1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
//===- ShardingPropagation.cpp ------------------------------------- C++ --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Mesh/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Mesh/IR/MeshDialect.h"
#include "mlir/Dialect/Mesh/IR/MeshOps.h"
#include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
namespace mlir {
namespace mesh {
#define GEN_PASS_DEF_SHARDINGPROPAGATION
#include "mlir/Dialect/Mesh/Transforms/Passes.h.inc"
} // namespace mesh
} // namespace mlir
#define DEBUG_TYPE "sharding-propagation"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
using namespace mlir;
using namespace mlir::mesh;
enum class ReshardingRquirementKind {
NO_RESHARDING = 0,
NO_RESHARDING_FOR_EXPLICIT_ANNOTATIONS,
RESHARDING_FOR_EXPLICIT_ANNOTATIONS
};
#ifdef LLVM_DEBUG
template <typename T>
static llvm::raw_ostream &operator<<(llvm::raw_ostream &stream,
const SmallVector<T> &vec);
template <typename... Ts>
static llvm::raw_ostream &operator<<(llvm::raw_ostream &stream,
const std::tuple<Ts...> &t);
static llvm::raw_ostream &operator<<(llvm::raw_ostream &stream,
ReshardingRquirementKind v);
template <typename Stream, typename Range>
static Stream &printRange(Stream &stream, Range &&range) {
stream << "[";
llvm::for_each(range, [&stream](auto &v) {
stream << v;
stream << ", ";
});
return stream << "]";
}
template <typename T>
static llvm::raw_ostream &operator<<(llvm::raw_ostream &stream,
const SmallVector<T> &vec) {
return printRange(stream, vec);
}
[[maybe_unused]] static llvm::raw_ostream &operator<<(llvm::raw_ostream &stream,
const ShardingOption &v) {
return stream << "{empty = " << v.empty << ", mesh" << v.mesh
<< ", shardingArray = " << v.shardingArray << "}";
}
template <typename Stream, typename... Ts, size_t... Is>
static Stream &printTuple(Stream &stream, std::tuple<Ts...> tuple,
std::index_sequence<Is...>) {
static_assert(sizeof...(Is) == sizeof...(Ts),
"Indices must have same number of elements as tuple types!");
static_assert(sizeof...(Ts) > 0, "Cannot insert empty tuple into stream.");
stream << "{";
((stream << std::get<Is>(tuple) << ", "), ...);
return stream << "}";
}
template <typename... Ts>
static llvm::raw_ostream &operator<<(llvm::raw_ostream &stream,
const std::tuple<Ts...> &t) {
return printTuple(stream, t, std::index_sequence_for<Ts...>{});
}
[[maybe_unused]] static llvm::raw_ostream &
operator<<(llvm::raw_ostream &stream, ReshardingRquirementKind v) {
return stream << static_cast<int>(v);
}
#endif // LLVM_DEBUG
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
// This method retrieves all potential sharding attributes, prioritizing
// specific shardings. For example, mustShardings = [shard0, None] and
// optionalShardings = [None, shard1], the result will be [[shard0, shard1],
// [shard0, None]]
static SmallVector<SmallVector<MeshShardingAttr>>
getOrderedPossibleShardingAttrs(ArrayRef<MeshShardingAttr> mustShardings,
ArrayRef<MeshShardingAttr> optionalShardings) {
SmallVector<SmallVector<MeshShardingAttr>> allShardingAttrs;
SmallVector<MeshShardingAttr> curShardingAttrs;
std::function<void(size_t)> dfsCreateShardingAttrs = [&](size_t i) {
if (i == mustShardings.size()) {
allShardingAttrs.push_back(
SmallVector<MeshShardingAttr>(curShardingAttrs));
return;
}
if (mustShardings[i]) {
curShardingAttrs.push_back(mustShardings[i]);
dfsCreateShardingAttrs(i + 1);
curShardingAttrs.pop_back();
return;
}
if (optionalShardings[i]) {
curShardingAttrs.push_back(optionalShardings[i]);
dfsCreateShardingAttrs(i + 1);
curShardingAttrs.pop_back();
curShardingAttrs.push_back(nullptr);
dfsCreateShardingAttrs(i + 1);
curShardingAttrs.pop_back();
return;
}
curShardingAttrs.push_back(nullptr);
dfsCreateShardingAttrs(i + 1);
curShardingAttrs.pop_back();
};
dfsCreateShardingAttrs(0);
return allShardingAttrs;
}
// The order of preference is form highest to lowest:
// 1. No resharding is required (all existing annotations are compatible).
// 2. No resharding for operands/results that have annotation specifically
// targeting this operation. This means
// * operands that are the result of `mesh.shard` ops marked with
// `annotate_for_users`.
// * results that are annotated with `mesh.shard` ops without
// `annotate_for_users`.
// 3. All other cases. Resharding is required for operands/results with
// annotation targeting explicitly this operation.
ReshardingRquirementKind getReshardingRquirementKind(
Operation *op,
const SmallVector<MeshShardingAttr> &operandAndResultShardings) {
ReshardingRquirementKind res = ReshardingRquirementKind::NO_RESHARDING;
size_t operandsCount = op->getOperands().size();
auto operandShardings =
llvm::make_range(operandAndResultShardings.begin(),
operandAndResultShardings.begin() + operandsCount);
auto resultShardings =
llvm::make_range(operandAndResultShardings.begin() + operandsCount,
operandAndResultShardings.end());
for (auto [operand, sharding] :
llvm::zip_equal(op->getOperands(), operandShardings)) {
ShardOp shardOp = llvm::dyn_cast_or_null<ShardOp>(operand.getDefiningOp());
if (!shardOp) {
continue;
}
bool needsResharding = shardOp.getShardAttr() != sharding;
bool isExplicitAnnotationForThisOp = shardOp.getAnnotateForUsers();
if (needsResharding) {
if (isExplicitAnnotationForThisOp) {
// This is the worst case. No need to continue.
return ReshardingRquirementKind::RESHARDING_FOR_EXPLICIT_ANNOTATIONS;
}
res = ReshardingRquirementKind::NO_RESHARDING_FOR_EXPLICIT_ANNOTATIONS;
}
}
for (auto [result, sharding] :
llvm::zip_equal(op->getResults(), resultShardings)) {
for (auto user : result.getUsers()) {
ShardOp shardOp = llvm::dyn_cast<ShardOp>(user);
if (!shardOp) {
continue;
}
bool needsResharding = shardOp.getShardAttr() != sharding;
bool isExplicitAnnotationForThisOp = !shardOp.getAnnotateForUsers();
if (needsResharding) {
if (isExplicitAnnotationForThisOp) {
// This is the worst case. No need to continue.
return ReshardingRquirementKind::RESHARDING_FOR_EXPLICIT_ANNOTATIONS;
}
res = ReshardingRquirementKind::NO_RESHARDING_FOR_EXPLICIT_ANNOTATIONS;
}
}
}
return res;
}
// From all the operand and result sharding combinations,
// return the one that is most desirable.
// The order of preference is:
// 1. No resharding with respect to existing sharding annotations.
// 2. Resharding for values that have already annotations that do not target
// this op.
// 3. Resharding of existing explicit sharding annotations for this op.
static FailureOr<ShardingOption> selectShardingOption(
ShardingInterface shardingOp,
ArrayRef<SmallVector<MeshShardingAttr>> possibleOperandShardingAttrs,
ArrayRef<SmallVector<MeshShardingAttr>> possibleResultShardingAttrs) {
SmallVector<std::tuple<ShardingOption, ReshardingRquirementKind>>
shardingOptionsAndReshardingRequirements;
for (ArrayRef<MeshShardingAttr> resultShardings :
possibleResultShardingAttrs) {
for (ArrayRef<MeshShardingAttr> operandShardings :
possibleOperandShardingAttrs) {
FailureOr<ShardingOption> shardingOption =
shardingOp.getShardingOption(operandShardings, resultShardings);
if (failed(shardingOption) || shardingOption->empty) {
continue;
}
// These shardings may not be the same as those in operandShardings and
// resultShardings.
// They may be missing some annotations.
// Whatever is returned by getShardingAnnotations is exactly what the op
// needs.
FailureOr<SmallVector<MeshShardingAttr>> operandAndResultShardings =
shardingOp.getShardingAnnotations(*shardingOption);
if (failed(operandAndResultShardings)) {
return failure();
}
LLVM_DEBUG(DBGS() << "operandAndResultShardings = "
<< *operandAndResultShardings << "\n";);
ReshardingRquirementKind reshardingRquirement =
getReshardingRquirementKind(shardingOp, *operandAndResultShardings);
if (reshardingRquirement == ReshardingRquirementKind::NO_RESHARDING) {
// This is the best case. No need to go on.
return *shardingOption;
}
shardingOptionsAndReshardingRequirements.emplace_back(
std::move(*shardingOption), reshardingRquirement);
}
}
if (shardingOptionsAndReshardingRequirements.empty()) {
return ShardingOption::makeEmpty();
}
std::partial_sort(
shardingOptionsAndReshardingRequirements.begin(),
shardingOptionsAndReshardingRequirements.begin() + 1,
shardingOptionsAndReshardingRequirements.end(),
[](const std::tuple<ShardingOption, ReshardingRquirementKind> &a,
const std::tuple<ShardingOption, ReshardingRquirementKind> &b) {
return std::get<ReshardingRquirementKind>(a) <
std::get<ReshardingRquirementKind>(b);
});
LLVM_DEBUG(DBGS() << "shardingOptionsAndReshardingRequirements = "
<< shardingOptionsAndReshardingRequirements << "\n";);
return std::get<ShardingOption>(
shardingOptionsAndReshardingRequirements.front());
}
// For each operation that implements the ShardingInterface, infer the sharding
// option of the operation from its operands and/or results using the
// `getShardingOption` method. If the inferred sharding option is not empty, add
// a `mesh.shard` operation for all remaining operands and results that do not
// have sharding annotations.
static LogicalResult visitOp(Operation *op, OpBuilder &builder) {
if (op->hasTrait<OpTrait::IsTerminator>() || llvm::isa<mesh::ShardOp>(op))
return success();
ShardingInterface shardingOp = llvm::dyn_cast<ShardingInterface>(op);
if (!shardingOp) {
op->emitOpError() << "sharding interface is not implemented.";
return failure();
}
// collect MeshShardingAttr from results
SmallVector<MeshShardingAttr> allowConflictsResultShardings;
allowConflictsResultShardings.resize(op->getNumResults());
SmallVector<MeshShardingAttr> resultMustShardings;
resultMustShardings.resize(op->getNumResults());
for (OpResult result : op->getResults()) {
FailureOr<std::pair<bool, MeshShardingAttr>> maybeShardAttr =
getMeshShardingAttr(result);
if (failed(maybeShardAttr))
continue;
if (!maybeShardAttr->first)
resultMustShardings[result.getResultNumber()] = maybeShardAttr->second;
else
allowConflictsResultShardings[result.getResultNumber()] =
maybeShardAttr->second;
}
// collect MeshShardingAttr from operands
SmallVector<MeshShardingAttr> allowConflictsOperandShardings;
allowConflictsOperandShardings.resize(op->getNumOperands());
SmallVector<MeshShardingAttr> operandMustShardings;
operandMustShardings.resize(op->getNumOperands());
for (OpOperand &opOperand : op->getOpOperands()) {
FailureOr<std::pair<bool, MeshShardingAttr>> maybeShardAttr =
getMeshShardingAttr(opOperand);
if (failed(maybeShardAttr))
continue;
if (maybeShardAttr->first)
operandMustShardings[opOperand.getOperandNumber()] =
maybeShardAttr->second;
else
allowConflictsOperandShardings[opOperand.getOperandNumber()] =
maybeShardAttr->second;
}
// try to get the sharding option
SmallVector<SmallVector<MeshShardingAttr>> possibleOperandShardingAttrs =
getOrderedPossibleShardingAttrs(operandMustShardings,
allowConflictsOperandShardings);
SmallVector<SmallVector<MeshShardingAttr>> possibleResultShardingAttrs =
getOrderedPossibleShardingAttrs(resultMustShardings,
allowConflictsResultShardings);
FailureOr<ShardingOption> shardingOption = selectShardingOption(
shardingOp, possibleOperandShardingAttrs, possibleResultShardingAttrs);
if (failed(shardingOption)) {
op->emitOpError() << "fail to get sharding option.";
return failure();
}
LLVM_DEBUG(DBGS() << "Selected sharding option: " << *shardingOption << "\n");
// sharding info is empty, return immediately
if (shardingOption->empty)
return success();
if (failed(shardingOp.addShardingAnnotations(builder, *shardingOption))) {
op->emitOpError() << "fail to set sharding annotations.";
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// ShardingPropagation
//===----------------------------------------------------------------------===//
struct ShardingPropagation
: public mesh::impl::ShardingPropagationBase<ShardingPropagation> {
void runOnOperation() override {
FunctionOpInterface funcOp = getOperation();
MLIRContext *ctx = funcOp.getContext();
Region ®ion = funcOp.getFunctionBody();
OpBuilder builder(ctx);
if (!region.hasOneBlock()) {
funcOp.emitOpError() << "only one block is supported!";
signalPassFailure();
}
Block &block = region.front();
LLVM_DEBUG(
DBGS() << "print all the ops' iterator types and indexing maps in the "
"block.\n";
for (Operation &op
: block.getOperations()) {
if (auto shardingOp = llvm::dyn_cast<ShardingInterface>(&op))
shardingOp.printLoopTypesAndIndexingMaps(llvm::dbgs());
});
// 1. propagate in reversed order
for (Operation &op : llvm::make_early_inc_range(llvm::reverse(block)))
if (failed(visitOp(&op, builder)))
return signalPassFailure();
LLVM_DEBUG(DBGS() << "After reversed order propagation:\n"
<< funcOp << "\n");
LLVM_DEBUG(assert(succeeded(mlir::verify(funcOp))));
// 2. propagate in original order
for (Operation &op : llvm::make_early_inc_range(block))
if (failed(visitOp(&op, builder)))
return signalPassFailure();
}
};
|