1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
|
//===- NVGPUTransformOps.cpp - Implementation of NVGPU transform ops ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/TransformOps/NVGPUTransformOps.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/NVGPUToNVVM/NVGPUToNVVM.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Value.h"
#include "llvm/ADT/ArrayRef.h"
using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::nvgpu;
using namespace mlir::NVVM;
using namespace mlir::transform;
#define DEBUG_TYPE "nvgpu-transforms"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define DBGSNL() (llvm::dbgs() << "\n")
#define LDBG(X) LLVM_DEBUG(DBGS() << (X) << "\n")
//===----------------------------------------------------------------------===//
// Apply...ConversionPatternsOp
//===----------------------------------------------------------------------===//
void transform::ApplyNVGPUToNVVMConversionPatternsOp::populatePatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns) {
auto &llvmTypeConverter = static_cast<LLVMTypeConverter &>(typeConverter);
/// device-side async tokens cannot be materialized in nvvm. We just
/// convert them to a dummy i32 type in order to easily drop them during
/// conversion.
populateGpuMemorySpaceAttributeConversions(
llvmTypeConverter, [](gpu::AddressSpace space) -> unsigned {
switch (space) {
case gpu::AddressSpace::Global:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kGlobalMemorySpace);
case gpu::AddressSpace::Workgroup:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kSharedMemorySpace);
case gpu::AddressSpace::Private:
return 0;
}
llvm_unreachable("unknown address space enum value");
return 0;
});
llvmTypeConverter.addConversion(
[&](nvgpu::DeviceAsyncTokenType type) -> Type {
return llvmTypeConverter.convertType(
IntegerType::get(type.getContext(), 32));
});
llvmTypeConverter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
return llvmTypeConverter.convertType(
IntegerType::get(type.getContext(), 64));
});
llvmTypeConverter.addConversion(
[&](nvgpu::WarpgroupAccumulatorType type) -> Type {
Type elemType = type.getFragmented().getElementType();
int64_t sizeM = type.getFragmented().getDimSize(0);
int64_t sizeN = type.getFragmented().getDimSize(1);
unsigned numMembers;
if (elemType.isF32() || elemType.isInteger(32))
numMembers = sizeN / 2;
else if (elemType.isF16())
numMembers = sizeN / 4;
else
llvm_unreachable("unsupported type for warpgroup accumulator");
SmallVector<Type> innerStructBody;
for (unsigned i = 0; i < numMembers; i++)
innerStructBody.push_back(elemType);
auto innerStructType = LLVM::LLVMStructType::getLiteral(
type.getContext(), innerStructBody);
SmallVector<Type> structBody;
for (int i = 0; i < sizeM; i += kWgmmaSizeM)
structBody.push_back(innerStructType);
auto convertedType =
LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
return llvmTypeConverter.convertType(convertedType);
});
llvmTypeConverter.addConversion([&](nvgpu::MBarrierGroupType type) -> Type {
return llvmTypeConverter.convertType(
getMBarrierMemrefType(type.getContext(), type));
});
llvmTypeConverter.addConversion(
[&](nvgpu::WarpgroupMatrixDescriptorType type) -> Type {
return llvmTypeConverter.convertType(
IntegerType::get(type.getContext(), 64));
});
llvmTypeConverter.addConversion(
[&](nvgpu::TensorMapDescriptorType type) -> Type {
return LLVM::LLVMPointerType::get(type.getContext());
});
populateNVGPUToNVVMConversionPatterns(llvmTypeConverter, patterns);
}
LogicalResult
transform::ApplyNVGPUToNVVMConversionPatternsOp::verifyTypeConverter(
transform::TypeConverterBuilderOpInterface builder) {
if (builder.getTypeConverterType() != "LLVMTypeConverter")
return emitOpError("expected LLVMTypeConverter");
return success();
}
//===---------------------------------------------------------------------===//
// CreateAsyncGroupsOp
//===---------------------------------------------------------------------===//
void transform::CreateAsyncGroupsOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
transform::consumesHandle(getTargetMutable(), effects);
transform::producesHandle(getOperation()->getOpResults(), effects);
transform::modifiesPayload(effects);
}
DiagnosedSilenceableFailure transform::CreateAsyncGroupsOp::applyToOne(
TransformRewriter &rewriter, Operation *target,
ApplyToEachResultList &results, TransformState &state) {
nvgpu::createAsyncGroups(rewriter, target, getBypassL1());
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// PipelineSharedMemoryCopiesOp
//===----------------------------------------------------------------------===//
/// Returns true if the given type has the default memory space.
static bool hasDefaultMemorySpace(BaseMemRefType type) {
return !type.getMemorySpace() || type.getMemorySpaceAsInt() == 0;
}
/// Returns true if the given type has the shared (workgroup) memory space.
static bool hasSharedMemorySpace(BaseMemRefType type) {
auto space =
dyn_cast_if_present<gpu::AddressSpaceAttr>(type.getMemorySpace());
return space &&
space.getValue() == gpu::GPUDialect::getWorkgroupAddressSpace();
}
/// Returns the value produced by a load from the default memory space. Returns
/// null if the operation is not such a load.
static Value getValueLoadedFromGlobal(Operation *op) {
// TODO: consider an interface or leveraging the memory effects interface.
auto load = dyn_cast<vector::TransferReadOp>(op);
if (!load)
return nullptr;
auto loadType = dyn_cast<MemRefType>(load.getSource().getType());
if (!loadType || !hasDefaultMemorySpace(loadType))
return nullptr;
return load;
}
/// Returns true if the operation is storing the given value into shared memory.
static bool isStoreToShared(Operation *op, Value v) {
// TOD: consider an interface or leveraging the memory effects interface.
auto store = dyn_cast<vector::TransferWriteOp>(op);
if (!store || store.getVector() != v)
return false;
auto storeType = dyn_cast<MemRefType>(store.getSource().getType());
return storeType || hasSharedMemorySpace(storeType);
}
/// Returns true if the operation is a load from the default memory space the
/// result of which is only stored into the shared memory space.
static bool isLoadFromGlobalStoredToShared(Operation *op) {
Value loaded = getValueLoadedFromGlobal(op);
if (!loaded || !loaded.hasOneUse())
return false;
return isStoreToShared(*loaded.getUsers().begin(), loaded);
}
/// Populate `ops` with the set of operations that belong to the stage 0 of the
/// pipelined version of the given loop when pipelining copies to shared memory.
/// Specifically, this collects:
///
/// 1. all loads from global memory, both sync and async;
/// 2. the barriers for async loads.
///
/// In particular, barriers are omitted if they do not dominate at least one
/// async load for which there is not yet a barrier.
static LogicalResult
collectStage0PipeliningOps(scf::ForOp forOp,
llvm::SmallPtrSet<Operation *, 16> &ops) {
llvm::SmallPtrSet<Operation *, 4> barriers;
for (Operation &op : *forOp.getBody()) {
// Bail on nested ops for now.
if (op.getNumRegions() > 0)
return failure();
if (isa<gpu::BarrierOp>(op)) {
barriers.insert(&op);
continue;
}
if (isa<nvgpu::DeviceAsyncCopyOp, nvgpu::DeviceAsyncCreateGroupOp>(op)) {
ops.insert(&op);
ops.insert(std::make_move_iterator(barriers.begin()),
std::make_move_iterator(barriers.end()));
assert(barriers.empty() &&
"expected to have moved the barriers into another set");
continue;
}
if (isLoadFromGlobalStoredToShared(&op)) {
ops.insert(&op);
continue;
}
}
return success();
}
/// Hook for the loop pipeliner that sets the "num groups in flight" attribute
/// of async wait operations corresponding to pipelined shared memory copies.
// TODO: this currently assumes that there are no groups that could be in flight
// in the existing code.
static void
setAsyncWaitGroupsInFlight(OpBuilder &builder, Operation *op,
scf::PipeliningOption::PipelinerPart part,
unsigned iteration, unsigned depth) {
// Based on the order of copies within the loop we need to set the number
// of copies in flight, unless it is already set.
auto waitOp = dyn_cast<nvgpu::DeviceAsyncWaitOp>(op);
if (!waitOp || waitOp.getNumGroups())
return;
int numGroupInFlight = 0;
if (part == scf::PipeliningOption::PipelinerPart::Kernel ||
part == scf::PipeliningOption::PipelinerPart::Prologue) {
numGroupInFlight = depth - 1;
} else {
// By construction there should be no wait op in the prologue as all the
// wait should be in the last stage.
assert(part == scf::PipeliningOption::PipelinerPart::Epilogue);
// Based on the schedule we pick we know how many groups are in flight for
// each iteration of the epilogue.
numGroupInFlight = depth - 1 - iteration;
}
waitOp.setNumGroups(numGroupInFlight);
}
/// Hook for the loop pipeliner that populates `ops` with the stage information
/// as follows:
///
/// - operations in `stage0Ops` (typically loads from global memory and
/// related barriers) are at stage 0;
/// - operations in the backward slice of any stage0Ops are all at stage 0;
/// - other operations are at stage `depth`;
/// - the internal order of the pipelined loop has ops at stage `depth` first,
/// then those at stage 0, with relative order within each group preserved.
///
static void getPipelineStages(
scf::ForOp forOp,
std::vector<std::pair<Operation *, unsigned>> &opsWithPipelineStages,
unsigned depth, llvm::SmallPtrSetImpl<Operation *> &stage0Ops) {
SetVector<Operation *> dependencies;
BackwardSliceOptions options([&](Operation *visited) {
return visited->getBlock() == forOp.getBody();
});
options.inclusive = true;
for (Operation &op : forOp.getBody()->getOperations()) {
if (stage0Ops.contains(&op))
getBackwardSlice(&op, &dependencies, options);
}
for (Operation &op : forOp.getBody()->getOperations()) {
if (!dependencies.contains(&op) && !isa<scf::YieldOp>(op))
opsWithPipelineStages.emplace_back(&op, depth);
}
for (Operation &op : forOp.getBody()->getOperations()) {
if (dependencies.contains(&op))
opsWithPipelineStages.emplace_back(&op, 0);
}
}
/// Hook for the loop pipeliner. Replaces op with a predicated version and
/// returns the resulting operation. Returns the original op if the predication
/// isn't necessary for the given op. Returns null if predication is needed but
/// not supported.
static Operation *replaceOpWithPredicatedOp(RewriterBase &rewriter,
Operation *op, Value predicate) {
// Some operations may be fine to execute "speculatively" more times than the
// original number of iterations, in particular side-effect free operations
// and barriers, even if they cannot be predicated.
if (isMemoryEffectFree(op) ||
isa<gpu::BarrierOp, nvgpu::DeviceAsyncCreateGroupOp,
nvgpu::DeviceAsyncWaitOp>(op)) {
return op;
}
// Otherwise, only async copies can currently be predicated.
auto asyncCopyOp = dyn_cast<nvgpu::DeviceAsyncCopyOp>(op);
if (!asyncCopyOp)
return nullptr;
// Create srcElement Value based on `predicate`. The next lines generate
// the following code:
//
// srcElement = (pred) ? prevSrcElements : 0;
//
Location loc = asyncCopyOp->getLoc();
Value dstElements =
rewriter.create<arith::ConstantOp>(loc, asyncCopyOp.getDstElementsAttr());
Value originalSrcElement =
asyncCopyOp.getSrcElements() ? asyncCopyOp.getSrcElements() : dstElements;
Value c0Index = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto srcElements = rewriter.create<arith::SelectOp>(
loc, predicate, originalSrcElement, c0Index);
auto asyncCopyZeroFillOp = rewriter.create<nvgpu::DeviceAsyncCopyOp>(
loc, nvgpu::DeviceAsyncTokenType::get(asyncCopyOp.getContext()),
asyncCopyOp.getDst(), asyncCopyOp.getDstIndices(), asyncCopyOp.getSrc(),
asyncCopyOp.getSrcIndices(), asyncCopyOp.getDstElements(), srcElements,
UnitAttr());
rewriter.replaceOp(asyncCopyOp, asyncCopyZeroFillOp);
return asyncCopyZeroFillOp;
}
/// Applies loop pipelining with the given depth to the given loop so that
/// copies into the shared memory are pipelined. Doesn't affect other loops.
/// Returns a pair containing the error state and the pipelined op, the latter
/// being null in case of any failure. The error state contains a definite error
/// if the IR has been modified and a silenceable error otherwise.
static std::tuple<DiagnosedSilenceableFailure, scf::ForOp>
pipelineForSharedCopies(RewriterBase &rewriter, scf::ForOp forOp, int64_t depth,
bool epiloguePeeling) {
llvm::SmallPtrSet<Operation *, 16> stage0Ops;
if (failed(collectStage0PipeliningOps(forOp, stage0Ops))) {
return std::make_tuple(
emitSilenceableFailure(forOp, "cannot find stage 0 ops for pipelining"),
scf::ForOp());
}
if (stage0Ops.empty()) {
return std::make_tuple(
emitSilenceableFailure(forOp, "no shared memory copy"), scf::ForOp());
}
scf::PipeliningOption options;
unsigned maxDepth = depth;
auto setAnnotation = [&](Operation *op,
scf::PipeliningOption::PipelinerPart part,
unsigned iteration) {
return setAsyncWaitGroupsInFlight(rewriter, op, part, iteration, maxDepth);
};
options.getScheduleFn =
[&](scf::ForOp schedulingFor,
std::vector<std::pair<Operation *, unsigned>> &ops) {
if (schedulingFor != forOp)
return;
return getPipelineStages(forOp, ops, maxDepth, stage0Ops);
};
options.annotateFn = setAnnotation;
if (!epiloguePeeling) {
options.peelEpilogue = false;
options.predicateFn = replaceOpWithPredicatedOp;
}
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(forOp);
bool modifiedIR;
FailureOr<scf::ForOp> maybePipelined =
pipelineForLoop(rewriter, forOp, options, &modifiedIR);
if (succeeded(maybePipelined)) {
return std::make_tuple(DiagnosedSilenceableFailure::success(),
*maybePipelined);
}
return std::make_tuple(
modifiedIR
? DiagnosedSilenceableFailure::definiteFailure()
: emitSilenceableFailure(forOp, "pipelining preconditions failed"),
scf::ForOp());
}
DiagnosedSilenceableFailure PipelineSharedMemoryCopiesOp::applyToOne(
TransformRewriter &rewriter, scf::ForOp forOp,
ApplyToEachResultList &results, TransformState &state) {
auto [diag, pipelined] = pipelineForSharedCopies(
rewriter, forOp, static_cast<int64_t>(getDepth()), getPeelEpilogue());
if (diag.succeeded()) {
results.push_back(pipelined);
return DiagnosedSilenceableFailure::success();
}
if (diag.isDefiniteFailure()) {
auto diag = emitDefiniteFailure("irreversible pipelining failure");
if (!getPeelEpilogue()) {
diag.attachNote(forOp->getLoc()) << "couldn't predicate?";
diag.attachNote(getLoc()) << "try setting " << getPeelEpilogueAttrName();
}
return diag;
}
return std::move(diag);
}
//===----------------------------------------------------------------------===//
// RewriteMatmulAsMmaSyncOp
//===----------------------------------------------------------------------===//
/// Helper struct to encode a pair of row/column indexings in the form of
/// affine expressions.
struct RowColIndexing : private std::pair<AffineExpr, AffineExpr> {
RowColIndexing(AffineExpr row, AffineExpr col)
: std::pair<AffineExpr, AffineExpr>(row, col) {}
AffineExpr row() const { return first; };
AffineExpr col() const { return second; };
void print(llvm::raw_ostream &os) const {
os << "- indexing: " << first << ", " << second;
}
};
/// Helper struct to provide a simple mapping from matmul operations to the
/// corresponding mma.sync operation. This is constrained to the case where the
/// matmul matches the mma.sync operation 1-1.
struct MmaSyncBuilder {
MmaSyncBuilder(OpBuilder &b, Location loc, OpFoldResult laneId)
: b(b), loc(loc), laneId(laneId) {}
using IndexCalculator =
std::function<SmallVector<RowColIndexing>(MLIRContext *)>;
/// Create the mma.sync operation corresponding to `linalgOp` along with all
/// the supporting load/store and vector operations.
FailureOr<Operation *> buildMmaSync(LinalgOp linalgOp);
private:
struct MmaSyncInfo {
std::tuple<IndexCalculator, IndexCalculator, IndexCalculator> indexFns;
std::tuple<SmallVector<int64_t>, SmallVector<int64_t>, SmallVector<int64_t>>
vectorShapes;
SmallVector<int64_t> mmaShape;
bool tf32Enabled;
};
/// Return the specific index calculator for the given `linalgOp` or failure
/// if the op is not supported. This is the toplevel switch that should just
/// be Tablegen'd in the future.
FailureOr<MmaSyncInfo> getIndexCalculators(ArrayRef<int64_t> opShape,
TypeRange elementalTypes);
//===--------------------------------------------------------------------===//
// Instruction-specific row, column indexing expression builders.
// These should all be declaratively specified via Tablegen in the future.
// The Tablegen specification should be as straightforward as possible to
// only model the existing size and type combinations.
//===--------------------------------------------------------------------===//
//
// TODO: Tablegen all this.
//===--------------------------------------------------------------------===//
// m16n8k4 tf32 case.
//===--------------------------------------------------------------------===//
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
/// row = groupID for a0
/// groupID + 8 for a1
/// col = threadIDInGroup
static SmallVector<RowColIndexing> m16n8k4tf32Lhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
return {RowColIndexing{groupID, threadIDInGroup},
RowColIndexing{groupID + 8, threadIDInGroup}};
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
/// row = threadIDInGroup
/// col = groupID
static SmallVector<RowColIndexing> m16n8k4tf32Rhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
return {RowColIndexing{threadIDInGroup, groupID}};
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
/// row = groupID for c0 and c1
/// groupID + 8 for c2 and c3
/// col = (threadIDInGroup * 2) + (i & 0x1) for ci where i = {0,..,3}
static SmallVector<RowColIndexing> m16n8k4tf32Res(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
return {RowColIndexing{groupID, threadIDInGroup * 2 + 0},
RowColIndexing{groupID, threadIDInGroup * 2 + 1},
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0},
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1}};
}
//===--------------------------------------------------------------------===//
// m16n8k16 f16 case.
//===--------------------------------------------------------------------===//
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
///
/// row = groupID for ai where 0 <= i < 2 || 4 <= i < 6
/// groupID + 8 Otherwise
///
/// col = (threadIDInGroup * 2) + (i & 0x1) for ai where i < 4
/// (threadIDInGroup * 2) + (i & 0x1) + 8 for ai where i >= 4
static SmallVector<RowColIndexing> m16n8k16f16Lhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
// clang-format off
return {
RowColIndexing{groupID, threadIDInGroup * 2 + 0}, // i == 0
RowColIndexing{groupID, threadIDInGroup * 2 + 1}, // i == 1
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0}, // i == 2
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1}, // i == 3
RowColIndexing{groupID, threadIDInGroup * 2 + 0 + 8}, // i == 4
RowColIndexing{groupID, threadIDInGroup * 2 + 1 + 8}, // i == 5
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0 + 8}, // i == 6
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1 + 8} // i == 7
};
// clang-format on
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
///
/// row = (threadIDInGroup * 2) + (i & 0x1) for bi where i < 2
/// (threadIDInGroup * 2) + (i & 0x1) + 8 for bi where i >= 2
///
/// col = groupID
static SmallVector<RowColIndexing> m16n8k16f16Rhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
// clang-format off
return {
RowColIndexing{threadIDInGroup * 2 + 0, groupID}, // i == 0
RowColIndexing{threadIDInGroup * 2 + 1, groupID}, // i == 1
RowColIndexing{threadIDInGroup * 2 + 0 + 8, groupID}, // i == 2
RowColIndexing{threadIDInGroup * 2 + 1 + 8, groupID} // i == 3
};
// clang-format on
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
///
/// row = groupID for ci where i < 2
/// groupID + 8 for ci where i >= 2
///
/// col = (threadIDInGroup * 2) + (i & 0x1) for ci where i = {0,..,3}
static SmallVector<RowColIndexing> m16n8k16f16Res(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
// clang-format off
return {
RowColIndexing{groupID, threadIDInGroup * 2 + 0}, // i == 0
RowColIndexing{groupID, threadIDInGroup * 2 + 1}, // i == 1
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0}, // i == 2
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1} // i == 3
};
// clang-format on
}
//===--------------------------------------------------------------------===//
/// Helper functions to create customizable load and stores operations. The
/// specific shapes of each MMA instruction are passed via the
/// IndexCalculator callback.
//===--------------------------------------------------------------------===//
/// Build a list of memref.load operations indexed at `(row, col)` indices
/// that make sense for a particular MMA instruction and specified via the
/// IndexCalculator callback.
SmallVector<Value> buildMemRefLoads(OpBuilder &b, Location loc,
OpFoldResult laneId, Value memref,
const IndexCalculator &indexFn);
/// Perform a distributed load of a vector operand of `vectorShape` for a
/// particular MMA instruction whose `(row, col)` indices are specified via
/// the IndexCalculator callback. Each `laneId` loads the subportion of the
/// data that makes sense for the particular MMA operation.
/// The `vectorShape` matches existing NVGPU dialect op specification but
/// could also be flattened in the future if needed for simplification.
Value buildMmaSyncMemRefLoadOperand(OpBuilder &b, Location loc,
OpFoldResult laneId, Value memref,
IndexCalculator indexFn,
ArrayRef<int64_t> vectorShape);
/// Build a list of memref.store operations indexed at `(row, col)` indices
/// that make sense for a particular MMA instruction and specified via the
/// IndexCalculator callback.
SmallVector<Operation *> buildMemRefStores(OpBuilder &b, Location loc,
ValueRange toStore,
OpFoldResult laneId, Value memref,
const IndexCalculator &indexFn);
/// Perform a distributed store of a vector operand of `vectorShape` for a
/// particular MMA instruction whose `(row, col)` indices are specified via
/// the IndexCalculator callback. Each `laneId` loads the subportion of the
/// data that makes sense for the particular MMA operation.
/// The `vectorShape` matches existing NVGPU dialect op specification but
/// could also be flattened in the future if needed for simplification.
SmallVector<Operation *> buildMmaSyncMemRefStoreOperand(
OpBuilder &b, Location loc, Value vectorToStore, OpFoldResult laneId,
Value memref, IndexCalculator indexFn, ArrayRef<int64_t> vectorShape);
OpBuilder &b;
Location loc;
OpFoldResult laneId;
};
//===--------------------------------------------------------------------===//
/// Helper functions to create customizable load and stores operations. The
/// specific shapes of each MMA instruction are passed via the
/// IndexCalculator callback.
//===--------------------------------------------------------------------===//
template <typename ApplyFn, typename ReduceFn>
static void foreachIndividualVectorElement(Value vector, ApplyFn applyFn,
ReduceFn reduceFn) {
VectorType vectorType = cast<VectorType>(vector.getType());
auto vectorShape = vectorType.getShape();
auto strides = computeStrides(vectorShape);
for (int64_t idx = 0, e = vectorShape[0] * strides[0]; idx < e; ++idx) {
auto indices = delinearize(idx, strides);
reduceFn(applyFn(vector, idx, indices), idx, indices);
}
}
SmallVector<Value>
MmaSyncBuilder::buildMemRefLoads(OpBuilder &b, Location loc,
OpFoldResult laneId, Value memref,
const IndexCalculator &indexFn) {
auto aff = [&](AffineExpr e) {
return affine::makeComposedFoldedAffineApply(b, loc, e, laneId);
};
SmallVector<Value> res;
SmallVector<RowColIndexing> indexings = indexFn(b.getContext());
for (auto indexing : indexings) {
Value row = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.row()));
Value col = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.col()));
auto load = b.create<memref::LoadOp>(loc, memref, ValueRange{row, col});
res.push_back(load);
}
return res;
}
Value MmaSyncBuilder::buildMmaSyncMemRefLoadOperand(
OpBuilder &b, Location loc, OpFoldResult laneId, Value memref,
IndexCalculator indexFn, ArrayRef<int64_t> vectorShape) {
auto loads = buildMemRefLoads(b, loc, laneId, memref, std::move(indexFn));
Type elementType = getElementTypeOrSelf(memref.getType());
auto vt = VectorType::get(vectorShape, elementType);
Value res = b.create<vector::SplatOp>(loc, vt, loads[0]);
foreachIndividualVectorElement(
res,
/*applyFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
return loads[linearIdx];
},
/*reduceFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
res = b.create<vector::InsertOp>(loc, v, res, indices);
});
return res;
}
SmallVector<Operation *> MmaSyncBuilder::buildMemRefStores(
OpBuilder &b, Location loc, ValueRange toStore, OpFoldResult laneId,
Value memref, const IndexCalculator &indexFn) {
auto aff = [&](AffineExpr e) {
return affine::makeComposedFoldedAffineApply(b, loc, e, laneId);
};
SmallVector<Operation *> res;
for (auto [indexing, val] :
llvm::zip_equal(indexFn(b.getContext()), toStore)) {
Value row = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.row()));
Value col = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.col()));
Operation *store =
b.create<memref::StoreOp>(loc, val, memref, ValueRange{row, col});
res.push_back(store);
}
return res;
}
SmallVector<Operation *> MmaSyncBuilder::buildMmaSyncMemRefStoreOperand(
OpBuilder &b, Location loc, Value vectorToStore, OpFoldResult laneId,
Value memref, IndexCalculator indexFn, ArrayRef<int64_t> vectorShape) {
SmallVector<Value> toStore;
toStore.reserve(32);
foreachIndividualVectorElement(
vectorToStore,
/*applyFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
return b.create<vector::ExtractOp>(loc, vectorToStore, indices);
},
/*reduceFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
toStore.push_back(v);
});
return buildMemRefStores(b, loc, toStore, laneId, memref, std::move(indexFn));
}
static std::tuple<SmallVector<int64_t>, SmallVector<int64_t>,
SmallVector<int64_t>>
makeVectorShapes(ArrayRef<int64_t> lhs, ArrayRef<int64_t> rhs,
ArrayRef<int64_t> res) {
SmallVector<int64_t> vlhs{lhs.begin(), lhs.end()};
SmallVector<int64_t> vrhs{rhs.begin(), rhs.end()};
SmallVector<int64_t> vres{res.begin(), res.end()};
return std::make_tuple(vlhs, vrhs, vres);
}
FailureOr<MmaSyncBuilder::MmaSyncInfo>
MmaSyncBuilder::getIndexCalculators(ArrayRef<int64_t> opShape,
TypeRange elementalTypes) {
// TODO: Tablegen all this.
Type f16 = b.getF16Type();
Type f32 = b.getF32Type();
if (opShape == ArrayRef<int64_t>{16, 8, 4} &&
elementalTypes == TypeRange{f32, f32, f32}) {
return MmaSyncInfo{std::make_tuple(&MmaSyncBuilder::m16n8k4tf32Lhs,
&MmaSyncBuilder::m16n8k4tf32Rhs,
&MmaSyncBuilder::m16n8k4tf32Res),
makeVectorShapes({2, 1}, {1, 1}, {2, 2}),
SmallVector<int64_t>{opShape.begin(), opShape.end()},
/*tf32Enabled=*/true};
}
// This is the version with f16 accumulation.
// TODO: version with f32 accumulation.
if (opShape == ArrayRef<int64_t>{16, 8, 16} &&
elementalTypes == TypeRange{f16, f16, f16}) {
return MmaSyncInfo{std::make_tuple(&MmaSyncBuilder::m16n8k16f16Lhs,
&MmaSyncBuilder::m16n8k16f16Rhs,
&MmaSyncBuilder::m16n8k16f16Res),
makeVectorShapes({4, 2}, {2, 2}, {2, 2}),
SmallVector<int64_t>{opShape.begin(), opShape.end()},
/*tf32Enabled=*/false};
}
return failure();
}
FailureOr<Operation *> MmaSyncBuilder::buildMmaSync(LinalgOp linalgOp) {
Value lhsMemRef = linalgOp.getDpsInputOperand(0)->get();
Value rhsMemRef = linalgOp.getDpsInputOperand(1)->get();
Value resMemRef = linalgOp.getDpsInitOperand(0)->get();
assert(cast<MemRefType>(lhsMemRef.getType()).getRank() == 2 &&
"expected lhs to be a 2D memref");
assert(cast<MemRefType>(rhsMemRef.getType()).getRank() == 2 &&
"expected rhs to be a 2D memref");
assert(cast<MemRefType>(resMemRef.getType()).getRank() == 2 &&
"expected res to be a 2D memref");
int64_t m = cast<MemRefType>(lhsMemRef.getType()).getShape()[0];
int64_t n = cast<MemRefType>(rhsMemRef.getType()).getShape()[1];
int64_t k = cast<MemRefType>(lhsMemRef.getType()).getShape()[1];
Type lhsType = getElementTypeOrSelf(lhsMemRef.getType());
Type rhsType = getElementTypeOrSelf(rhsMemRef.getType());
Type resType = getElementTypeOrSelf(resMemRef.getType());
FailureOr<MmaSyncInfo> maybeInfo =
getIndexCalculators({m, n, k}, {lhsType, rhsType, resType});
if (failed(maybeInfo))
return failure();
MmaSyncInfo info = *maybeInfo;
auto [lhsIndexFn, rhsIndexFn, resIndexFn] = info.indexFns;
auto [lhsShape, rhsShape, resShape] = info.vectorShapes;
Value lhs = buildMmaSyncMemRefLoadOperand(b, loc, laneId, lhsMemRef,
lhsIndexFn, lhsShape);
Value rhs = buildMmaSyncMemRefLoadOperand(b, loc, laneId, rhsMemRef,
rhsIndexFn, rhsShape);
Value res = buildMmaSyncMemRefLoadOperand(b, loc, laneId, resMemRef,
resIndexFn, resShape);
res = b.create<nvgpu::MmaSyncOp>(loc, lhs, rhs, res, info.mmaShape,
info.tf32Enabled);
buildMmaSyncMemRefStoreOperand(b, loc, res, laneId, resMemRef, resIndexFn,
resShape);
return res.getDefiningOp();
}
DiagnosedSilenceableFailure transform::RewriteMatmulAsMmaSyncOp::applyToOne(
transform::TransformRewriter &rewriter, LinalgOp linalgOp,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
bool fail = true;
// TODO: more robust detection of matmulOp, with transposes etc.
if (isa_and_nonnull<linalg::MatmulOp>(linalgOp.getOperation())) {
Location loc = linalgOp.getLoc();
// TODO: more robust computation of laneId, for now assume a single warp.
Value laneId = rewriter.create<gpu::ThreadIdOp>(
loc, rewriter.getIndexType(), gpu::Dimension::x);
if (succeeded(MmaSyncBuilder(rewriter, loc, laneId).buildMmaSync(linalgOp)))
fail = false;
}
if (fail) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "unsupported target op: " << linalgOp;
diag.attachNote(linalgOp->getLoc()) << "target op";
return diag;
}
rewriter.eraseOp(linalgOp);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// Hopper builders.
//===----------------------------------------------------------------------===//
/// Helper to create the base Hopper-specific operations that are reused in
/// various other places.
struct HopperBuilder {
HopperBuilder(RewriterBase &rewriter, Location loc)
: rewriter(rewriter), loc(loc) {}
TypedValue<nvgpu::MBarrierGroupType>
buildAndInitBarrierInSharedMemory(OpFoldResult numThreads);
/// Create tma descriptor op to initiate transfer from global to shared
/// memory. This must be done before the launch op, on the host.
TypedValue<nvgpu::TensorMapDescriptorType>
buildGlobalMemRefDescriptor(TypedValue<MemRefType> memref,
gpu::LaunchOp launchOp);
/// Build a tma load from global memory to shared memory using `barrier` to
/// synchronize. Return the number of bytes that will be transferred.
OpFoldResult
buildTmaAsyncLoad(TypedValue<nvgpu::TensorMapDescriptorType> globalDesc,
TypedValue<MemRefType> sharedMemref,
TypedValue<nvgpu::MBarrierGroupType> barrier,
SmallVectorImpl<Operation *> &loadOps);
void buildBarrierArriveTx(TypedValue<nvgpu::MBarrierGroupType> barrier,
ArrayRef<OpFoldResult> sizes);
/// If threadIdx.x == 0 does TMA request + wait, else just wait.
/// Return the operation that performs the transfer on thread0.
// TODO: In the future, don't hardcode to thread 0 but elect a leader.
SmallVector<Operation *> buildPredicateLoadsOnThread0(
ArrayRef<TypedValue<nvgpu::TensorMapDescriptorType>> globalDescriptors,
ArrayRef<TypedValue<MemRefType>> sharedMemBuffers,
TypedValue<nvgpu::MBarrierGroupType> barrier);
void buildTryWaitParity(TypedValue<nvgpu::MBarrierGroupType> barrier);
RewriterBase &rewriter;
Location loc;
};
SmallVector<Operation *> HopperBuilder::buildPredicateLoadsOnThread0(
ArrayRef<TypedValue<nvgpu::TensorMapDescriptorType>> globalDescriptors,
ArrayRef<TypedValue<MemRefType>> sharedMemBuffers,
TypedValue<nvgpu::MBarrierGroupType> barrier) {
SmallVector<Operation *> loadOps;
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value tidx = rewriter.create<gpu::ThreadIdOp>(loc, gpu::Dimension::x);
Value cond =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, tidx, zero);
// clang-format off
rewriter.create<scf::IfOp>(
/*location=*/loc,
/*conditional=*/cond,
/*thenBuilder=*/
[&](OpBuilder &lb, Location loc) {
SmallVector<OpFoldResult> sizes;
sizes.reserve(globalDescriptors.size());
for (auto [desc, shmem] : llvm::zip_equal(
globalDescriptors, sharedMemBuffers)) {
OpFoldResult sz = buildTmaAsyncLoad(desc, shmem, barrier, loadOps);
sizes.push_back(sz);
}
// TODO: Note that cutlass predeclares the barrier arrive tx before the tma.async.load.
// This may or may not have perf implications.
buildBarrierArriveTx(barrier, sizes);
rewriter.create<scf::YieldOp>(loc);
},
/*elseBuilder=*/
[&](OpBuilder &lb, Location loc) {
// TODO: is this for no-thread divergence?
// Should we just yield the size and hoist?
buildBarrierArriveTx(barrier, getAsIndexOpFoldResult(rewriter.getContext(), 0));
rewriter.create<scf::YieldOp>(loc);
});
// clang-format on
return loadOps;
}
static Attribute getSharedAddressSpaceAttribute(OpBuilder &b) {
return gpu::AddressSpaceAttr::get(
b.getContext(), gpu::GPUDialect::getWorkgroupAddressSpace());
// return b.getI64IntegerAttr(static_cast<int64_t>(kSharedMemorySpace));
}
TypedValue<nvgpu::MBarrierGroupType>
HopperBuilder::buildAndInitBarrierInSharedMemory(OpFoldResult numThreads) {
auto sharedMemorySpace = getSharedAddressSpaceAttribute(rewriter);
Value barrier = rewriter.create<nvgpu::MBarrierCreateOp>(
loc,
nvgpu::MBarrierGroupType::get(rewriter.getContext(), sharedMemorySpace));
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
rewriter.create<nvgpu::MBarrierInitOp>(
loc, barrier, getValueOrCreateConstantIndexOp(rewriter, loc, numThreads),
zero, Value());
rewriter.create<gpu::BarrierOp>(loc);
return cast<TypedValue<nvgpu::MBarrierGroupType>>(barrier);
}
TypedValue<nvgpu::TensorMapDescriptorType>
HopperBuilder::buildGlobalMemRefDescriptor(TypedValue<MemRefType> memref,
gpu::LaunchOp launchOp) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(launchOp);
Value unrankedMemRef = rewriter.create<memref::CastOp>(
loc,
UnrankedMemRefType::get(memref.getType().getElementType(),
memref.getType().getMemorySpace()),
memref);
SmallVector<OpFoldResult> mixedSizes =
memref::getMixedSizes(rewriter, loc, memref);
SmallVector<Value> sizes =
getValueOrCreateConstantIndexOp(rewriter, loc, mixedSizes);
auto sharedMemorySpace = getSharedAddressSpaceAttribute(rewriter);
Value desc = rewriter.create<nvgpu::TmaCreateDescriptorOp>(
loc,
nvgpu::TensorMapDescriptorType::get(
rewriter.getContext(),
MemRefType::Builder(memref.getType())
.setMemorySpace(sharedMemorySpace),
TensorMapSwizzleKind::SWIZZLE_NONE,
TensorMapL2PromoKind::L2PROMO_NONE, TensorMapOOBKind::OOB_ZERO,
TensorMapInterleaveKind::INTERLEAVE_NONE),
unrankedMemRef, sizes);
return cast<TypedValue<nvgpu::TensorMapDescriptorType>>(desc);
}
OpFoldResult HopperBuilder::buildTmaAsyncLoad(
TypedValue<nvgpu::TensorMapDescriptorType> globalDesc,
TypedValue<MemRefType> sharedMemref,
TypedValue<nvgpu::MBarrierGroupType> barrier,
SmallVectorImpl<Operation *> &loadOps) {
MLIRContext *ctx = rewriter.getContext();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Operation *loadOp = rewriter.create<nvgpu::TmaAsyncLoadOp>(
loc, sharedMemref, barrier, globalDesc, ValueRange{zero, zero}, zero,
Value(), Value());
loadOps.push_back(loadOp);
auto mixedSizes = memref::getMixedSizes(rewriter, loc, sharedMemref);
SmallVector<AffineExpr> symbols(mixedSizes.size());
bindSymbolsList(ctx, llvm::MutableArrayRef{symbols});
AffineExpr prodExprInBytes =
computeProduct(ctx, symbols) *
(sharedMemref.getType().getElementTypeBitWidth() / 8);
auto res = affine::makeComposedFoldedAffineApply(rewriter, loc,
prodExprInBytes, mixedSizes);
return res;
}
void HopperBuilder::buildBarrierArriveTx(
TypedValue<nvgpu::MBarrierGroupType> barrier,
ArrayRef<OpFoldResult> mixedSizes) {
assert(!mixedSizes.empty() && "expecte non-empty sizes");
MLIRContext *ctx = rewriter.getContext();
SmallVector<AffineExpr> symbols(mixedSizes.size());
bindSymbolsList(ctx, llvm::MutableArrayRef{symbols});
AffineExpr sumExpr = computeSum(ctx, symbols);
OpFoldResult size =
affine::makeComposedFoldedAffineApply(rewriter, loc, sumExpr, mixedSizes);
Value sizeVal = getValueOrCreateConstantIndexOp(rewriter, loc, size);
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
rewriter.create<nvgpu::MBarrierArriveExpectTxOp>(loc, barrier, sizeVal, zero,
Value());
}
void HopperBuilder::buildTryWaitParity(
TypedValue<nvgpu::MBarrierGroupType> barrier) {
Type i1 = rewriter.getI1Type();
Value parity = rewriter.create<LLVM::ConstantOp>(loc, i1, 0);
// 10M is an arbitrary, not too small or too big number to specify the number
// of ticks before retry.
// TODO: hoist this in a default dialect constant.
Value ticksBeforeRetry =
rewriter.create<arith::ConstantIndexOp>(loc, 10000000);
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
rewriter.create<nvgpu::MBarrierTryWaitParityOp>(loc, barrier, parity,
ticksBeforeRetry, zero);
}
//===----------------------------------------------------------------------===//
// RewriteCopyAsTmaOp
//===----------------------------------------------------------------------===//
/// Helper to create the tma operations corresponding to `linalg::CopyOp`.
struct CopyBuilder : public HopperBuilder {
CopyBuilder(RewriterBase &rewriter, Location loc)
: HopperBuilder(rewriter, loc) {}
SmallVector<Operation *> rewrite(ArrayRef<Operation *> copyOps);
};
SmallVector<Operation *> CopyBuilder::rewrite(ArrayRef<Operation *> copyOps) {
MLIRContext *ctx = rewriter.getContext();
if (copyOps.empty())
return SmallVector<Operation *>();
auto launchOp = copyOps.front()->getParentOfType<gpu::LaunchOp>();
assert(launchOp && "expected launch op");
// 1. Init a barrier object in shared memory.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(copyOps.front());
AffineExpr bx, by, bz;
bindSymbols(ctx, bx, by, bz);
AffineExpr prod = computeProduct(ctx, ArrayRef<AffineExpr>{bx, by, bz});
OpFoldResult numThreads = affine::makeComposedFoldedAffineApply(
rewriter, loc, prod,
ArrayRef<OpFoldResult>{launchOp.getBlockSizeX(), launchOp.getBlockSizeY(),
launchOp.getBlockSizeZ()});
TypedValue<nvgpu::MBarrierGroupType> barrier =
buildAndInitBarrierInSharedMemory(numThreads);
SmallVector<TypedValue<MemRefType>> shmems;
SmallVector<TypedValue<nvgpu::TensorMapDescriptorType>> globalDescs;
for (Operation *op : copyOps) {
auto copyOp = cast<linalg::CopyOp>(op);
auto inMemRef =
cast<TypedValue<MemRefType>>(copyOp.getDpsInputOperand(0)->get());
assert(inMemRef.getType().getRank() == 2 &&
"expected in to be a 2D memref");
// 2. Build global memory descriptor.
TypedValue<nvgpu::TensorMapDescriptorType> globalDesc =
buildGlobalMemRefDescriptor(inMemRef, launchOp);
globalDescs.push_back(globalDesc);
// 3. Shared memory and descriptor for the tmp array.
auto shmem =
cast<TypedValue<MemRefType>>(copyOp.getDpsInitOperand(0)->get());
shmems.push_back(shmem);
}
// 4. Load in from global memory to shared memory using tma.
OpBuilder::InsertionGuard g2(rewriter);
rewriter.setInsertionPoint(copyOps.front());
SmallVector<Operation *> results =
buildPredicateLoadsOnThread0(globalDescs, shmems, barrier);
// 5. Spin-loop until data is ready.
buildTryWaitParity(barrier);
// 6. Erase the ops that have now been rewritten.
for (Operation *op : copyOps)
rewriter.eraseOp(op);
return results;
}
DiagnosedSilenceableFailure
transform::RewriteCopyAsTmaOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &results,
transform::TransformState &state) {
auto payloadOps = state.getPayloadOps(getTarget());
gpu::LaunchOp commonLaunchOp;
Operation *firstOp, *failingOp;
if (llvm::any_of(payloadOps, [&](Operation *op) {
if (!commonLaunchOp) {
commonLaunchOp = op->getParentOfType<gpu::LaunchOp>();
firstOp = op;
}
auto fail = !op->getParentOfType<gpu::LaunchOp>() ||
commonLaunchOp != op->getParentOfType<gpu::LaunchOp>() ||
!isa<linalg::CopyOp>(op);
if (fail)
failingOp = op;
return fail;
})) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "target ops must be linalg::CopyOp nested under a common "
"gpu.LaunchOp to be rewritten because the tma descriptors need to "
"be created on the host.\nBut got: "
<< *firstOp << "\nand " << *failingOp;
return diag;
}
// TODO: more robust detection of copy, with transposes etc.
CopyBuilder(rewriter, getLoc()).rewrite(llvm::to_vector(payloadOps));
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//
namespace {
class NVGPUTransformDialectExtension
: public transform::TransformDialectExtension<
NVGPUTransformDialectExtension> {
public:
NVGPUTransformDialectExtension() {
declareGeneratedDialect<arith::ArithDialect>();
declareGeneratedDialect<affine::AffineDialect>();
declareGeneratedDialect<nvgpu::NVGPUDialect>();
declareGeneratedDialect<NVVM::NVVMDialect>();
declareGeneratedDialect<vector::VectorDialect>();
registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp.inc"
>();
}
};
} // namespace
#define GET_OP_CLASSES
#include "mlir/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp.inc"
void mlir::nvgpu::registerTransformDialectExtension(DialectRegistry ®istry) {
registry.addExtensions<NVGPUTransformDialectExtension>();
}
|