSet &patterns,
                                                   bool transposeLHS) {
  patterns.add<TransposeMatmul, TransposeBatchMatmul>(patterns.getContext(),
                                                      transposeLHS);
}