1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
//===- NVGPUDialect.cpp - MLIR NVGPU ops implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the NVGPU dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Verifier.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::nvgpu;
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.cpp.inc"
void nvgpu::NVGPUDialect::initialize() {
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"
>();
}
bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
if (!memorySpace)
return false;
if (auto intAttr = llvm::dyn_cast<IntegerAttr>(memorySpace))
return intAttr.getInt() == NVGPUDialect::kSharedMemoryAddressSpace;
if (auto gpuAttr = llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
return gpuAttr.getValue() == gpu::AddressSpace::Workgroup;
return false;
}
bool nvgpu::NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
Attribute memorySpace = type.getMemorySpace();
return isSharedMemoryAddressSpace(memorySpace);
}
//===----------------------------------------------------------------------===//
// NVGPU_DeviceAsyncCopyOp
//===----------------------------------------------------------------------===//
LogicalResult DeviceAsyncCopyOp::verify() {
auto srcMemref = llvm::cast<MemRefType>(getSrc().getType());
auto dstMemref = llvm::cast<MemRefType>(getDst().getType());
if (!isLastMemrefDimUnitStride(srcMemref))
return emitError("source memref most minor dim must have unit stride");
if (!isLastMemrefDimUnitStride(dstMemref))
return emitError("destination memref most minor dim must have unit stride");
if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref))
return emitError()
<< "destination memref must have a memory space attribute of "
"IntegerAttr("
<< NVGPUDialect::kSharedMemoryAddressSpace
<< ") or gpu::AddressSpaceAttr(Workgroup)";
if (dstMemref.getElementType() != srcMemref.getElementType())
return emitError("source and destination must have the same element type");
if (size_t(srcMemref.getRank()) != getSrcIndices().size())
return emitOpError() << "expected " << srcMemref.getRank()
<< " source indices, got " << getSrcIndices().size();
if (size_t(dstMemref.getRank()) != getDstIndices().size())
return emitOpError() << "expected " << dstMemref.getRank()
<< " destination indices, got "
<< getDstIndices().size();
int64_t dstElements = getDstElements().getZExtValue();
int64_t sizeInBytes = (dstMemref.getElementTypeBitWidth() * dstElements) / 8;
if (sizeInBytes != 4 && sizeInBytes != 8 && sizeInBytes != 16) {
unsigned dstWidth = dstMemref.getElementTypeBitWidth();
InFlightDiagnostic diag = emitError();
diag << "Requested copy elements is " << dstElements << " with width "
<< dstMemref.getElementTypeBitWidth()
<< ". But copy elements could be one of ";
if ((32 / dstWidth) > 0)
diag << (32 / dstWidth) << ", ";
if ((64 / dstWidth) > 0)
diag << (64 / dstWidth) << ", ";
if ((128 / dstWidth) > 0)
diag << (128 / dstWidth) << ".";
return diag;
}
if (getBypassL1().has_value()) {
int64_t req = 16 * 8 / dstMemref.getElementTypeBitWidth();
if (getBypassL1().value() && sizeInBytes != 16) {
return emitOpError() << "bypassL1 does not satify alignment for "
<< dstMemref << " with destination element "
<< dstElements
<< ". Unset bypassL1, or set "
"destination element to "
<< req;
}
}
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_MmaSyncOp
//===----------------------------------------------------------------------===//
void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, ArrayAttr mmaShape) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
mmaShape, UnitAttr());
}
void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, ArrayRef<int64_t> mmaShape,
bool tf32Enabled) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
odsBuilder.getI64ArrayAttr(mmaShape),
tf32Enabled ? odsBuilder.getUnitAttr() : UnitAttr());
}
/// Performs verification for MmaSyncOp and MmaSparseSyncOp.
static LogicalResult verifyMmaSyncOp(Operation *op,
TypedValue<VectorType> matrixA,
TypedValue<VectorType> matrixB,
TypedValue<VectorType> matrixC,
const std::array<int64_t, 3> &mmaShape,
bool tf32Enabled, bool sparse = false) {
// The verification for mma.sync covering various shapes and data types is
// based on the fundamental tensor core shape.
// "Fundamental" tensor core shapes:
// - For F32 (TF32), F16, S8, and S4 data
// types the fundamental tensor core operation is of shape 8-by-8-by-128b.
// - F64 is an exception and is of shape 8-by-8-by-256b.
int64_t shapeM = 8;
int64_t shapeN = 8;
int64_t shapeK; // set based on data type (128b for all data types except F64)
// Number of elements A, B, and C per thread per fundamental tensor core tile
int64_t numElementA; // set based on data type (32b except F64)
int64_t numElementB; // set based on data type (32b except F64)
int64_t numElementC{2}; // two accumulator elements per fundamental tile
// nvgpu.mma.sync vector operands (per thread)
auto aVector = matrixA.getType();
auto bVector = matrixB.getType();
auto cVector = matrixC.getType();
// vector shapes
ArrayRef<int64_t> aShape = aVector.getShape();
ArrayRef<int64_t> bShape = bVector.getShape();
ArrayRef<int64_t> cShape = cVector.getShape();
// vector element type
Type aType = aVector.getElementType();
// Certain data types are not allowed in sparse mode.
if (sparse && aType.isF64())
return op->emitError() << "f64 is not supported for sparse mode";
if (aType.isF64()) {
// exception to 8-by-8-128b fundamental tensor core tile size
shapeK = 4;
numElementA = 1;
numElementB = 1;
} else if (aType.isF32() || aType.isBF16() || aType.isF16() ||
aType.isInteger(8) || aType.isInteger(4)) {
// 8-by-8-128b fundamental tensor core tile size
int operandBitwidth = aType.getIntOrFloatBitWidth();
shapeK = 128 / operandBitwidth; // 128b wide shapeK
numElementA = 32 / operandBitwidth; // 32b wide operand A
numElementB = 32 / operandBitwidth; // 32b wide operand B
} else {
return op->emitError()
<< "expected input data type (i4,i8,f16,bf16,tf32,f64) "
"supported by "
<< op->getName();
}
//
// Basic verification
//
auto [m, n, k] = mmaShape;
// verify warp-wide size for vector a
int64_t sparseFactor = sparse ? 2 : 1;
if (aShape[0] * aShape[1] * kWarpSize != m * k / sparseFactor)
return op->emitOpError()
<< "expected " << m * k << " warp-wide matrix A elements";
// verify warp-wide size for vector b
if (bShape[0] * bShape[1] * kWarpSize != k * n)
return op->emitOpError()
<< "expected " << k * n << " warp-wide matrix B elements";
// verify warp-wide size for vector c
if (cShape[0] * cShape[1] * kWarpSize != m * n)
return op->emitOpError()
<< "expected " << m * n << " warp-wide matrix C elements";
// verify tf32 tensor cores are enabled for only F32 datatype
if (tf32Enabled && !(aType.isF32()))
return op->emitOpError()
<< "expected tf32 tensor cores only for F32 operands";
//
// Extended verification
//
// tiles of fundamental tensor core operations
int64_t mTile = m / shapeM;
int64_t nTile = n / shapeN;
int64_t kTile = k / shapeK;
// verify shape of aVector
if ((aShape[0] != mTile * kTile / (sparse ? 2 : 1)) ||
(aShape[1] != numElementA))
return op->emitOpError() << "expected matrix A to be shaped ("
<< mTile * kTile << " x " << numElementA << ")";
// verify shape of bVector
if ((bShape[0] != kTile * nTile) || (bShape[1] != numElementB))
return op->emitOpError() << "expected matrix B to be shaped ("
<< kTile * nTile << " x " << numElementB << ")";
// verify shape of cVector
if ((cShape[0] != mTile * nTile) || (cShape[1] != numElementC))
return op->emitOpError() << "expected matrix C to be shaped ("
<< mTile * nTile << " x " << numElementC << ")";
return success();
}
LogicalResult MmaSyncOp::verify() {
return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
getMatrixC(), getMmaShapeAsArray(),
getOperation()->hasAttr(getTf32EnabledAttrName()));
}
//===----------------------------------------------------------------------===//
// NVGPU_MmaSparseSyncOp
//===----------------------------------------------------------------------===//
void MmaSparseSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, Value sparseMetadata,
ArrayRef<int64_t> mmaShape) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
sparseMetadata, odsBuilder.getI64ArrayAttr(mmaShape), 0, UnitAttr());
}
LogicalResult MmaSparseSyncOp::verify() {
unsigned sparsitySelector = getSparsitySelector();
if (sparsitySelector > 1)
return emitOpError() << "sparsity selector should be 0 or 1";
return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
getMatrixC(), getMmaShapeAsArray(),
getOperation()->hasAttr(getTf32EnabledAttrName()),
true);
}
//===----------------------------------------------------------------------===//
// NVGPU_LdMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult LdMatrixOp::verify() {
// ldmatrix reads data from source in shared memory
auto srcMemref = llvm::cast<MemRefType>(getSrcMemref().getType());
// ldmatrix writes data to result/destination in vector registers
auto resVector = llvm::cast<VectorType>(getRes().getType());
// vector register shape, element type, and bitwidth
ArrayRef<int64_t> resShape = resVector.getShape();
Type resType = resVector.getElementType();
int64_t elementBitWidth = resType.getIntOrFloatBitWidth();
// ldmatrix loads 32 bits into vector registers per 8-by-8 tile per thread
int64_t numElementsPer32b = 32 / elementBitWidth;
// number of 8-by-8 tiles
int64_t numTiles = getNumTiles();
// transpose elements in vector registers at 16b granularity when true
bool isTranspose = getTranspose();
//
// verification
//
if (!NVGPUDialect::hasSharedMemoryAddressSpace(srcMemref))
return emitError()
<< "expected nvgpu.ldmatrix srcMemref must have a memory space "
"attribute of IntegerAttr("
<< NVGPUDialect::kSharedMemoryAddressSpace
<< ") or gpu::AddressSpaceAttr(Workgroup)";
if (elementBitWidth > 32)
return emitError() << "nvgpu.ldmatrix works for 32b or lower";
if (isTranspose && !(elementBitWidth == 16))
return emitError()
<< "nvgpu.ldmatrix transpose works only at 16b granularity";
if (resShape.size() != 2) {
return emitError() << "results must be 2 dimensional vector";
}
if (!(resShape[1] == numElementsPer32b))
return emitError() << "expected vector register shape[1] = "
<< numElementsPer32b;
if (!(resShape[0] == numTiles))
return emitError()
<< "expected vector register shape[0] and numTiles to match";
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_TmaAsyncLoadOp
//===----------------------------------------------------------------------===//
std::optional<InFlightDiagnostic> verifyTmaDescriptorWithMemref(
Operation *op, nvgpu::TensorMapDescriptorType descType,
std::optional<MemRefType> memrefType = std::nullopt) {
MemRefType descMemref = descType.getTensor();
// Limitation
if (descType.getInterleave() != TensorMapInterleaveKind::INTERLEAVE_NONE)
return op->emitError() << "Interleave options are not supported yet.";
// Address space check for shared memory check
if (!NVGPUDialect::hasSharedMemoryAddressSpace(descMemref)) {
return op->emitError() << "the tensor map descriptor has incorrect address "
"space, it must be shared memory address space.";
}
// Support only static shape for the time being
if (!descMemref.hasStaticShape())
return op->emitError() << "the tensor map descriptor must be static shaped";
for (auto dim : descMemref.getShape()) {
if (dim <= 0 || dim > kMaxTMADimension) {
return op->emitError() << "the tensor map descriptor must have "
"dimensions between 1 and "
<< kMaxTMADimension << " but it is " << dim;
}
}
if (descMemref.getRank() > 1 &&
descType.getSwizzle() != TensorMapSwizzleKind::SWIZZLE_NONE) {
unsigned lastDimensionByte =
descMemref.getElementTypeBitWidth() * descMemref.getShape().back() / 8;
if (lastDimensionByte != kMaxTMALastdimByte)
return op->emitError() << "the tensormap descriptor must have last "
"dimension of "
<< kMaxTMALastdimByte << " bytes but it is "
<< lastDimensionByte << " bytes";
}
// No verification if memref type is not provided
if (!memrefType.has_value())
return std::nullopt;
MemRefType dstMemref = memrefType.value();
// Check element type
if (descMemref.getElementType() != dstMemref.getElementType()) {
return op->emitError() << "the element type of tensor map descriptor and "
"memref must be same";
}
if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref)) {
return op->emitError() << "the destination memref has incorrect address "
"space, it must be shared memory address space.";
}
if (!dstMemref.hasStaticShape())
return op->emitError() << "the destination memref must be static shaped";
if (dstMemref.getRank() != descMemref.getRank()) {
return op->emitError() << "the shape of tensor map descriptor and "
"memref must have same rank";
}
if (!descMemref.getShape().equals(dstMemref.getShape())) {
return op->emitError() << "memref and tensor map shapes mismatch "
<< descMemref << " != " << dstMemref;
}
return std::nullopt;
}
LogicalResult TmaAsyncLoadOp::verify() {
std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
*this, getTensorMapDescriptor().getType(), getDst().getType());
if (error.has_value())
return error.value();
if (getCoordinates().size() > kMaxTMATensorDimension) {
return emitError() << "Maximum " << kMaxTMATensorDimension
<< " coordinates are supported.";
}
if (getCoordinates().size() !=
size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
return emitError() << "number of coordinates do not match with the rank of "
"tensor descriptor map.";
}
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_TmaAsyncStoreOp
//===----------------------------------------------------------------------===//
LogicalResult TmaAsyncStoreOp::verify() {
std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
*this, getTensorMapDescriptor().getType(), getSrc().getType());
if (error.has_value())
return error.value();
if (getCoordinates().size() > kMaxTMATensorDimension) {
return emitError() << "Maximum " << kMaxTMATensorDimension
<< " coordinates are supported.";
}
if (getCoordinates().size() !=
size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
return emitError() << "number of coordinates do not match with the rank of "
"tensor descriptor map.";
}
return success();
}
LogicalResult TmaCreateDescriptorOp::verify() {
if (getBoxDimensions().size() > kMaxTMATensorDimension) {
return emitError() << "Maximum " << kMaxTMATensorDimension
<< " coordinates are supported.";
}
std::optional<InFlightDiagnostic> error =
verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
if (error.has_value())
return error.value();
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_WarpgroupGenerateDescriptorOp
//===----------------------------------------------------------------------===//
LogicalResult WarpgroupGenerateDescriptorOp::verify() {
std::optional<InFlightDiagnostic> error =
verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
if (error.has_value())
return error.value();
if (getTensorMap().getType().getSwizzle() !=
TensorMapSwizzleKind::SWIZZLE_128B) {
return emitError() << "supports only "
<< stringifyTensorMapSwizzleKind(
TensorMapSwizzleKind::SWIZZLE_128B)
<< " is supported for the time being";
}
if (getTensorMap().getType().getInterleave() !=
TensorMapInterleaveKind::INTERLEAVE_NONE) {
return emitError() << "supports only "
<< stringifyTensorMapInterleaveKind(
TensorMapInterleaveKind::INTERLEAVE_NONE)
<< " is supported for the time being";
}
return success();
}
//===----------------------------------------------------------------------===//
// WarpgroupMmaOp
//===----------------------------------------------------------------------===//
LogicalResult isAllowedWGMMADataType(Type typeD, Type typeA, Type typeB) {
// F32 += F16 + F16
// F16 += F16 + F16
if (typeA.isF16() && typeB.isF16() && (typeD.isF32() || typeD.isF16()))
return success();
// F32 += TF32 + TF32
if (typeA.isTF32() && typeD.isF32() && typeB.isTF32())
return success();
// s32 += i8 + i8
if (typeA.isInteger(16) && typeB.isInteger(16) && typeD.isInteger(32))
return success();
// s32 += i1 + i1
if (typeA.isInteger(1) && typeB.isInteger(1) && typeD.isInteger(32))
return success();
// F32 += BF16 + BF16
// F16 += BF16 + BF16
if (typeA.isBF16() && typeB.isBF16() && (typeD.isF32() || typeD.isF16()))
return success();
// F16 += f8 + f8
// F32 += f8 + f8
if ((typeA.isFloat8E5M2() || typeA.isFloat8E4M3FN()) &&
(typeB.isFloat8E5M2() || typeB.isFloat8E4M3FN()) &&
(typeD.isF32() || typeD.isF16()))
return success();
return failure();
}
LogicalResult isAllowedSizeM(int sizeM) {
if (sizeM % kWgmmaSizeM)
return failure();
return success();
}
LogicalResult isAllowedSizeN(int sizeN, Type typeA) {
SmallVector<int> allowedN = {8, 16, 24, 32, 40, 48, 56, 64,
72, 80, 88, 96, 104, 112, 120, 128,
136, 144, 152, 160, 168, 176, 184, 192,
200, 208, 216, 224, 232, 240, 248, 256};
SmallVector<int> allowedNshort = {8, 16, 24, 32, 48, 64,
80, 96, 112, 128, 144, 160,
176, 192, 208, 224, 240, 256};
if (typeA.isBF16() || typeA.isF16() || typeA.isF32() || typeA.isTF32() ||
typeA.isFloat8E4M3FN() || typeA.isFloat8E5M2())
if (llvm::is_contained(allowedN, sizeN))
return success();
if (typeA.isInteger(8) || typeA.isInteger(1))
if (llvm::is_contained(allowedNshort, sizeN))
return success();
return failure();
}
LogicalResult WarpgroupMmaOp::verify() {
if (getTransposeA() && !getTransposeB())
return emitOpError()
<< "supports non-transpose A (Row Major) "
"and transpose B (Column Major) for the time being ";
MemRefType matrixA = getDescriptorA().getType().getTensor();
MemRefType matrixB = getDescriptorB().getType().getTensor();
VectorType matrixC = getMatrixC().getType().getFragmented();
VectorType matrixD = getMatrixD().getType().getFragmented();
if (matrixC != matrixD)
return emitOpError() << "type of matrix C and matrix D must be the same";
if (matrixA.getRank() != 2 || matrixB.getRank() != 2 ||
matrixC.getRank() != 2 || matrixD.getRank() != 2) {
return emitOpError()
<< "has matrices A, B, C and D, they must be 2 dimensional";
}
if (matrixA.getShape()[1] != matrixB.getShape()[0])
return emitOpError() << "2nd dim matrix-A (" << matrixA.getShape()[1]
<< ")!= 1st dim matrix-B (" << matrixB.getShape()[0]
<< " )";
if (matrixA.getShape()[0] != matrixC.getShape()[0])
return emitOpError() << "1st dim matrix-A ( " << matrixA.getShape()[0]
<< " )!= 1st dim matrix-C ( " << matrixC.getShape()[0]
<< " )";
if (matrixB.getShape()[1] != matrixC.getShape()[1])
return emitOpError() << "2nd dim matrix-B ( " << matrixB.getShape()[1]
<< " ) != 2nd dim matrix-C ( " << matrixC.getShape()[1]
<< " )";
if (failed(isAllowedWGMMADataType(matrixC.getElementType(),
matrixA.getElementType(),
matrixB.getElementType())))
return emitOpError() << matrixC.getElementType()
<< " += " << matrixA.getElementType() << " * "
<< matrixB.getElementType()
<< ", it is not supported.";
// Check N
if (failed(isAllowedSizeN(matrixB.getDimSize(1), matrixA.getElementType()))) {
return emitOpError() << "has input type " << matrixB << " n is set to "
<< matrixB.getDimSize(1) << ", it is not supported";
}
// Currently, f16/bf16 supported
if (!matrixC.getElementType().isF32() && !matrixA.getElementType().isF16() &&
!matrixA.getElementType().isBF16()) {
return emitOpError() << "hit a limitation: " << matrixC.getElementType()
<< " += " << matrixA.getElementType() << " * "
<< matrixB.getElementType()
<< ", it is not supported yet";
}
return success();
}
LogicalResult WarpgroupMmaStoreOp::verify() {
MemRefType dstMemrefType = getDstMemref().getType();
VectorType vtype = getMatrixD().getType().getFragmented();
// Limitation
if (!vtype.getElementType().isF32()) {
return emitOpError()
<< "hit a limitation: only f32 results for the time being";
}
if (vtype.getDimSize(0) != dstMemrefType.getDimSize(0) ||
vtype.getDimSize(1) != dstMemrefType.getDimSize(1)) {
return emitOpError() << "results [" << vtype << "][" << vtype.getDimSize(1)
<< "] values. However, destination memref["
<< dstMemrefType.getDimSize(0) << "]["
<< dstMemrefType.getDimSize(1)
<< "] does not have same size as results";
}
return success();
}
//===----------------------------------------------------------------------===//
// WarpgroupMmaInitAccumulatorOp
//===----------------------------------------------------------------------===//
LogicalResult WarpgroupMmaInitAccumulatorOp::verify() {
nvgpu::WarpgroupAccumulatorType accType = getMatrixC().getType();
int64_t sizeM = accType.getFragmented().getDimSize(0);
int64_t sizeN = accType.getFragmented().getDimSize(1);
Type elemType = accType.getFragmented().getElementType();
if (failed(isAllowedSizeM(sizeM)) ||
failed(isAllowedSizeN(sizeN, elemType))) {
return emitOpError() << "has type " << accType.getFragmented()
<< ". It does not fit into warp-group "
"level (wgmma) matrix multiplication instruction "
"(or not supported yet)";
}
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd dialect, type, and op definitions
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
#include "mlir/Dialect/NVGPU/IR/NVGPUEnums.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"
|